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“In the end, it really is just a matter of choosing the relevant parts of
mathematics and ignoring the rest. Of course, the hard part is deciding
what is irrelevant.” (page ???)

I had missed the first edition of this book and thus I started reading it
with a newcomer’s eyes (I will thus not comment on the differences with the
first edition, sketched by the author in the Preface). Past the initial sur-
prise of discovering it was a mathematics book rather than an algorithmic
book, I became engrossed into my reading and could not let it go! Numer-
ical Analysis for Statisticians is a wonderful book. It provides most of the
necessary background in calculus and enough algebra to conduct rigorous
numerical analyses of statistical problems. This includes expansions, eigen-
analysis, optimisation, integration, approximation theory, and simulation,
in less than 600 pages. It may be due to the fact that I was reading the
book in my garden, with the background noise of the wind in tree leaves, but
I cannot find any solid fact to grumble about! Not even about the MCMC
(Markov Chain Monte Carlo) chapters! I simply enjoyed Numerical Analysis
for Statisticians from beginning till end.

“Many fine textbooks (...) are hardly substitutes for a theoretical treat-
ment emphasizing mathematical motivations and derivations. How-
ever, students do need exposure to real computing and thoughtful nu-
merical exercises. Mastery of theory is enhanced by the nitty gritty of
coding.” (page ???)

From the above, it may sound as if Numerical Analysis for Statisticians does
not fulfill its purpose and is too much of a mathematical book. Be assured
this is not the case: the contents are firmly grounded in calculus (analysis)
but the (numerical) algorithms are only one code away. An illustration
(among many) is found in Section 8.4: Finding a Single Eigenvalue, where
Kenneth Lange shows how the Raleigh quotient algorithm of the previous
section can be exploited to this aim, when supplemented with a good initial
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guess based on Gerschgorin’s circle theorem. This is brilliantly executed in
two pages and the code is just one keyboard away. The EM algorithm is
immersed into a larger MM perspective. Problems are numerous and mostly
of high standards, meaning one has to sit and think about them. References
are kept to a minimum, they are mostly (highly recommendable) books,
which is a principle I highly approve of for textbooks, plus a few research
papers primarily exploited in the problem sections.

“Every advance in computer architecture and software tempts statis-
ticians to tackle numerically harder problems. To do so intelligently
requires a good working knowledge of numerical analysis. This book
equips students to craft their own software and to understand the ad-
vantages and disadvantages of different numerical methods. Issues of
numerical stability, accurate approximation, computational complexity,
and mathematical modeling share the limelight in a broad yet rigorous
overview of those parts of numerical analysis most relevant to statisti-
cians.” (page ???)

While I am reacting so enthusiastically to the book (imagine, there is even
a full chapter on continued fractions!), it may be feared that graduate stu-
dents over the World would find the book too hard. However, I do not
think so: the style of Numerical Analysis for Statisticians is very fluid and
the rigorous mathematics are mostly at the level of undergraduate calcu-
lus. The more advanced topics like wavelets, Fourier transforms, or Hilbert
spaces (for self-reproducing kernels) are very well-introduced and do not re-
quire prerequisites in complex calculus or functional analysis. Even measure
theory does not appear to be a prerequisite! On the other hand, there is
a prerequisite for a good background in statistics. This book will clearly
involve a lot of work from the reader, but the respect shown by Kenneth
Lange to those readers will sufficiently motivate them to keep them going till
assimilation of those essential notions. Numerical Analysis for Statisticians
is also recommended for more senior researchers and not only for building
one or two courses on the bases of statistical computing. It contains most
of the math bases that we need, even if we do not know we need them!
Truly an essential book to hand to graduate students as soon as they enter
a Statistics program..

The EM algorithm
The EM algorithm was introduced in 1977 by Dempster, Laird and Rubin in a
paper that remains one of the most quoted statistics papers (to wit, currently
22,485 links on Google scholar!). EM stands for expectation-maximisation and
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it is an algorithm that aims at maximising likelihoods with a latent structure,
like mixtures of distributions. Since the (observed) likelihood writes like an
integrated completed likelihood

Lo(θ|x) =

∫
Lc(θ;x, z)dz

the EM algorithm proceeds iteratively by computing an expected log-likelihood
(E-step)

Q(θ|x, θ(t)) = E)θ(t)[logLc(θ;x, Z)|X],

where the expectation integrates out Z conditional on X and for a parameter
value θ(t). And then by maximising (M-step) Q(θ|x, θ(t)) in θ, thus obtaining the
new value θ(t+1). By a convexity argument, each EM step increases the observed
likelihood. The EM algorithm thus ends up in a local if not necessarily the global
mode of the observed likelihood. Numerous extensions to the original scheme
are found in the literature. (See also the Wikipedia article on Expectation-
maximization algorithm, which contains an illustration for the mixture problem.)

Wavelets
Wavelets form a special type of function basis used to decompose functions into
scale components. Because of the simultaneous use of two types of basis (the
mother and the father wavelets), accounting for a multiresolution analysis, it is
more efficient than the older Fourier transforms, which use sinusoids as a basis.
For instance, a mother wavelet is the sinc function

sinc(t) =
sin(2πt)− sin(πt)

πt

while an example of a father wavelet is the Haar wavelet ϕ(t) = I0≤t<1. This
representation of functions is quite useful in data compression, being for instance
at the basis of the JPEG 2000 standard. It is also a branch of non-parametric
statistics since the 1990’s.

MCMC methods
Markov chain Monte Carlo methods are a special branch of simulation (or Monte
Carlo) methods where the distribution to be simulated f is the limiting and
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stationary distribution of the Markov chain. Two major groups of MCMC algo-
rithms are Gibbs samplers on the one hand and Metropolis–Hastings algorithms
on the other hand. The former uses a substitute Markov kernel y ∼ Q(xt, y)
and the Metropolis–Hastings acceptance probability

ρ(xt, y) = 1 ∧ f(y)

f(xt)

Q(y, xt)

Q(xt, y)
.

The later relies on full conditional distributions to simulate f one component at
a time. While the theoretical convergence of MCMC methods is almost always
garanteed, the practical implementation may face difficulties. However, MCMC
methods have greatly contributed to the dissemination of Bayesian techniques
in applied fileds since the 1990’s.

The Gerschgorin’s theorem
This theorem is used in the resolution of linear systems involving matrices A
with a large condition number (i.e. a large ratio between the largest and the
smallest absolute eigenvalues of A). It states that every eigenvalue of a matrix
A lies within at least one of the Gershgorin discs D(aii, Ri), where aii is the
i-th diagonal element of the matrix A and

Ri =∼j 6=i |aij | .

Therefore, the information provided by the theorem about the magnitude of the
eigenvalues allows for a preconditioning step that greatly reduces the condition
number.
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