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Abstract

Suppose that 7 is an intractable probability distribution. Let X = {X; : i =
0,1,...} be a positive recurrent Markov chain with Markov transition kernel P(z,dy)
and invariant probability measure 7. Assume that X satisfies a minorization condition
of the form P(z,-) > s(z) Q(-). We provide a method of using simulations from the
Markov chain X to construct a statistical estimate of m, call it 4, from which it is
straightforward to sample. We show that 7 is “strongly consistent” in the sense that
the total variation distance between 7 and #, ||7 — 7|, converges to 0 almost surely as
the number of simulations grows. Moreover, we use some recently developed asymptotic
results to provide guidance as to how much simulation is necessary in order to make a
statement like Pr [||m — #|| < 0.1] & 0.90. Draws from # can be used to approximate
features of 7 (and hence of 7), or they can be used as intelligent starting values for the
original Markov chain. We illustrate our methods via two examples.



1 Introduction

Let 7 be a probability distribution that we would like to explore. Further suppose that = is
intractable in the sense that numerical integration and classical Monte Carlo methods are
not viable options for approximating the features of 7. Also, assume that we have at our
disposal a Markov transition kernel, P(z,dy), that satisfies the usual regularity conditions
(see Section 2), has 7 as its invariant probability measure and is straightforward to simulate.
Write the corresponding Markov chain as X = {X,,}2°,. As is now well-known, there are
many methods for constructing such kernels (see, e.g., Liu; 2001; Robert and Casella; 1999).

We begin by generalizing a result of Hobert and Robert (2004) to show that, if P satisfies
a one-step minorization condition of the form P(z,-) > s(z)Q(-), then the probability
distribution 7 can be represented as

(4) =3 QuA)pr, 1)
t=1

where each Q(-) is a probability measure (on the same space as m) and {p:}°, is a sequence
of positive numbers that sum to 1. Representation (1) is appealing from a simulation point
of view because it reveals the potential for drawing from 7 by randomly drawing an element
from the set {Q1, @2, @s,- .. } according to the probabilities pi, p2,ps, ... and then making
an independent random draw from the chosen ;. Of course, the first part of this recipe is
equivalent to simulating a discrete random variable, call it 7, whose mass function is given
by Pr(T* =t)=p, fort =1,2,3....

We provide an algorithm for making draws from Qy(-) that requires only slightly more
than the ability to simulate X. Unfortunately, making draws from T is often prohibitively
difficult. Suppose, however, that {p;}°; is another sequence of positive numbers that sum
to 1 and consider an approximation to 7 of the form #(A) = >~ Q4(A) p¢. Then the total
variation distance, || - ||, between 7 and 7 satisfies

() =&)< D Ipe — el -

The main contribution of this paper is a method of using simulations of the Markov chain,
X, to construct {p;}¢°; in such a way that > ;°, |ps — ;| (and hence ||m — 7||) is small with
high probability. We are able to accomplish this by first finding a simple upper bound on
Y121 |pt — Pt| and then taking advantage of some recent results in the probability literature
regarding the asymptotic properties of the bound.

Armed with the numbers, {p:}7°,, and the algorithm for simulating from Q:, we can
straightforwardly make independent and identically distributed (iid) draws from #. These
draws can be used to estimate or visualize features of m. Another interesting use of # is as
a starting distribution for the original Markov chain; that is, since |7 (-) — #(-)|| is small,
we can start the Markov chain X with Xy ~ 7 thereby eliminating the need for burn-in.

Let P™(z,-) represent the distribution of X,, given Xy = = and suppose that € > 0. The
basic Markov chain theory underlying Markov chain Monte Carlo (MCMC) implies that



there exists an n* = n*(e,z) such that ||7(-) — P" (z,-)|| < . Furthermore, it is easy to
sample from the distribution P™"(z, -) - just start the chain at x and simulate n* iterations.
Thus, we have an approximation, P" (z,-), from which we can make iid draws and that is
guaranteed to be within € of 7 in total variation. So is P™ (z,-) a better approximation of 7
than 7?7 Yes, but finding n* is much more difficult than constructing #. Indeed, establishing
a minorization condition is only a (frequently minor) part of the analysis that is required to
find n* (Roberts and Tweedie; 1999; Rosenthal; 1995a). Moreover, even when it is possible
to calculate n*, it often turns out to be too large to be of any practical value.

The rest of the paper is organized as follows. Some basic Markov chain background
material is given in Section 2. The mixture representation of 7 upon which our approxima-
tion is based is described in Section 3. Our method of estimating the sequence {p;};2; is
described in Section 4. In Section 5, we argue that # can be used to eliminate the need for
burn-in. Finally, Sections 6 and 7 contain examples illustrating our methods.

2 Minorization and the Split Chain

Let X = {X; : ¢ = 0,1,2,...} be a Markov chain on a general state space (X, B(X))
with Markov transition kernel P(z,dy). Let P"(z,dy) denote the n-step Markov transition
kernel corresponding to P; that is, for ¢ € {0,1,2,...}, € X and a measurable set
B, P™"(z,B) = Pr(X,4; € B|X; = z). We assume throughout that X is m-irreducible and
positive Harris recurrent where 7 is the invariant probability measure. Many Markov chains
that are the basis of an MCMC algorithm satisfy these basic properties.

Our main additional assumption is that X satisfies a one-step minorization condition;
that is, we assume that we have a function s : X — [0, 1] satisfying 7(s) := [y s(z) w(dz) > 0
and a measure v on B(X) such that for all z € X and all measurable B,

P(z,B) > s(z)v(B) . (2)

Following Nummelin, we call s a small function and v a small measure. This set-up is more
general than that of Hobert and Robert (2004), who assume that s(z) has the specific form
elc(xz) where € > 0 and C € B(X). There are often practical advantages to working with
the more general minorization (c.f., Jones and Hobert; 2001).

Remark 1. While the basic properties do not guarantee the existence of a one-step mi-
norization condition, they do guarantee that a k-step minorization holds; that is, they
guarantee the existence of a k € N := {1,2,...} such that P*(x,-) > s(x)v(-) where s
and v are as described above. For a given chain, if it is not possible to establish (2), but
P¥(z,-) > s(z)v(-) can be established for some k € {2,3,4,...}, then we simply consider
the Markov chain corresponding to P* to be the chain of interest. Of course, the k-step
chain inherits the basic properties from X. Finally, note that if X is countable, then it is
easy to establish (2) by fizing a point & € X and taking s(z) = I(z = &) and v(-) = P(Z,).

The minorization allows for the fundamental splitting construction of Nummelin (1978,



1984). Specifically, we can use (2) to write P(z,-) as a two-component mixture
P(z,dy) = s(z) v(dy) + [1 — s(z)] R(z, dy) , (3)

where R(z,dy) := [1 — s(z)] " [P(z,dy) — s(z) v(dy)] is called the residual measure; define
R(z,dy) to be 0if s(z) = 1. If X is the basis of an MCMC algorithm, then presumably there
is a convenient method of simulating from P(z,-). The mixture representation (3) provides
the following alternative method: given X,, = z, generate &, ~ Ber(s(z)). If §, = 1, then
draw X,,+1 from v(-), else draw X, 1 from R(z,-). In fact, this is a recipe for simulating
the split chain, X" = {(X;,d;) : ¢ = 0,1,...}, which lives on the space X x {0,1} and is such
that, marginally, the sequence {X; : i = 0,1, ...} has the same distribution as the original
chain, X. An important property of X' is that A := X x {1} is a proper atom for the chain
X' and the (random) times at which X' enters A are regeneration times when the chain
stochastically restarts; i.e., the next value has distribution v. (See Nummelin (1984, Section
4.4) for a thorough development of X' including expressions for its transition kernel and
stationary distribution.)

As a practical matter, simulating the split chain in the manner described above may be
troublesome since drawing from R(z,dy) can be prohibitively difficult. However, there is
a simple method for avoiding this. Specifically, Mykland, Tierney and Yu (1995) suggest
simulating from the distribution of X;1|X; using the sampler at hand and then “filling in”
d; by simulating from the distribution of §;| X;, X; 11 with

5(Xi)g(Xit1)

Pr(d; = 1[X;, Xit1) = E(X;1|X5)
i i

where ¢(-) and k(-|z) are the densities corresponding to v(-) and P(z,-). We will use this
approach in our examples. Jones and Hobert (2001) and Mykland et al. (1995) provide
further practical advice on simulating the split chain. In the next section we use the
development of the split chain to derive an identity for .

3 Approximating 7

Define 74 to be the first return time to A; that is,
Ta=min{n >1:(X,,d,) € A} .

Also, let Pry(-) and E4(-) denote probability and expectation conditional on §y = 1 (with
X chosen arbitrarily); i.e., X; ~ v(-). Since X' is positive recurrent it follows that
EAa(7a) < oo. Consequently, we can define a discrete random variable, T%, with support N
and probabilities defined by
Pry(ta > t)
Pt = —VF 7~
Ea(7a)

Also, for any t € N and any measurable B, we define

(4)

Qi(B) =Pra(X; € Blta > t); (5)



i.e., Q; is the conditional distribution of X; given that (Xy,dp) € A and that there are no
regenerations in the split chain before time ¢.

Theorem 1. Let X be a Markov chain on a general state space (X, B(X)) with Markov
transition kernel P. Assume that X is w-irreducible and positive Harris recurrent where w
is the invariant probability measure. Assume further that (2) holds. Then for any B € B(X),
we have

w(B) =) Q:(B)p:, (6)

where Qi and p; are defined in terms of the split chain at (4) and (5).
Proof. See Appendix A. O

Clearly, (6) is appealing from a simulation point of view because it shows that it is
possible to simulate a random variable from 7 using a sequential sampling mechanism.
That is, a draw from 7 can be made by first drawing from the distribution 7%, call the
result t*, and then making a draw from Q. In fact, it is always possible to simulate from
Q: using a simple accept-reject algorithm that we call Algorithm I. All that is required is
the ability to simulate the split chain. Note that Q1(-) = v(:) so in the algorithm, it is
assumed that ¢t > 2.

Algorithm I:

1. Take (z,dp) € A and simulate the split chain for ¢ iteratioms.

2. If 6y =--- =041 =0, then take x;; otherwise, repeat.

Hobert and Robert (2004) show that if s(z) = & > 0, then T* has a geometric distri-
bution. Therefore, in that case, one can use iid draws from the geometric distribution in
conjunction with Algorithm I to make iid draws from #. Unfortunately, in most cases where
X is the basis of a practically relevant MCMC algorithm, it is difficult, at best, to make
draws from the distribution of 7. (Jones and Hobert (2004) call an MCMC algorithm
practically relevant when the stationary distribution is complex enough that iid sampling
is not straightforward.)

Alternatively, suppose that we could find probabilities, call them {p;}$2,, that are
“close” to the probabilities {p;}$2;. Then we could approximate 7 with

w() =D Qi) bt (7)
t=1
from which it is straightforward to sample. Furthermore, note that

() = 7O = D Qe()pe — D Qs() e

[e.e]
< lpe— il - (8)
t=1



Thus, the total variation distance between the distributions = and 7 is bounded above by
twice the total variation distance between the distributions of 7* and 7™, where T is the
discrete random variable on N with probabilities {p;}$2;.

Hobert and Robert (2004) show that, given any v > 0, it is possible to use a geometric
drift condition on the Markov chain X to construct {p;}$°, such that > 3%, |pr — p¢| < 7.
In the next section, we show that even without a drift condition, it is possible to do the
same thing except that, instead of being able to say with certainty that > .o, |ps — pe| < 7,
we will only be able to say that this inequality holds with high probability.

4 Estimating the Mass Function of 7™

The key to our construction is that making iid draws from the distribution of 74 is straight-
forward; just take X7 ~ v(-), run the split chain, and count how many iterations until the
first regeneration. This unlimited supply of iid copies of 74 can be used to construct a
statistical estimate of p; via (4). First note that

_ PIA(TA Zt) _ PI‘A(TA Zt) _ l—F(t—l)
PT TR S Pralra>s) 14 o1 F(s)]
where F(t) := Pra(ra < t) is the distribution function of 74 conditional on (Xy,dy) € A.
Let T41,...,TA,m denote an iid sample of size m from the distribution of 74, and let F,,(t)

denote the corresponding empirical distribution function. To estimate p;, we plug-in F},, in
place of F} i.e.,

s=1 m S)] TA
where 74 is the sample mean. Note that > ;°; pr = 1. Hence, {p;} will always be a
legitimate mass function on N from which we can sample.

We now use asymptotic arguments to show that {p;},~, enjoys a type of “strong con-
sistency” and to get a handle on the error of {p;};>,. These results allow us to develop a
method of choosing an appropriate value for m. In light of (8), we use > :°; [P+ — pt| as
our measure of error. Let G; and (G2 denote two univariate distribution functions. The
L1-Wasserstein distance between the probability distributions corresponding to G; and G»
is defined as (Shorack and Wellner; 1986, Chapter 2)

o0

dl(Gl,Gz):/ 1G1(2) — Ga(a)| da-

—0o0
The following result shows that {p;}7°, is an asymptotically reasonable estimate of the mass
function of T™.

Theorem 2. For {p;} as defined in (9) we have

o
> " |pt — pel < 2d1(Fon, F).
t=1

Hence, Y 121 |pt — pt| = 0 a.s. as m — 0.



Proof. See Appendix B. O

Obviously, no matter how large m is, we can never say for certain that dy(F,,F) < 7.
However, we can use asymptotic results to make statements like Pr[di(F,, F) <]~ 1 —
a. Indeed, Del Barrio, Gine and Matran (1999) have recently described the first-order
asymptotics for the L;-Wasserstein distance between the empirical and true distribution
T2+e]

functions. In particular, their results imply that if E 4 [ %4 °] < oo for some € > 0, then

Vm di(F, F) 5 Y |B(F (1)) (10)

where B(s), 0 < s < 1, denotes a Brownian bridge process. We can use this result to choose
an appropriate value for m in (9).

Remark 2. The assumption that F» [de’s] < o0 15 a weak condition that is closely related

to the mizing properties of the Markov chain (see e.g. Roberts and Tweedie; 1999). In fact,
if this condition were to fail, it is difficult to imagine that the Markov chain would miz
sufficiently well to be of any practical use.

As we now describe, (10) can be used to come up with a reasonable value of m. Suppose
that 741,...,Ta,m is an initial sample of 74’s with corresponding empirical distribution
function F,,. Let u,, denote the number of unique values in this sample. Also, let L denote
the random variable > :°; | B(F,(t))|, which, if m’ is large, should have a distribution quite
similar to that of ) ;°; |B(F(t))|. Simulating the random variable L is quite simple. Indeed,
all that is required is u,, values of one realization of standard Brownian motion in (0, 1),
which can be done sequentially using only univariate normal draws. Hence, it is easy to
find ¢ such that

PriL<c=1-a.

Then if we take m = 4c¢?/y2, we can say that Pr[2d;(F,,,F) <v] =~ 1 — «, and hence
that {p;} is within v of {p;} with probability approximately equal to 1 — o. We may then
conclude that

lm(-) =7 <~
with probability approximately equal to 1 — a. Before describing how this approximation
can be used to attack the burn-in problem, we briefly mention one possible avenue for
improving upon these asymptotic approximations.

There are three forms of approximation used in the above argument: (i) the asymptotic
approximation in (10); (ii) the use of ) ;°, |B(Fm(t))| in place of ) ;°, |B(F(t))|; and (iii)
the estimation of the quantile of L. The most bothersome of these is certainly (ii). It may
be possible to dispense with approximations (ii) and (iii), and simplify the method at the
same time. To be specific, let G denote the class of distribution functions corresponding to
discrete random variables with support N that have a finite 2 + € moment. Consider the
random variables

Lg =) |B(G(®))



as G ranges over G. Suppose there exists a G* such that Lg+ is stochastically larger then
any other Lg. Then we could simply use L+ in place of > :°, |[B(F(t))|. This would
remove approximation (ii) and would alleviate the need for the initial sample of m' 74’s.
Furthermore, the quantiles of Lg+ could be tabulated and this would obviate approximation
(iii). All of this suggests that an investigation into the possible existence of a “dominating”
G* could be well worth the effort. However, we do not explore this possibility any further
here.

5 An Application to Burn-in

Our assumptions about P imply that for every initial probability measure A(-) on B(X) we
have
[P*(A,-) =7()[[ 40 as n— o0,

where P"(\, A) := [, P"(z, A) A(dz) is the probability distribution of X, given that Xq ~ .
Typically, the MCMC user has no particular starting distribution in mind. Indeed, A(-) is
usually taken to be a point mass at some point from which it is convenient to start the
simulation. An important problem in the implementation of MCMC algorithms is burn-in
(time), which is formally described as follows. Given A(+) and v > 0, we want to find an n*
such that

IP™(, ) = x()ll <. (11)

If (11) holds, then the marginal distribution of X, (conditional on Xy ~ A) is within y of
7 for all n > n*. Hence, n* may be regarded as a reasonable time to start sampling the
Markov chain.

Several authors have recently shown that drift and minorization conditions on the
Markov chain can be used to derive computable upper bounds on [|[P™(}A,-) — «(-)|| that
decrease geometrically fast in n (Douc, Moulines and Rosenthal; 2002; Meyn and Tweedie;
1994; Roberts and Tweedie; 1999; Rosenthal; 1995a). These upper bounds can be used to
find an n* that satisfies (11). The phrase “difficult theoretical analysis” is used by Fill,
Machida, Murdoch and Rosenthal (2000) to describe this method. Furthermore, when this
strategy is used in the context of a practically relevant MCMC algorithm, it is not unusual
for the resulting n* to be too large to be of any practical value (see e.g. Jones and Hobert;
2004).

A much simpler, but slightly less rigorous approach to burn-in is to simply start the
Markov chain, X, by taking X, ~ #. To be specific, suppose that the methods of Subsec-
tion 4 are used to construct {p;} such that

o
PT[Z|ﬁt—Pt|<7] l-a

t=1

where a and v are small. Then we can say that Pr(|r — #|| < v) ® 1 — @. Then if X is
started with Xy ~ 7(-), one can begin sampling the Markov chain right away. In the next
two sections, we illustrate the construction of # with toy and realistic examples, respectively.



6 A Toy Example

Suppose that 7(z) = e *I(z > 0). This distribution is clearly not intractable in any sense,
but using a simple, univariate distribution allows us to evaluate our approximations by
comparing them directly to the truth. The Markov chain we consider is the independence
sampler with an Exp(@) proposal; that is, the proposal density is g(z) = fe=9*I(x > 0).
The chain evolves as follows: Given X,, = z, draw y ~ Exp(f) and independently draw
u ~ Uniform(0,1). If u < exp{(z — y)(1 — 6)} then set X,,1; =y, otherwise set X1 = .
The mixing behavior of this sampler (as a function of €) is well known and this allows us to
evaluate the importance of regularity conditions. The case @ = 1 is not of interest to us since
in this case the algorithm yields iid draws from the target distribution. Results in Mengersen
and Tweedie (1996) can be used to show that the chain is uniformly ergodic if 0 < 8 < 1
which guarantees that 74 has a moment generating function and hence F4 [Ti+€] < 00. The
rate of convergence is known to be subgeometric for § > 1. Furthermore, the results of
Roberts (1999) suggest that E4[r3] is finite for 1 < § < 2 and possibly infinite when 6 > 2.

Finding a minorization condition is simple. Let w(z) = 0 1e*(®" 1. Mykland et al.
(1995, p. 236) show that (2) is satisfied when

s(z) = {ﬁm}

q(y){@/\l}

for any a > 0. Mykland et al. also give an expression for the probability of regeneration
that does not require the normalizing constant for the density of v.

and v has density proportional to

We constructed three approximations to 7: The first was based on a uniformly ergodic
sampler with & = 0.75; the second was based on a subgeometric sampler with § = 1.5;
and the third used a subgeometric sampler with § = 2.5. In all cases, after some trial and
error, we chose a = 1.5. For each value of 6, an initial sample of m' = 2.5 x 10° iid 74’s
was drawn. The results are reported in Table 1 which gives the number of unique values
observed (u),),the maximum value observed (max), and the 99th percentile (99%).

Table 1: Initial Sample Results

0 | ul, | max | 99% |
0.75 | 11 11 5
1.5 | 48 | 141 9
2.5 | 193 | 2472 | 16

Then, for each value of §,we then simulated 5 x 10* values of L and the results are given
in Table 2. In particular, Table 2 gives the number (m) of 74’s necessary to ensure that

10



7 is within - of the stationary distribution in total variation distance with approximate
probability 1 — . The values of m in Table 2 clearly reflect the fact that the sampler enjoys
superior mixing for smaller values of 6.

Table 2: Results from Simulating L

0 Qa c ¥ m
0.75 | 0.20 | 10.237 | 0.05 | 1.68 x 10°
0.25 | 6.70 x 103
0.10 | 12.877 | 0.05 | 2.65 x 10°
0.25 | 1.06 x 10*
1.5 | 0.20 | 48.093 | 0.05 | 3.70 x 108
0.25 | 1.48 x 10°
0.10 | 60.167 | 0.05 | 5.79 x 10°
0.25 | 2.32 x 10°
2.5 | 0.20 | 197.09 | 0.05 | 6.22 x 107
0.25 | 2.49 x 108
0.10 | 245.59 | 0.05 | 9.65 x 107
0.25 | 3.86 x 108

For each value of 8, we constructed 7 using the m corresponding to the row in Table 2
with @ = 0.20 and v = 0.25. In Figure 1 we present two density estimates. One estimate is
based on iid samples from the target while the other estimate is based on a random sample
of draws from 7. The density estimates were made using the density function available in
the R software package (Thaka and Gentleman; 1996). Examination of Figure 1 reveals that
when € = 0.75 we obtain a good approximation to w. However, when 8 = 1.5 or 8 = 2.5,
the quality of the approximation is only slightly worse.

7 Hierarchical Linear Mixed Models

Consider the usual frequentist general linear mixed model
Y=XB+Zu+¢,

where Y is an n x 1 vector of observations, X is a known n X p matrix, Z is a known n X ¢
matrix, 8 is a p X 1 vector of parameters, u is a g X 1 vector of random variables, and ¢ is
an n X 1 vector of residual errors. We also assume that X is of full column rank so that
XTX is invertible. A Bayesian version of this model may be expressed as a conditionally
independent hierarchical model

Y|8,u,R,D ~ Np(XB+ Zu, R~

,8|’U,, R: D ~ Np(:BOa Bil)

11



u|/D,R ~ N, (0,D71) (12)
with as yet unspecified priors f(R) and f(D). Here By and B! are assumed to be known.
The posterior density of (3,u, R, D) given the data, y, is characterized by

m(8,u, R, Dly) o f(y|B,u, R, D)f(Blu, R, D) f(u|D, R)f(R)f(D) . (13)

We assume that the priors on R and D are such that the resulting posterior (13) is proper.
Even if proper conjugate priors are chosen, the integrals required for inference through this
posterior can not be evaluated in closed form. Thus, exploring the posterior in order to
make inferences might require MCMC.

7.1 A block Gibbs sampler and a minorization condition

In this section, we consider a block Gibbs sampler with components R, D and ¢ = (87, uT)T.
The full conditional densities for R and D are given by
n(RIE,D,y) = Cgl(©)IRIM? exp{~0.5(y — X — Zu)"R(y - XB — Zu)}f(R)
n(DI¢,R,y) = Cp'(€)ID|"/? exp{~0.5u" Du} (D)

where
Cn(€) = / IRIY? exp{~0.5(y — X5 — Zu)TR(y — XB — Zu)}f(R) dR

and
Cp(¢) = / |D |2 exp{—0.5uT Du} f(D)dD .

The density 7(¢|R, D,vy) is (p+ q)-variate Normal with mean &y and covariance matrix X1

where
ZTRZ+D  ZTRX ZT Ry
Y= = .
( XTRZ XTRX+B and G (XTRy + Bﬂo) (14)

Consider the block Gibbs sampler corresponding to the following sampling scheme:
(D', R,¢) = (D,R,¢).

Conditional on £, D and R are independent and hence the order in which they are up-
dated is irrelevant. That is, we are effectively dealing with a two-variable Gibbs sampler.
Suppressing dependence on the data, the transition density is given by

k(D,R,¢|D' R, ¢") = n(D|¢") n(R|¢') m(¢|R, D) .

We now develop a minorization condition of the form (2) for this block Gibbs sampler.
Fix a “distinguished point” € and sets M C R*™+1)/2 and Mp c R2@+1)/2 50 that when
R € Mg and D € Mp we have

D|¢"w(RIE

k(D,R,é-lDI’RI’é-I) —_ 7T( |§~)7T( |€)
m(D[§)m(R[E)

! !

[ gag TR [ e (210

retiy w(RIE) ] [pekn (D)

(D|é)m(RIE)n(¢| R, D)

v

] w(DIE)r(RIE)m(¢|R, D) .

12



Then the minorization condition will follow by taking

m [ T B[ =Dl
€8 = |t w(R|£>} i, W(D@] (1)
and } B
oD, B, €) = ¢ n(DIE)n(RIEn(E| R, DYI(R € M)I(D € Mip)
where

ey = / / ~(DIE)e(RIE)I(R € Mg)I(D € Mp)dRdD .

Let S denote the space that R lives in; that is, the set of points in R +1)/2 corresponding
to symmetric, positive definite n x n matrices. Note that Mz must be chosen so that Mr NS
has positive measure. Otherwise, c¢; will be zero and, from a practical standpoint, R will
never land in Mp. Similar comments apply to the choice of Mp.

Using results from Nummelin (1984) and Mykland et al. (1995) it is easy to see that
when R € My and D € Mp the probability of regeneration is given by

RBE)] T . w(DIEY] w(DE(EE)
] [mﬁD W<D|5>] ADErmey . O

Pr(6 = 1|D',R,¢',D, R, €) = [ inf 3
( \ £ £) ool (Bl

Thus we have to calculate the infima in (15) and plug into (16). Let ai;; < a9 for
i=1,...,qgand j =1,...,q be constants and define Mp = {Myxq : a155 < m;j < agij} .
Then

if n(D|¢") Cp(€) o exp{—0.5u"T Du'}
DeMp (D) - Cp(¢) peMp exp{—0.54T Dai}
O (F
= C'DD((;)) Dielﬁ‘p €exXp —-0.5 Z Z(u;u; - ﬂiﬁj)dij
i
_ CD(g) - _ Il =~ N
= (@) exp 0.5;;(%% Uiihj) i
On(F
= C;)((é))g(ul,u)

where

Gij

~

_ A14j if u;u; — ’I]iﬂj S 0,
Qi if u;ug — ﬂiﬂj > 0.

Let v = y— X8 — Zu' and & = y — X8 — Zi. Also, let biij < by for i =1,...,n and
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j=1,...,n be constants and define Mg = {Mpxp, : b1;j < mj;j < baij} . Then

o TBIE) _ Cr() . . exp{-05(y — XB' — Zu)TR(y - XB' — Zu')}
ReMr 7(RJ€) Cr(&') ReMr  exp{—0.5(y — X3 — Za)TR(y — X3 — Za)}

Cr(€) inf exp{—0.5v'T Rv'}

where
B — by;; if ’U,E’U; — ;05 <0,
i =
T by if ol — 55 > 0.
Thus the probability of regeneration is given by
Pr(6 =1|D',R,¢,D,R,¢) =
g(u',@)h(v',0) exp {—O.5[('&TD1Z —uTDu') + ("R — v'TRU')]} .

7.2 A Numerical Example

In this section, we identify a specific example of the model (12), simulate some data from
that model and then use the block Gibbs sampler described above to form an approximation
of the resulting intractable posterior density.

Suppose that p = 1 so that X = (1,...,2,)T € R” and that ¢ = n with Z = I,,. Fix
Bo=0and B! =1. Assume that R~1 = A;'I, and D! = A;'I,, where A\;,' and A} are
scalar variance components whose reciprocals are assigned the following conjugate priors

Ar ~ Gamma(ry,r2) and  Ap ~ Gamma(di,d2) .

Set ¢ = (u”, )T and A = (Ap, Ar)?. The data in Table 3 were simulated according to this
model with n =5, r; = r9 = dy = d2 = 1 and covariate X ~ N(0, I5).

We will construct @ corresponding to the posterior that results from the data in Table 3
and from setting r; = d; = 1 and ro = dy = 2. Recall that the block Gibbs sampler from
the previous section uses the sampling scheme: (X,¢') — (A, €). The full conditionals for

the precision parameters are given by

1
Anle,y ~ Garmma (142, 24 1y - X8~ ) (v~ X8 - 0))
n 1 7
Aplé,y ~ Gamma 1+§,2+§u U

14



Table 3: Simulated Data

Y T
3.05577 | -0.65015
-0.84096 | 0.46053
-3.21066 | -0.39088
-0.47085 | -0.64953
2.23286 | -0.65276

Now &[Ar, Ap,y ~ Nny1(€0,£7!) where

_ ((Ar+ D), ARX _ Y
Y= ( )\RXT 1+ARXTX and Zfo—AR XTy .

To simulate from this multivariate normal distribution we require the Cholesky decompo-
sition of ¥ and this is reported in Appendix C.

While some work has been done analyzing block Gibbs samplers for hierarchical lin-
ear models (Hobert and Geyer; 1998; Jones and Hobert; 2004; Rosenthal; 1995b), none of
these results apply to our block Gibbs sampler. That is, little is known about the mixing

properties of our Markov chain and hence we simply assume that it satisfies E Arfﬁ'e < 00.

To use the minorization condition developed in the previous section we must fix a point
¢ and sets Mp = [a1,a2] and Mg = [by,bs] where 0 < a1 < a2 and 0 < b; < bs. We ran
the block Gibbs sampler for 5 x 10° iterations starting from ¢y = 1 where 1 is a vector
of ones. Let d@1,...1s, 3, Ap, Ar be the estimated posterior expectations of the associated
parameters. We set £ = (i1, ...1s5,8)7, [a1,a2] = Ap = wsy, and [b,bs] = AR T wsy,
where w > 0 and s),,, s, are the usual sample standard deviations of the sample of Ap’s
and AR’s, respectively. Note that the choice of w controls the trade-off between the size of
Mp and Mg and the magnitude of the probability of regeneration.

We simulated an initial sample of m/ = 5 x 10° iid 74’s. The results are reported in
Table 4. We then simulated 1 x 10° values of L and the results are given in Table 5. Using
these results we constructed # and subsequently simulated 5 x 10* iid draws from it and
estimated the marginal density functions of Ap, Ap and 8 using the R density function. In
Figure 2, we compare these estimated densities with the corresponding estimated densities
based on 5 x 10* draws from the block Gibbs sampler after discarding the first 5 x 108
iterations.

In looking at Figure 2, it is clear that both sets of density estimates largely agree. Ap-
parently, drawing a starting value from # would produce a starting value that is (marginally)
similar to that obtained from a long burn-in period.
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Table 4: Initial Sample Results

w | u, | max | 99%

0.75 | 205 | 248 | 86

Table 5: Results from Simulating L

o c ) m
0.20 | 208.27 | 0.25 | 2.78 x 10°

Appendices

A Proof of Theorem 1

The proof closely follows the proof of Theorem 1 in Hobert and Robert (2004). Let =’
denote the invariant measure for X’. Applying Meyn and Tweedie’s (1993) Theorem 10.2.1
to X' and using the fact that 7'(A x {0,1}) = n(A), we have

1 & -
m(A) = Falra) ZPTa(Xt €A Ty >t)= ZPra(Xt € Altgy > t)pt -
arte) =1 t=1

B Proof of Theorem 2

First
s —pi| = 1— Fp(t—1) N 1-Ft—-1) 1-F@-1)
Pt — Pt = = e
|Frn(t — 1) — F(t —1)] N [1—F(t—1)][Ta—Ea(ra)|
B A TaEA(74)
< |Fa(t 1) - Fe - 1)) 4 2 TE DA = Ba(ma)
A(T4)
< |Ea(t 1) - B - 1) L2 D [Fanls) = 1)
A(T4)
and hence
D P —pil <23 1Fu(t) = F(t)] =2 /oo |Fin(t) — F(t)] dt = 2y (F, ). (17)
t=1 t=1 —00

Finally, the fact that E474 < oo implies that dy(F,,, F) — 0 a.s. as m — oo (Shorack and
Wellner; 1986, p. 65).
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C Cholesky Decomposition of X

The Cholesky decomposition of ¥ is given by ¥ = LLT, where L is lower triangular with
positive elements on the diagonal. Let

(L 0
L_(lz 13)

li=al, Il,=bXT and I3=c

solving for L. we obtain

where a = v/Ag + Ap, b= Ag/a and ¢ = /1 + (ArAp/a2)XTX. It is easy to see that
Lil . a_ljn 0
— \=blac)IXT 1

s-1_ a %I, + (b/ac)’ X XT —bjac*X
N —blac?XT c? ’

and hence
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Exp(1) Density Estimates
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Figure 1: Each plot contains two estimates of the target Exp(1) density: The shaded region
is based on a random sample of size 5 x 10* drawn from an Exp(1) distribution while the
curve is based on a random sample of size 5 x 10* drawn from #. In the top plot # was
produced using an independence sampler with Exp(0.75) candidate while in the middle plot
# was based on an independence sampler with Exp(1.5) candidate and the bottom plot was
constructed using # generated by an independence sampler with Exp(2.5) candidate.
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Estimates of Three Marginal Densities
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Figure 2: Each plot presents two estimates of a marginal density: The top plot corresponds
to the density of Ap, the middle plot corresponds to the density of Ag and the bottom plot
corresponds to the density of 8. In each plot the curve is based on a random sample of
size 5 x 10* drawn from # while the shaded region is based on 5 x 10* Gibbs draws after a
burn-in of 5 x 108.
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