Examen de contrôle continu 07/05/2003

Durée une heure trente minutes, Aucun document n'est autorisé, Trois exercices indépendants, Seules les réponses soigneusement justifiées seront prises en compte.

Exercice 1 (8 pts) Nous considérons un couple (X, Y) de variables aléatoires continues réelles de densité de probabilité (a > 0):

$$f_{(X,Y)}(x,y) = \begin{cases} \frac{3y}{a^3} & \text{si } x+y < a, \quad y-x < a, \quad y > 0\\ 0 & \text{sinon} \end{cases}$$
.

1 (1 pt) Calculer $\mathbb{E}(XY)$.

2 (2 pts) Déterminer les lois marginales de X et de Y.

3 (1 pt) Calculer cov(X, Y).

4 (2 pts) Déterminer la loi conditionnelle de Y sachant que X=x.

5 (2 pts) Calculer $\mathbb{E}(Y|X)$.

Exercice 2 (6 pts)

1 (2 pts) Pour tout $n \in \mathbb{N}^*$ et $a \in \mathbb{R}_+^*$, calculer

$$I(n,a) = \int_0^\infty x^n \exp(-ax) dx.$$

2 (2 pts) La durée de vie des individus d'une espèce d'insectes est une variable aléatoire X dont la densité de probabilité est :

$$f_X(x) = \begin{cases} \lambda x^2 \exp(-ax) & \text{si } x \ge 0 \\ 0 & \text{sinon} \end{cases}$$
.

Calculer λ en fonction de a. Sachant que l'unité de temps est l'heure et que l'espérance de vie de ces insectes est de 200 heures, calculer a.

3 (2 pts) Nous considérons un couple (X, Y) de variables aléatoires continues réelles de densité de probabilité :

$$f_{(X,Y)}(x,y) = \frac{\alpha}{(1+x^2+y^2)^{3/2}}.$$

Calculer α . Soit $Z = X/\sqrt{1+Y^2}$. Donner la densité du couple (Y,Z).

Exercice 3 (6 pts) Nous considérons un couple gausien (X, Y) dont la densité est de la forme :

$$f_{(X,Y)}(x,y) = \alpha \exp(-1/2(x^2 - xy + y^2)).$$

- 1 (2 pts) En remarquant que $x^2 xy + y^2 = (y x/2)^2 + 3x^2/4$, calculer la densité marginale de X. En déduire la densité marginale de Y.
- **2 (2 pts)** Déterminer la densité conditionnelle de Y sachant X = x. En déduire $\mathbb{E}(Y|X)$.
- 3 (2 pts) Évaluer la constante α et le coefficient de corrélation linéaire entre X et Y.