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Abstract

Minimal area regions are constructed for Brownian
paths and perturbed Brownian paths. While the the-
oretical optimal region cannot be obtained in closed
form, we provide practical confidence regions based
on numerical approximations and local time argu-
ments. These regions are used to provide infor-
mal convergence assessments for both Monte Carlo
and Markov Chain Monte Carlo experiments, via the
Brownian asymptotic approximation of cumulative
sums.

Keywords: Boundary crossing probability, Brown-
ian motion, Central Limit Theorem, CUSUM, local
time, Monte Carlo path, simultaneous confidence re-
gion.

1 Introduction

A problem that has not been addressed so far in the
literature is the construction of a confidence band on
a Brownian motion (Wt)t∈[0,1]. A confidence band
on a random function amounts to the derivation of a
function u on [0, 1] such that for 0 < α < 1)

P(−u(t) ≤W (t) ≤ u(t), t ∈ [0, 1]) = 1− α .

In fact, the computation of the probability that
a standard Brownian motion remains between two
given boundaries is a complex question that has
occupied many researchers over many years (see,
e.g., Anderson, 1960; Robbins and Siegmund, 1970;
Durbin, 1971; Lerche, 1986; Durbin, 1992; Daniels,
1996; Borodin and Salminen, 2002; Li, 2003). In
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this literature, explicit representations of two-sided
boundary crossing probabilities are extremely rare
and mostly address linear cases (Anderson, 1960;
Hall, 1997), though explicit computations are avail-
able for a few nonlinear boundaries (Robbins and
Siegmund, 1970; Daniels, 1996; Novikov et al., 1999).
For most boundary functions computation of two-
sided boundary crossing probabilities for the Brown-
ian motion requires some level of approximation.

Our goal is to optimise the choice of the bound u
against an area criterion (using as analogy the con-
struction of the standard confidence interval to min-
imize the length for a given coverage); we therefore
consider the optimisation problem

arg min
u≥0

∫ 1

0

u(t)dt .

This minimization problem does not have a closed
form solution and it is thus extremely difficult to
solve. We will produce in Section 2 an approxima-
tion that is based on numerical approximations and
local time arguments.

While the problem of deriving such an optimal
band on the Brownian motion is of interest per se,
it also has important bearings in various fields that
take advantage of Brownian approximations. Obvi-
ous examples are the areas of sequential testing (Rob-
bins and Siegmund, 1970) and of nonparametric tests
(Hollander and Wolfe, 1999). We choose to focus here
on a third area where the derivation of such bands
has importance, namely the design and evaluation
of Monte Carlo methods, as explained in Section 3.
This particular application also motivates the search
for an optimal band on a Brownian motion with ran-
dom drift, (Wt + tε)t∈[0,1], that appears naturally in
Monte Carlo setups, as detailed in Section 4. The cor-
responding optimal band is constructed in Section 5.
Section 6 illustrates the confidence procedures in a
specific Monte Carlo setting and Section 7 concludes
the paper.
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2 Optimal confidence bands for
a Brownian motion

Let (Wt)t∈[0,1] be a standard Brownian motion
(Feller, 1971). A generic confidence band on
(Wt)t∈[0,1] is a random set of the form

{ω; −v(t) ≤ ω(t) ≤ u(t) , t ∈ [0, 1]}

associated with the upper and lower bounds, u(t) ≥
0 and v(t) ≥ 0, (t ∈ [0, 1]). A natural measure of
tightness of this band is its area

∫ 1

0
(u(t)+v(t))dt and

an optimal band is defined as minimising this area
over all possible bounds (u, v) under the constraint
that

P(−v(t) ≤W (t) ≤ u(t), t ∈ [0, 1]) = 1− α .

From the symmetry of the standard Brownian mo-
tion, if the minimum is reached and is unique then
we have v = u and we can therefore replace the above
problem with

min
u

(∫ 1

0

u(t)dt
)

(1)

subject to
P {−u(t) ≤W (t) ≤ u(t) , t ∈ (0, 1]} = 1− α .

2.1 Local time solution

Because of the intractable nature of the derivation
of the confidence band, we now consider a related
problem based on local times.

Starting with the original problem (1), we can con-
sider the dual problem

min
u
{1− P (−u(t) ≤W (t) ≤ u(t) , t ∈ (0, 1])}

subject to
∫ 1

0

u(t)dt = β , (2)

where β > 0 is a given constant. This formulation
suggests the study of an alternative and easier prob-
lem, in which we replace the probability by a local
time expectation:

min
u

E
[
Lu(1) + L−u(1)

]
subject to

∫ 1

0

u(t)dt = β . (3)

Here, Lu(s) is the local time accumulated by W along
the curve u up to time s, to be defined below, and we
require u to be C1-smooth.

This new problem is easier because local time
is additive. Therefore, firstly, we may restrict at-
tention to the one-sided problem, that is, replace
E [Lu(1) + L−u(1)] by E [Lu(1)] and, secondly, it is
then possible to localize the minimization problem in
time, as now detailed.

Definitions of local time for Wiener processes and
for other semimartingales can be found in Revuz and
Yor (1999, Ch. VI); for our purposes we use the Itô-
Tanaka formula (Revuz and Yor, 1999, Ch. VI, The-
orem 1.2) which defines a local time L for a contin-
uous semimartingale Y , started at 0, with increasing
process 〈Y, Y 〉(t) = t. (These conditions are equiva-
lent to the requirement that Y be a Brownian motion
with possibly non-stationary drift.) Applying the Itô-
Tanaka formula to W−u, we obtain the following for-
mula for the local time Lu of W at the time-varying
level u (this is where the C1-smooth condition on u
is required):

1
2
Lu(t) =

∫ t

0

u′(s)I[W (s)>u(s)]ds

+
∫ t

0

I[W (s)≤u(s)]dW (s)−min{W (t), u(t)} .

The local time Lu(t) can be also interpreted as the
time spent by W close to the curve u up to time t
(see Revuz and Yor, 1999, Ch. VI, Corollary 1.9);

Lu(t) = lim
ε→0

1
ε

∫ t

0

I[u(s)≤W (s)<u(s)+ε]ds .

Therefore, as long as W has a continuous transi-
tion probability density ps,t(x, y) (the density ofW (t)
given W (s) = x), we can write

E[Lu(1)] =
∫ 1

0

p0,s(0, u(s))ds .

In our framework, W (s) is normally distributed
with mean zero and variance τ(s). Hence the res-
olution of the minimization problem (3) amounts to
solving

min
u

(
1√
2π

∫ 1

0

exp
(
− u(s)2

2 τ(s)

)
ds√
τ(s)

)

subject to
∫ 1

0

u(t)dt = β .

This minimization problem localizes: using a vari-
ation u(s) + εh(s) and differentiating with respect to
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ε, we find the condition for extremality to be

u(s)√
τ(s)

exp

−1
2

(
u(s)√
τ(s)

)2
 = κτ(s) ,

where κ is the variational constant (or Lagrange mul-
tiplier) connected to β. (In fact the problem localizes;
this condition holds in an almost-everywhere sense
even if we suppose u to be merely measurable.) There
are no solutions to this equation if κτ(s) > 1/

√
e, a

unique solution if equality holds, and two solutions
(one above

√
τ(s), one below) if κτ(s) < 1/

√
e. A

second variation argument shows that the minimiza-
tion problem is solved by the larger solution if any
solution exists, and otherwise we should take u = 0
(when κτ(s) > 1/

√
e).

Taking ψ(a) to be the larger solution to ψe−ψ
2/2 =

a, if solutions exist, we see that the required minimiz-
ing u is given by

u?(s) =

{
ψ(κτ(s))

√
τ(s) if κτ(s) ≤ 1/

√
e ,

0 otherwise.
(4)

The function ψ can be expressed in terms of the
so-called ProductLog or Lambert W function, the
analytic solution w(z) of wew = z (Corless et al.,
1996). Indeed, selecting an appropriate branch of
ProductLog (using the conventions of Mathematica),
we find

ψ(a) =
√
−ProductLog(−1,−a2) for a ≤ 1/

√
e .

Since W is the Brownian motion, τ(s) = s and
the optimal solution u? can be easily computed (ei-
ther via Mathematica or via an equivalent R function,
available from the authors). For this type of function
the resolution of the original problem then amounts
to the computation of the appropriate constant κ to
achieve a proper coverage level. For α = 0.05, our
simulations led to κ = 0.105 (see below for details).

2.2 Numerical results

We denote by P1(u) the coverage probability
P{|W (t)| ≤ u(t), t ∈ [0, 1]}. Since the analytical
resolution of the optimisation problem for the cover-
age probability seems to be completely out of reach,
we consider a numerical approach based on a parti-
tion t0 = 0 < t1 < t2 < . . . < tn = 1 of the in-
terval [0, 1] of size n ≥ 1, with δti = ti − ti−1 and
βi = u(ti). We first review some approximation tech-
niques found in the literature. We will distinguish

below between three types of approximation, though
there exist many other possible approaches in the lit-
erature, such as polynomial and Poisson approxima-
tions, and Girsanov transformations.

The first type of approximation is based on the ap-
proach of Wang and Potzelberger (1997, 2001). These
authors show that

P1(u) = lim
n−→∞

E[`(W (t1),W (t2), . . . , . . . ,W (tn)]

for any continuous function u, where `(x1, . . . , xn) is
defined by

n∏
i=1

I(−βi<xi<βi)

[
1− exp

[
− 2
δti

(−βi−1 − xi−1)

× (−βi − xi)
]
− exp

[
− 2
δti

(βi−1 − xi−1)(βi − xi)
]]
.

Using this result, Potzelberger and Wang (2001) de-
rive the following Monte Carlo estimator of P1(u)

P̂1(u)n,N =
1
N

N∑
j=1

`(Wj(t1),Wj(t2), . . . ,Wj(tn))

where W1, . . . ,WN are N independent standard
Brownian motions on [0, 1]. As n andN go to infinity,
P̂1(u)n,N converges almost surely to P1(u). Under
the assumptions that the boundary u is twice con-
tinuous differentiable with u′′(0) 6= 0 and u′′(t) = 0
at most in finitely many points t ∈]0, 1], the authors
proposed a special rule for choosing a sequence of “op-
timal partitions”. Note that it is also possible to use
a crude Monte Carlo method to approximate P1(u),
that is to estimate P1(u) with

P̃1(u)n,N =
1
N

N∑
j=1

n∏
i=0

I{−βi≤Wj(ti)≤βi}.

However, the variance of the Monte Carlo estimator
of Potzelberger and Wang (2001) is inevitably smaller
than the one of a crude Monte Carlo method insofar
as `(x1, . . . , xn) ≤ 1 for all (x1, . . . , xn) ∈ Rn.

The second type of approximation is due to
Novikov et al. (1999), based on the representation

P1(u) = E

[
n−1∏
i=0

pi {u|W (ti),W (ti+1)}

]
,

where pi(u|x, y) = P(−u(t) < W (t) < u(t), ti ≤ t ≤
ti+1|W (ti) = x,W (ti+1) = y). Using un, a piece-
wise linear approximation of u with connecting points
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Class u(t) minimum
∫ 1

0
u(t)dt

1 a a = 2.242 2.242
2 a+ bt a = 1, b = 1.77 1.885
3 a+ b

√
t a = 0.3, b = 2.35 1.866

? u?(t) κ = 0.105 1.865

Table 1: Optimal solutions for three classes of para-
metrised boundaries, along with the local time solu-
tion u∗ (the two last lines are based on 5, 000 simu-
lated Brownian paths with partition size 500).

(ti, u(ti)), i = 0, . . . , n, Hall (1997) calculated the
conditional distribution of crossing the upper and
lower linear boundaries. Using this result, Novikov
et al. (1999) built a fast algorithm that calculates
P1(un). Finally, as un(t) goes to u(t) uniformly on
[0, 1], it follows from the continuity property of prob-
ability measures that lim

n−→∞
P1(un) = P1(u). There-

fore, as n tends to infinity, this approximation gives
a convergent approximation of P1(u).

For the third type of approximation, Durbin
(1971), Park and Schuurmann (1976) and Loader
and Deely (1987) have proposed the use of certain
Volterra integral equations related to the distribu-
tion of the first exit time from a region defined by
two given boundaries. Based on the discretization
of those integral equations, Loader and Deely (1987)
have given a numerical solution that is very efficient
and we will use this approximation in our numerical
experiments.

In those experiments we have only considered three
classes of functions besides the solution u?(t) given
by the local time approximation: the constant class
u(t) = a (a > 0), the linear class u(t) = a + bt
(a, b > 0), and the square root class u(t) = a + b

√
t

(a, b > 0). For each class, we have derived para-
meters such that P1(u) = 0.95 and

∫ 1

0
u(t)dt is mini-

mum. The first and second classes allow for analytical
expressions for boundary crossing probabilities while
the third class requires the approximation method of
Loader and Deely (1987). Table 1 presents the re-
sults of this numerical experiment. Figure 1 shows
5000 simulated Brownian paths together with the so-
lutions in each class.

As clear from both Figure 1 and Table 1, the gain
reached in increasing the complexity of u is very
marginal: while the local time approximation func-

Figure 1: 5000 Brownian paths and functions u such
that P1(u) = 0.95, as given by Table 1. The two last
functions in Table 1 are almost identical.

tion u? indeed does better, it is striking and reas-
suring that the difference is infinitesimal. We also
ran simulations for other classes of functions, such
as u(t) = a + bt + ct2 + d log(t), with no visible im-
provement. We thus propose to use either u? or the
simpler function u(t) = 0.3 + 2.35

√
t for constructing

a confidence region of level 0.95.

3 Monte Carlo applications

3.1 Monte Carlo confidence interval

The Monte Carlo method (see, e.g., Robert and
Casella, 2004) is validated by both the Law of Large
Numbers (LLN) and the Central Limit Theorem
(CLT) in that (a) the (almost sure) convergence of
an average like

În =
1
n

n∑
i=1

h(Xi) (5)

to
I =

∫
h(x)π(dx)

is guaranteed by the LLN when the Xi’s are iid from
π and h is integrable against π and (b) the variations
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of (În−I) are asymptotically Gaussian if varπ(h(X))
is finite. Therefore, if σ̂2

N is a convergent estimator
of varπ(h(X)), the CLT tells us that I lies in the
interval

[ÎN − 2σ̂N/
√
N, ÎN + 2σ̂N/

√
N ],

with probability close to 0.95 for N large enough
and the normal approximation implies that the pair
(ÎN , σ̂N ) is sufficient for this assessment. Similar (al-
beit more sophisticated) results are available for the
results of MCMC experiments.

Clearly the CLT is only informative about the vari-
ation of the approximation of I by ÎN and does not
tell us anything about on the probabilistic behaviour
of the sequence (În)1≤n≤N and, in particular, on its
expected variability as a sequence. In other words,
the CLT is not helpful in assessing where (În)1≤n≤N
could lie, were we to start a new simulation experi-
ment.

As explained below, we need to know the (approx-
imate) distribution of (În)1≤n≤N to gather informa-
tion about its variability as a sequence without run-
ning an extensive Monte Carlo experiment that would
require many replications of (În)1≤n≤N . Such an ap-
proximation is found in Donsker’s theorem (Section
4), and relates the sequence to a Brownian motion
{W (t)}0≤t≤1.

3.2 Monte Carlo confidence bands

The primary purpose of a Monte Carlo experiment is
to run a simulation algorithm till the approximation
of I by ÎN is satisfactory. However it can be the case
that the variability of the sequence (În)1≤n≤N is of
interest.

First, in MCMC experiments, we often use a crude
graphical assessment of the stability of (În)1≤n≤N
to make a preliminary decision about convergence
to stationarity of the related Markov chain and may
decide to increase the number of iterations or more
radically to modify the MCMC kernel if this stabil-
ity is not satisfactory, even though another run of
the MCMC experiment, simply based on another se-
quence of pseudo-random seeds, could have produced
a very different shape and led to a different conclu-
sion, e.g. to continue the MCMC experiment and use
more simulations. It thus seems necessary to provide
a confidence assesment on the shape of an MCMC
sequence in order to quantify this kind of decision.

Second, there exist many instances (see, e.g. Fish-
man, 1996) when a control variate is available,

namely, when there exists a non-constant function
h0 such that

I0 =
∫
h0(x)π(dx)

is known. When h and h0 are similar, this control
variate can be used to rank alternatives to iid simula-
tion from π for the approximation of I. For instance,
if importance sampling is used instead, with impor-
tance density q, the performance of the corresponding
importance sampling estimate

1
n

n∑
i=1

{
h0(Yi)

fπ(Yi)
q(Yi)

− I0

}
(6)

(where the Yi’s are an iid sample from the density
q(y), and fπ(x) is the density of the distribution π)
can be compared with iid sampling via the confidence
band: if (6) escapes the confidence band derived from

σ̂2 =
1
N

N∑
i=1

{h0(Xi)− I0}2 ,

where the Xi’s are an iid sample from π, it is unlikely
that its variance is smaller than the iid variance and
therefore another importance density should be cho-
sen without running the simulation experiment till
the end.

Third, a similar (but more generic) use of the con-
fidence band can be found in calibration experiments
for importance sampling and MCMC kernels where
the parameters governing the importance function
or the Markov transition kernel are tailored towards
more efficiency: once an initialising run has been pro-
duced, with a corresponding estimate Î0

N of I, a first
confidence band can be constructed and subsequent
values of the parameters can be rejected as soon as
the sequence

1
n

n∑
i=1

{
h(Yi)− Î0

N

}
gets out of the band. If a new value of the parame-
ters succeeds to stay within the band for N iterations,
a new and more accurate estimate of I can be con-
structed and a tighter confidence band used for the
same purpose.

3.3 Sufficiency and sequential decision
making

It follows from the previous section that the use of
the confidence bands are mostly restricted to sequen-
tial settings. Indeed, if we wait till the Monte Carlo
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experiment is over, producing a sample (X1, . . . , XN )
from π and approximating π(h) by δN (1), the eval-
uation of this experiment will be based on the final
output δN (1) and its empirical variance γN (1) and
not on its behaviour for t ∈ [0, 1], by a sufficiency ar-
gument (though that is strictly valid only in the nor-
mal case). In a static setting, the confidence bands
for the sequence {δN (t)}t∈[0,1] are therefore of little
relevance and moreover they suffer from the major
drawback that they do not preserve the exchangeabil-
ity of the original sample (X1, . . . , XN ): it may well
happen that a sequence {δN (t)}t∈[0,1] remains within
the band while another ordering of the sample may
produce a sequence that moves outside the band.

In sequential settings, the perspective is quite dif-
ferent however. We need to decide whether to abort
a costly simulation experiment before its conclusion
and therefore have to condition on the sequence of
realised values so far whether or not they fit the ul-
timate confidence region. As explained above, this is
pertinent in calibration experiments.

4 Brownian representations for
Monte Carlo sequences

4.1 A functional CLT

The sequence of estimates (În)1≤n≤N is connected
with the random step function

{δN (t)}t∈[0,1] =

 1
[Nt]e

[Nt]e∑
i=1

h(Xi)


t∈[0,1]

where [x]e denotes the integer part of x, that is, the
greatest integer not exceeding x. By convention here
and in the following, we take δN (t) = 0 for t < 1/N .
(Note that δN (1) = ÎN ). The standard CLT can be
formulated in terms of δN : for a fixed t ∈ [0, 1], if

0 < Vπ[h(X)] =
∫
h2(x)π(dx)− π(h)2 <∞ ,

the random variable√
[Nt]e

(
δN (t)− π(h)
Vπ[h(X)]1/2

)
converges in distribution to a standard N (0, 1) ran-
dom variable. In a standard Monte Carlo setting, it is
also customary to replace Vπ[h(X)] with an estimate.

Introduce the random function

{γN (t)}t∈[0,1] =

 1
[Nt]e

[Nt]e∑
i=1

(h(Xi)− δN (t))2


t∈[0,1]

.

For a fixed t ∈ [0, 1], if 0 < Eπ[|h(X)|2] < ∞ then
γN (t) almost surely converges to Vπ[h(X)] and the
random variable√

[Nt]e

(
δN (t)− π(h)
γN (t)1/2

)
also converges in distribution to a standard normal
r.v. by virtue of Slutsky’s theorem (Billingsley, 1995).

The functional extension of the CLT is called
Donsker’s theorem: it states that both the random
functional 1√

N

[Nt]e∑
i=1

(
h(Xi)− π(h)√

Vπ[h(X)]

)
t∈[0,1]

and its plug-in approximationγN (1)−1/2

√
N

[Nt]e∑
i=1

{h(Xi)− π(h)}


t∈[0,1]

converge in distribution (when N goes to infinity)
to a standard Brownian motion on [0, 1], denoted
{W (t)}t∈[0,1]. Donsker’s theorem thus relates the
Monte Carlo output with the confidence band con-
structed in Section 2 for the Brownian motion. In
particular, we can readily see how to implement the
control variate check introduced in the previous sec-
tion. Based on the optimal bound u? of (4), the re-
gion{

ω ; ω(t) ∈

[
π(h)− u?(t)

√
NγN (1)
[Nt]e

, (7)

π(h) + u?(t)

√
NγN (1)
[Nt]e

]
, t ∈ [0, 1]

}
contains (δN (t))t∈[0,1] with asymptotic probability
1− α.

Nonetheless, this setting does not apply to the
main bulk of simulation experiments since they are
concerned with the approximation of an unknown
quantity π(h) that cannot be used within the ran-
dom functionals of Donsker’s theorem or in (7). For
the calibration use mentioned above, as well as for
other applications, we thus need to study an alter-
native confidence band based on the replacement of
π(h) with the final estimate δN (1).
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4.2 A generic confidence band

As pointed out previously, the quantity of interest
from a Monte Carlo point of view is rather a confi-
dence region that should contain a (random) Monte
Carlo sequence with a given (asymptotic) probabil-
ity. Formally, given an iid sample Y1, . . . , YN from π
that is independent of X1, . . . , XN , associated with
the estimators δN (1) and γN (1), the decomposition(

γN (1)−1/2

√
N

[Nt]e∑
i=1

{h(Yi)− δN (1)}
)
t∈[0,1]

=

γN (1)−1/2

√
N

[Nt]e∑
i=1

{h(Yi)− π(h)}


t∈[0,1]

−
(

[Nt]e γN (1)−1/2

√
N

{δN (1)− π(h)}
)
t∈[0,1]

implies that the scaled cumulative estimates converge
in distribution to a continuous random process that is
the sum of a standard Brownian motion {W (t)}t∈[0,1]

and of a random linear function (tU)t∈[0,1], U be-
ing a standard normal random variable indepen-
dent of {W (t)}t∈[0,1]. This decomposition also ap-
plies when the Yi’s are generated from an impor-
tance density q and h(Yi) is replaced with H(Yi) =
h(Yi)fπ(Yi)/q(Yi), as well as in MCMC setups.

Therefore, if we set Z(t) = W (t)+tU , t ∈ [0, 1], we
need to develop an equivalent of the confidence band
of Section 2. In Section 5, we construct a function v
on [0, 1] such that (0 < α < 1)

P(−v(t) ≤ Z(t) ≤ v(t), t ∈ [0, 1]) = 1− α . (8)

This bound v can be used to assess the variability of
a Monte Carlo sequence

{δ′N (t)}t∈[0,1] =

 1
[Nt]e

[Nt]e∑
i=1

H(Yi)


t∈[0,1]

with expectation π(h) against the reference variabil-
ity of the sequence {δN (t)}t∈[0,1]; namely the band{

ω ; |ω(t)− δN (1)| ≤ v(t)

√
NγN (1)
[Nt]e

, t ∈ [0, 1]

}
(9)

has high probability of containing {δ′N (t)}t∈[0,1] if its
variability is smaller than the reference variability. In
a calibration experiment, this implies rejection of a
simulation parameter at the point when the sequence
{δ′N (t)}t∈[0,1] leaves the band.

As an aside, note that it is possible to use the
processγN (1)−1/2

√
N

[Nt]e∑
i=1

{h(Yi)− h(Xi)}


t∈[0,1]

,

since it converges in distribution to a continuous ran-
dom process which is the sum of two independent
standard Brownian motions or, equivalently, to the
process {F (t)}t∈[0,1] =

{√
2W (t)

}
t∈[0,1]

. However,
the variability of this quantity is higher than when
using the sufficient estimate δN (1) for the approxi-
mation of π(h), and so there is thus little incentive in
using this alternative.

5 Optimal confidence regions
for a Brownian motion with
random drift

The construction of confidence regions of level 1− α
is very similar to the work described above, with the
difference that the limiting process is now W (t)+ tU .
The optimisation problem is thus

min
u≥0

∫ 1

0

u(t)dt

under the constraint that P2(u) = P(−u(t) ≤W (t)+
tU ≤ u(t), t ∈ [0, 1]) = 1− α.

Similar difficulties beset the derivation of the opti-
mal bound and once more we use approximate bound-
aries to evaluate the boundary-crossing probability,
derived either from the local time representation or
by “crude” Monte Carlo methods.

5.1 Local time solution

The resolution of Section 2.1 also applies to this set-
ting, in the sense that, for the modified problem (3),
we have an explicit solution given in (4). The differ-
ence with the above section is that, as we are dealing
with Z(t) = W (t) + tU , we have τ(s) = s(1 + s), and
so the extremal envelopes are now given by

u?(s) = ψ(κs(1 + s))
√
s(1 + s) (10)

if κs(1 + s) ≤ 1/
√
e and u?(s) = 0 otherwise, for

varying κ.
Once again, use of Mathematica or other mathe-

matical software allows for the explicit computation
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of these optimal solutions u?. By way of example,
Figure 2 shows upper and lower envelopes ±u? at
κ = 1/20 together with 100 simulations of the Brown-
ian motion with random drift produced from the em-
pirical mean, W (t) + tU .

Figure 2: 100 Brownian/empirical mean trajectories
together with a two-sided version of the extremal u?

for κ = 1/20. Exceedances: 5 (upper) and 5 (lower)
trajectories.

For our determination of the 1 − α confidence re-
gion, we must thus calibrate κ to achieve a given cov-
erage. Using the simulation experiment detailed be-
low, we found κ = 0.0952 for α = .05.

5.2 Numerical results

Since we do not have a Volterra expression as for
the Brownian motion, we use a cruder Monte Carlo
approach to derive coverage probabilities and optimal
values of parameterised boundaries.

Once more, we use a partition t0 = 0 < t1 < t2 <
. . . < tn = 1 of the interval [0, 1] of size n ≥ 1, with
βi = u(ti). It follows from the continuity property of
probability measures that, if un(t) −→ u(t) uniformly
on [0, 1], then

lim
n→∞

P2(un) = lim
n→∞

n∏
i=1

P(−βi ≤ Z(ti) ≤ βi) = P2(u) .

Moreover, the product of the P(−βi ≤ Z(ti) ≤ βi)’s
can be estimated by a Monte Carlo approximation,
namely

P̂2(u)n,N =
1
N

N∑
j=1

n∏
i=0

I[−βi≤Zj(ti)≤βi]

Class u(t) Minimum
∫ 1

0
u(t)dt

1 a a = 2.94 2.94
2 a+ bt a = 1.2, b = 2.1 2.25
3 a+ b

√
t a = 0.1, b = 3.15 2.2

? u?(t) κ = .092 2.189

Table 2: Optimal choices of parameters for specific
bounds and coverage 1− α = .95.

where Z1, . . . , ZN are N independent standard
Brownian motions on [0, 1] with random drift. As
N goes to infinity, P̂2(u)n,N converges almost surely
to

n∏
i=1

P(−βi ≤ Z(ti) ≤ βi)

and, as n and N both go to infinity, P̂2(u)n,N is a
convergent estimator of P2(u).

In our numerical experiment, we chose N =
1, 000, 000 and n = 1000. For the same three para-
meterised classes of functions u(·) as above, we have
evaluated the function u that minimises its subgraph
under the coverage constraint P2(u) = 0.95. Table
2 presents the results, along with the corresponding
local time solution u?. Figure 3 plots 5, 000 paths
W (t) + tU together with the four functions.

Once again, the gain brought by the local time so-
lution or by other classes of boundary functions, like
u(t) = a + bt + ct2 + d log(t), is reassuringly mini-
mal when compared with the simple approximation
u0(t) = 0.1 + 3.15

√
t. In practice, since u0 is almost

indistinguishable from u?, it seems more convenient
to use u0 for the evaluation of Monte Carlo variabil-
ity.

6 Example

We consider a toy problem when π is the N (0, 1)
distribution and h(x) = exp(x2/4.01). This specific
function h is chosen because it is near to the border-
line for an infinite variance estimator—had we chosen
4.0 instead of 4.01 in the denominator, the regular
Monte Carlo estimator would have had an infinite
variance and the CLT would not then apply. The
Monte Carlo estimator of π(h) is

δN (1) =
1
N

N∑
i=1

exp
(
X2
i /4.01

)
8



Figure 3: 5, 000 paths of the process (Z(t))t∈[0,1] and
the four boundaries of Table 2.

where X1, . . . , XN is an iid N (0, 1) sample. The aver-
age behaviour of the sequence of δN (t)’s is illustrated
by Figure 4, for 1000 replicas of N = 1000 simula-
tions. Note the interesting feature that one replica
makes a huge jump around t = 0.55: this is typ-
ical for estimators with infinite (or almost infinite)
variances but this type of jump only occurred once
over the 1000 replicas. This means not only that
a predictive confidence band should not include this
extreme behaviour, but also that were we to run a
single simulation and observe this type of jump then
the resulting confidence band would be much larger.
The confidence band, as derived in Section 5 using
(9), is represented in Figure 5 for one Monte Carlo
sequence. This band is centered at the final value
of the estimate δN (1) and does not present irregu-
lar jumps on its boundary. (In that case, the band
contains the simulated sequence although this is not
always the case. For instance, the special replica that
takes a huge jump around t = 0.55 would escape its
own confidence band.)

For illustrative purposes, we now consider a sim-
ulation design experiment with the same function h
and the same distribution π. If we resort to impor-
tance sampling from N (0, τ2) distributions, τ2 being
a simulation parameter requiring calibration, we can

Figure 4: 1000 replicas of a sequence of Monte Carlo
estimators δN (t) for N = 1000.

produce the alternative estimator of π(h) given by

δ′N (1) =
1
N

N∑
i=1

exp
(
Y 2
i /4.01

)
×

exp
(
−Y 2

i /2
)

τ−1 exp (−Y 2
i /2τ2)

,

where h(Yi) is multiplied by the importance weight.
Starting with τ2 = 1 and increasing it by steps, we
thus build a sequence of confidence bands and of
simulated sequences (δ′N (1))0≤t≤1 till the current se-
quence escapes the previous confidence band. Figure
6 shows the result of this experiment: while τ2 < 2,
the sequences remain within the earlier confidence
band while the estimated variance and correspond-
ing confidence band decrease. As soon as τ2 > 2,
the sequence (δ′N (1))0≤t≤1 escapes the band rapidly,
which shows that further increases of τ2 are counter-
productive. This coincides with the theoretical as-
sessment of the problem since the optimal value of τ2

is

τ2
? =

1
1− 2/4.01

= 1.995025 ,

which produces a zero variance estimator. So this toy
problem exemplifies how the confidence band can be
used sequentially in realistic and expensive simulation
studies.

9



Figure 5: Confidence band at level 0.95 derived from
(9) for one realisation taken from Figure 4.

Figure 6: Sequence of confidence bands for increasing
values of τ2 (τ2 = 1.3, 1.6, 1.9, 2.2) and N = 1000.
Note the estimate is nearly of zero-variance for τ2 =
1.6, 1.9.

7 Conclusion

The bands constructed in this paper are universal in
that they can be used in any Monte Carlo exper-
iment, given that the bound u has only to be de-
termined once for a confidence level α. Indeed, the
proper boundary function u? is available as an R pro-
gram from the authors, We also stress that the case of
Markov Chain Monte Carlo settings causes no special
difficulty provided only that the correct functional
CLT is applied.
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