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Abstract 34 

 35 

Comparison of demo-genetic models using Approximate Bayesian Computation (ABC) is 36 

an active research field. Although large numbers of populations and models (i.e. scenarios) 37 

can be analysed with ABC using molecular data obtained from various marker types, 38 

methodological and computational issues arise when such numbers become too large. 39 

Moreover, Robert et al. (2011) have shown that the conclusions drawn on ABC model 40 

comparison cannot be trusted per se and required further simulation analyses. Monte Carlo 41 

inferential techniques to empirically evaluate confidence in scenario choice are very time 42 

consuming, however, when the numbers of summary statistics (Ss) and scenarios are large. 43 

We here describe a methodological innovation to process efficient ABC scenario 44 

probability computation using linear discriminant analysis (LDA) on Ss before computing 45 

logistic regression. We used simulated pseudo-observed datasets (pods) to assess the main 46 

features of the method (precision and computation time) in comparison to more traditional 47 

probability estimation using raw (i.e. not LDA-transformed) Ss. We also illustrate the 48 

method on real microsatellite datasets produced to make inferences about the invasion 49 

routes of the coccinelid Harmonia axyridis. We found that scenario probabilities computed 50 

from LDA-transformed and raw Ss were strongly correlated. Type I and II errors were 51 

similar for both methods. The faster probability computation that we observed (speed gain 52 

around a factor 100 for LDA-transformed Ss) substantially increases the ability of ABC 53 

practitioners to analyze large numbers of pods and hence provides a manageable way to 54 

empirically evaluate the power to discriminate among a large set of complex scenarios. 55 

 56 

Introduction 57 

 58 
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One prospect of current biology is that molecular data will help us to reveal the complex 59 

demographic processes that have acted on natural populations. The extensive availability 60 

of various molecular markers and increased computer power have promoted the 61 

development of inferential methods and associated softwares (e.g. Beaumont & Rannala 62 

2004; Excoffier & Heckel 2006). Among these novel methods, Approximate Bayesian 63 

Computation method (ABC; Beaumont et al. 2002) is increasingly used to make inferences 64 

from large datasets for complex models in population and evolutionary biology (e.g. 65 

Estoup et al. 2004; Fagundes et al. 2007; Jakobsson et al. 2006; Rosenblum et al. 2007; 66 

Neuenschwander et al. 2008; Toni et al. 2009; Verdu et al. 2009; Bazin et al. 2010; Estoup 67 

& Guillemaud 2010; Ascundes et al. 2011). The use of ABC techniques has also been 68 

envisaged and successfully processed in other research fields, such as infectious disease 69 

epidemiology (e.g. Luciania et al. 2009) and systems biology (e.g. Ratmann et al. 2009). 70 

General statistical features, practical aspects, and applications of ABC in 71 

evolutionary biology have been reviewed in at least three recent papers (Bertorelle et al. 72 

2010; Csilléry et al. 2010; Beaumont 2010). Briefly, ABC constitutes a recent approach to 73 

carrying out model-based inference in a Bayesian setting in which model likelihoods are 74 

difficult to calculate (due to the complexity of the models considered) and must be 75 

estimated by massive simulations. In ABC, the posterior probabilities of different models 76 

and/or the posterior distributions of the demographic parameters under a given model are 77 

determined by measuring the similarity between the observed dataset (i.e. the target) and a 78 

large number of simulated datasets; all raw datasets (i.e. multilocus genotypes or individual 79 

sequences) are summarized by so called summary statistics (Ss). Examples of such Ss in 80 

population genetics are the mean number of alleles or heterozygosity per population and 81 

FST or genetic distances between pairs of populations. In practice, ABC users can base 82 

their analysis on simulation programs and then use statistical software to post-process their 83 
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simulation outputs. Several ABC programs have recently been developed to provide non-84 

specialist users with integrated solutions. They vary in the extent to which they are user-85 

friendly and they can be used for both data simulation and some post-processing steps (see 86 

Table 1 in Bertorelle et al. 2010).  87 

Although the methodology presented here is of more general interest, the present 88 

work focuses on population genetics applications and applies to the model choice question. 89 

In this context, models are evolutionary scenarios for which relative supports are compared 90 

through their posterior probabilities. Choosing among a finite set of scenarios is crucial 91 

when doing inferences about evolutionary history and processes for at least two reasons: (i) 92 

it allows making general conclusions about major evolutionary events (e.g. admixture 93 

between populations, occurrence of bottleneck events or identification of source 94 

populations) and (ii) it makes it possible to estimate posterior probabilities of parameters 95 

assuming a single scenario if the later is strongly supported (see the reviews of Bertorelle 96 

et al. 2009, Csilléry et al. 2010 and Estoup & Guillemaud 2010 for various illustrations 97 

regarding model choice). When processing ABC analyses, all the models are generally 98 

simulated the same number of times. This is equivalent to giving the same prior probability 99 

to each model under comparison and zero probability to any other model. In the final set of 100 

retained simulations (those that have Ss close to the target’s), the datasets produced by the 101 

more supported models will be overrepresented and the datasets produced by other models 102 

will be under-represented or even absent. Intuitively, the probability of a model is related 103 

to the relative frequency of the datasets it produces that are among the retained simulations 104 

(Weiss & von Haeseler 1998; Pritchard et al. 1999). This frequency may be taken as an 105 

estimate of the posterior probability of a model, but this estimate is rarely accurate in 106 

complex models when, inevitably, the retained simulations are either too few or also 107 

contain datasets not closely matching the observed data (e.g. Guillemaud et al. 2010). 108 
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Recently, Leuenberger & Wegmann (2010) proposed the use of a parametric General 109 

Linear Model to adjust the model frequencies in the retained simulations. However, the 110 

most used and tested method, also available in integrated ABC packages such as DIYABC 111 

(Cornuet et al. 2008, 2010), is the adjustment based on the polychotomous logistic 112 

regression introduced by Beaumont (2008) (see also Fagundes et al. 2007; Cornuet et al. 113 

2008). The coefficients for the regression between a model indicator (response) variable 114 

and the simulated Ss (the explanatory variables) can be estimated, allowing the estimation 115 

of the posterior probability for each model at the intercept condition where observed and 116 

simulated Ss coincide. Confidence intervals (i.e. 95 % CI) of the probabilities can be 117 

computed as suggested by Cornuet et al. (2008). 118 

Large numbers of populations and loci can be analysed with ABC, and there is no 119 

limit to the number and complexity of the models (hereafter named scenarios) considered. 120 

However, several issues arise when the number of populations becomes too large. The 121 

number of Ss to be manipulated increases considerably with the number of populations. 122 

This is especially true when different types of markers requiring different types of Ss are 123 

considered in the same analysis. A too large number of Ss may be of concern because ABC 124 

algorithms attempt to sample from a small multidimensional sphere around the observed 125 

statistics. The more Ss, the more difficult it becomes to match the observations closely and 126 

increasing the number of simulations may not be sufficient to deal with this issue 127 

(Beaumont et al. 2002). This phenomenon, which may potentially degrade the estimations 128 

of posterior distributions of demo-genetic parameter as well as those of model posterior 129 

probabilities, is often referred to as the “curse of dimensionality” (e.g. Beaumont et al. 130 

2002; Blum & François 2009). There may be also a problem of co-linearity among 131 

explanatory variables (Ss) resulting in instability of the regression when (too) many Ss are 132 

introduced (Besley et al. 2004; Bazin et al. 2010). Recent improvements of ABC get round 133 
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these problems by using dimension reduction techniques, including a non-linear feed-134 

forward neural network (Blum & François, 2009) and partial least squares (PLS) 135 

regression (Wegmann et al. 2009; see also Bazin et al. 2010). At least some algorithms of 136 

this type have been implemented in the package ABCtoolbox (Wegmann et al. 2010). The 137 

added value of such algorithms in the context of complex models and large datasets 138 

remains, however, to be thoroughly tested (Bertorelle et al. 2010). Most importantly, 139 

although the model itself can be considered as an additional parameter to infer, the PLS 140 

dimension reduction technique applies to a continuous response variable. Therefore, this 141 

technique can be applied to the estimation of posterior distributions of demographic and 142 

genetic parameters under a given model and not to the computation of posterior 143 

probabilities of models, the latter corresponding to a discrete response variable. Initially 144 

developed for the estimation of posterior distributions of demographic and genetic 145 

parameters, neural networks might theoretically be applied to model choice (Ripley 1996), 146 

but, to our knowledge, this has not been tested and achieved in practice, at least in the 147 

context of complex models and large datasets. 148 

Robert et al. (2011) have shown that, because ABC algorithms involve an unknown 149 

loss of information induced by the use of insufficient summary statistics, the conclusions 150 

drawn on model comparison cannot be trusted per se and required further simulation 151 

analyses. As pointed by Bertorelle et al. (2010) and Robert et al. (2011) among others, 152 

confidence in model choice may be nevertheless empirically evaluated by processing 153 

Monte Carlo evaluation of false allocation rates (type I and II errors) based on ABC 154 

posterior probabilities computed from simulated pseudo-observed datasets. A version of 155 

this exploratory analysis is already provided in the DIYABC software (Cornuet et al. 2008, 156 

2010). This evaluation, based on the simulation and analysis of pseudo-observed datasets 157 

(hereafter named pods), represents a useful and manageable quality assessment for 158 
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practitioners but is very time consuming. The polychotomous logistic regression used to 159 

estimate scenario probabilities requires the computation of a matrix involving a very large 160 

number of loops (i.e. [number of compared scenarios]² x [number of Ss]2 x [number of 161 

selected simulated datasets close to the target dataset]) at each iteration of the Newton-162 

Raphson method (Cornuet et al. 2008). This makes computation particularly time 163 

consuming when the number of scenarios and Ss become large. Moreover, computations 164 

involve several large matrices and probabilities that are sometimes simply not computable 165 

when the computer memory space is not large enough. This is of particular concern when 166 

type I and type II errors have to be computed from a large number of pods. As previously 167 

stressed, such computations are nevertheless more and more requested by ABC experts for 168 

assessing the power to discriminate among scenarios (e.g. Fagundes et al. 2007; Verdu et 169 

al. 2009; Bertorelle et al. 2010; Lombaert et al. 2010; Robert et al. 2011). 170 

In this paper, we describe a methodological innovation to process more efficient 171 

ABC scenario probability estimation using linear discriminant analysis (LDA) 172 

transformations on Ss before computing logistic regression. We first describe the principle 173 

and goals of the method. We then use simulated pods to assess its main features (precision 174 

and computation time) in comparison to probability estimation using logistic regression on 175 

raw (i.e. not LDA-transformed) Ss. Finally, we illustrate the method on real microsatellite 176 

datasets produced by Lombaert et al. (2011) to make inferences about the worldwide 177 

routes of invasion of the coccinelid Harmonia axyridis. 178 

 179 

Materials and Methods 180 

 181 

Linear discriminant analysis 182 
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 183 

The Linear Discriminant Analysis (LDA) is a standard technique for supervised 184 

classification. For a modern and comprehensive presentation of LDA, we invite readers to 185 

refer to classical textbooks such as Ripley (1996), McLachlan (2004) or Hastie et al. 186 

(2009). The LDA dates back to Fisher (1936) who proposed the dimension reduction 187 

technique that contributed to the popularity of LDA. Actually, the classifier estimated with 188 

the LDA depends only on some linear projection of the dataset onto a linear subspace 189 

whose dimension is smaller than the number of groups, denoted by K. It is not our purpose 190 

here to explain how this low-dimensional projection of the data can further leads to a LDA 191 

classifier which provides automatic rules to classify a new data point to the class with the 192 

largest posterior probability. As a matter of fact, we are here only interested in the 193 

dimension reduction part of LDA and hence in the construction of the (K  1) discriminant 194 

variables. Those discriminant variables are non-correlated, linear combinations of the 195 

original variables that maximise the between-class variance relative to the within-class 196 

variance, which is assumed identical among the different classes. This minimizes the 197 

overlap between the classes when projected on the discriminant subspace if the within-198 

class distribution were Gaussian. Note that the discriminant variables are ordered with 199 

respect to their ability to move the classes further apart.  200 

In the methodological framework considered here (i.e. that of computing posterior 201 

probabilities of scenarios using ABC), we used LDA to transform the set of usually large 202 

number J of summary statistics (Ss) into (K  1) independent variables maximizing the 203 

differences among the K compared scenarios (assuming K < J). The goal was to reduce the 204 

dimension of the set of explanatory variables from J non-independent to (K  1) 205 

independent variables, and this whatever the value of J. Certainly, variance of the Ss varies 206 

among the different scenarios. Even in that case, however, the projection onto the 207 
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discriminant subspace was proved relevant as a dimension reduction technique; see the 208 

classical textbooks cited above. It is worth noting that we also weighted the simulated 209 

datasets to give more importance to the ones that are closer to the observed dataset. The 210 

LDA functions were used to transform both the (raw) simulated and observed Ss. Details 211 

on LDA computations and transformation of Ss are given in the Appendix S1 212 

Let us recapitulate how computation of the discriminant variables was included in 213 

practice as a single additional step of the ABC process allowing the computation of 214 

posterior probabilities of scenarios. 215 

Step 1: We selected a subset of x % (typically 1 %) best simulations in a standard 216 

ABC reference table (i.e. the table where parameter values drawn from priors and 217 

corresponding simulated Ss have been recorded) usually including 106 simulations for each 218 

of the K compared scenarios. This selection was based on the standard normalized 219 

Euclidian distance computed between the observed and simulated “raw” (i.e. not 220 

transformed) Ss (e.g. Beaumont et al. 2002) and hence corresponded to the x % 221 

simulations with the smallest Euclidian distances. 222 

Step 2 (LDA step; see Appendix S1 for details): we used LDA to transform the raw 223 

Ss of this subset of x % best simulations into (K  1) discriminant variables maximizing 224 

the differences among the K compared scenarios. When computing LDA functions, we 225 

weighted the simulated datasets with the Epanechnikov kernel commonly used in the local 226 

regression (equation 5 in Beaumont et al. 2002).  227 

Step 3: We estimated the posterior probabilities of each competing scenario by 228 

polychotomous logistic regression (Cornuet et al. 2008) on the x % best simulated datasets 229 

now summarized by (K  1) discriminant variables instead of J non-independent variables 230 

(i.e. raw Ss statistics). Confidence intervals (i.e. 95% CI) were computed for each posterior 231 

probability using the (s  1) independent variables following Cornuet et al. (2008). 232 
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Hence, our proposal included only a single additional step (i.e. Step 2) when 233 

compared to the computation traditionally proposed by different authors (e.g. Beaumont 234 

2008; Fagundes et al. 2007; Cornuet et al. 2008 & 2010). Processing Step 2 substantially 235 

decreases the number of explanatory variables through the production of LDA variables 236 

maximizing the differences among the compared scenarios. This provides three main 237 

advantages. First, computation of scenario probabilities using the polychotomous 238 

regression of Step 3 becomes (much) faster and sometimes simply feasible. Second, a 239 

lower number of explanatory variables may also improve the accuracy of the ABC 240 

approximation, particularly when the number of simulations is not large enough to offset 241 

the number of Ss. Finally, using LDA-transformed Ss avoids correlations among 242 

explanatory variables. 243 

 244 

Tests on simulated datasets 245 

Pseudo-observed datasets (pods) were simulated from a set of known scenarios and prior 246 

distributions to compare posterior probabilities obtained through the logistic regression 247 

performed on both LDA-transformed and raw Ss. The pods were defined to mimic the real 248 

microsatellite dataset of the ABC analysis 1 processed by Lombaert et al. (2011) on the 249 

invasive coccinelid Harmonia axyridis. The pods hence included 18 microsatellites 250 

genotyped in five population samples (18 to 35 individuals per population samples). This 251 

dataset was produced to make inferences about the origin of the invasive H. axyridis 252 

population established in Eastern North America in 1988 (ENA), considering altogether 253 

two populations from the native range, two strains used for biocontrol release and one 254 

(target) population from the introduction range (ENA). In this analysis, Lombaert et al. 255 

(2011) defined ten competing scenarios considering a native or biocontrol population as a 256 
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source for ENA or admixture between them (see Lombaert et al. 2010 and 2011 for 257 

details).  258 

As in analysis 1 of Lombaert et al. (2011), genetic variation within and between 259 

populations was summarized in the pods using a set of (raw) statistics traditionally 260 

employed in ABC (Cornuet et al. 2008 & 2010; Guillemaud et al. 2010). For each 261 

population and each population pair we used the mean number of alleles per locus, the 262 

mean expected heterozygosity and the mean allelic size variance. The other statistics used 263 

were the mean ratio of the number of alleles over the range of allele sizes, pairwise FST 264 

values, mean individual assignment likelihoods of population i assigned to population j and 265 

the maximum likelihood estimate of admixture proportion. The total number of Ss was 86. 266 

We choose this particular scenarios-priors-Ss setting because it had the potential to 267 

fairly illustrate our new methodological developments based on LDA-transformed Ss. This 268 

setting was characterized by relatively high (mean) type I error rates (ca. 0.40, due to the 269 

large prior parameter space used to generate pods, this space including “areas” for which 270 

the discrimination among scenarios was difficult) and relatively small (mean) type II error 271 

rates (ca. 0.07). High type I error rates corresponds to situations where probability values 272 

of the target scenario can be small to high depending on the parameter values of the 273 

analysed pod, hence virtually including the all spectrum of probabilities between 0 and 1. 274 

This allows a better (and fairer) comparison of results between raw and LDA-transformed 275 

Ss (cf. it is difficult to compare probability estimations when all values are between say 276 

0.95 and 1.0). Moreover, this particular setting was chosen because it corresponded to 277 

complex evolutionary models and large datasets that nevertheless could be analyzed for a 278 

large number of pods using logistic regression on both LDA-transformed and raw Ss. More 279 

complex data and scenario settings (with larger number of scenarios and/or raw Ss) were 280 
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computationally too heavy to obtain probability estimations on a large enough number of 281 

pods in a manageable time using logistic regression on raw Ss “(i.e. < 15 min per pod on a 282 

single standard biprocessor computer; see below). The results presented here were however 283 

qualitatively similar to those obtained considering various alternative settings (with smaller 284 

or larger numbers of scenarios and/or raw Ss) that we have also tested with our 285 

methodological innovation (results not shown). 286 

The ABC analyses of the pods were performed using parameter values drawn from 287 

the prior distributions described in Table S1 and by simulating 106 datasets for each of the 288 

ten competing scenarios. For each pod we estimated the posterior probabilities of the 289 

scenarios using a polychotomous logistic regression on the 1% of simulated datasets 290 

closest to the observed dataset, considering either LDA-transformed or raw Ss.  291 

We produced a first set of 500 pods under scenario 5 (the scenario selected after 292 

ABC treatment by Lombaert et al. 2011), drawing parameters values into the distributions 293 

described in table S1. This scenario 5 is presented graphically in figure S1; the nine other 294 

competing scenarios correspond to alternative source(s) of the target introduced population 295 

(see Lombaert et al. 2011 for details). For each pod, we used the logistic regression on 296 

either the 9 LDA-transformed or the 86 raw Ss to estimate the posterior probability and 297 

95% CI of scenario 5 relatively to the set of ten compared scenarios. The number of 298 

iterations of the Newton-Raphson algorithm used by the logistic regression computations 299 

and the mean time of each iteration were also recorded for each pod. 300 

We then produced a second set of 1,000 pods including 10 subsets of 100 pods 301 

simulated under each of the ten compared scenarios, drawing parameter values from the 302 

same distributions (Table S1). Each pods subset was used to estimate type I and type II 303 
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errors on scenario choice using either the 9 LDA-transformed or the 86 raw Ss. Type I 304 

error of a given scenario is the proportion of pods simulated from this scenario for which 305 

this scenario does not have the highest posterior probability. Type II error is the proportion 306 

of pods for which the scenario with the highest posterior probability is not the given true 307 

one. 308 

Finally, we evaluated the impact of the dimensionality of the simulated dataset (i.e. 309 

the “curse of dimensionality” mentioned in the Introduction section), using either the 9 310 

LDA-transformed or the 86 raw Ss. For different amount of simulated datasets, we 311 

estimatied the type I and II error rates from 500 pods simulated under scenario 5 (type I 312 

error for scenario 5) and 500 pods simulated under scenario 1 (type II error for scenario 5 313 

which in this case corresponds to the proportion of times that scenario 5 was selected when 314 

pods have been produced under scenario 1). Scenario 1 was chosen to evaluate type II 315 

errors because this scenario has shown the largest type II errors in the abovementioned 316 

analyses. To consider different dimensionalities of simulated datasets, we decreased the 317 

number of datasets simulated for each of the ten compared scenarios from 106 to 104, 318 

keeping the proportions of datasets closest to the observed dataset selected for the logistic 319 

regression at 1% of the total number of simulated datasets 320 

All analyses were processed on a 2 CPU Intel Xeon X5472 computer (Windows XP 321 

platform, 32 bits system, 4 Go of RAM) using a modified version of the package DIYABC 322 

V1. This modified version is available under request from AE. LDA-transformation of Ss 323 

before logistic regression will be implemented in a new multiplatform version of DIYABC 324 

that will be freely available later in 2012. 325 

 326 
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Tests on real datasets 327 

We used the real microsatellite datasets of Lombaert et al. (2011) to compare scenario 328 

choice and probability estimation computing logistic regression on both LDA-transformed 329 

and raw Ss. These datasets, which included 18 microsatellites genotyped on five to eight 330 

population samples (18 to 42 individuals per population samples), were used to make five 331 

consecutive ABC analyses about the worldwide routes of invasion of the coccinelid H. 332 

axyridis, considering altogether populations from the native range, the introduction range 333 

and biocontrol release actions, with potential admixture between them (see Lombaert et al. 334 

2010 and 2011 for details). 335 

We used prior distributions and Ss identical to those described in the previous 336 

section (Tests on simulated datasets; Table S1). Following Lombaert et al. (2010 and 337 

2011), we performed five consecutive ABC analyses of invasion scenarios involving 338 

successive H. axyridis outbreaks that were successively recorded in the invaded range. As 339 

previously detailed, analysis 1 dealt with the introduction pathway for the first recorded 340 

outbreak in eastern North America in 1988, defining ten competing scenarios. Analysis 2 341 

dealt with the second outbreak recorded in western North America in 1991, taking into 342 

account the scenario selected in analysis 1, hence defining 15 competing scenarios. The 343 

European and South American outbreaks in 2001 were addressed in analyses 3 and 4, 344 

respectively (15 scenarios for each outbreak), taking into account the scenario selected in 345 

analysis 1 and 2. Finally, the African outbreak in 2004 was considered in analysis 5 (28 346 

scenarios), taking into account the scenarios selected in analyses 1, 2, 3 and 4. The total 347 

number of raw Ss varied from 86 (analysis 1) to 223 (analysis 5), whereas the total number 348 

of LDA-transformed Ss varied from 9 (analysis 1) to 27 (analysis 5). 349 
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The ABC analyses were performed by simulating 106 microsatellite datasets for 350 

each competing scenario in the first four analyses and 5x105 datasets per scenario in 351 

analysis 5 because of the high number of scenarios (28) and raw summary statistics (223) 352 

which made a larger analysis computationally too heavy, even when using LDA-353 

transformed Ss. For each of the five analyses, we estimated the posterior probabilities of 354 

the competing scenarios using a polychotomous logistic regression on the 1% of simulated 355 

datasets closest to the observed dataset, considering either LDA-transformed or raw Ss. 356 

Computation times were also recorded to illustrate the gain obtained in computation speed 357 

when using LDA-transformed Ss.  358 

Finally, we evaluated the impact of the number of simulated datasets recorded in 359 

the reference table for analysis 1 on the estimation of the probability of scenario 5 using 360 

either LDA-transformed or raw Ss. To this aim, we decreased the number of datasets 361 

simulated for each of the ten compared scenarios from 106 to 104, keeping the proportions 362 

of datasets closest to the observed dataset selected for the logistic regression at 1% of the 363 

total number of simulated datasets. 364 

All analyses were processed on a 2 CPU Intel Xeon E5540 computer (Windows XP 365 

platform, 32 bits system, 4 Go of RAM) using a modified version of the package DIYABC 366 

V1 (available under request from AE). 367 

 368 

Results 369 

 370 

Tests on simulated datasets 371 
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Figure 1A illustrates the strong correlation between the probability values of scenario 5 372 

obtained from pods computing logistic regression on LDA-transformed Ss and raw Ss 373 

(Pearson’s correlation coefficient = 0.940). One can see, however, a trend for a globally 374 

slightly lower scenario probability with LDA-transformed Ss (see linear regression 375 

equation in the legend of Figure 1A). Figure 1B shows that 95% CI are almost always 376 

smaller with LDA-transformed Ss. 377 

Figure 2 summarizes the type I and II error rates obtained with LDA-transformed 378 

and raw Ss. We found that these error rates substantially varied among scenarios but were 379 

to a large extent similar for both methods for a given scenario. P-values computed using 380 

Fisher exact test were higher than 0.6 for all scenarios for mean type II errors and were 381 

lower than 5% for a single scenario for type I errors (p = 0.047 for scenario 7; p-value non 382 

significant after applying the false discovery rate correction method of Benjamini & 383 

Hochberg 1995). 384 

The gain in computation time with LDA-transformed Ss was high. First, the 385 

number of iterations needed to reach convergence during the logistic regression analysis 386 

was lower with LDA-transformed Ss (mean = 7.320, SD = 1.420) than with raw Ss (mean 387 

= 9.190, SD = 2.250). Second, the mean time of each such iteration was considerably 388 

smaller with LDA-transformed Ss (mean = 7.034 sec, SD = 0.791) than with raw Ss (mean 389 

= 888.146 sec, SD = 65.374). This translated into a computation speed increase by a mean 390 

factor 128.128 (SD = 19.482) per iteration and 163.601 (SD = 46.456) for a completed 391 

logistic regression analysis. The computation time for the LDA-transformation of raw Ss 392 

before the regression was negligible. 393 
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Results summarized in Table 1 indicate that we did not face the curse of 394 

dimensionality problem (see definition in the Introduction section) at least in the present 395 

setting. Even for a large number of Ss and a strongly degraded number of simulated 396 

datasets including only 104 datasets per scenario (total of 105 datasets for the ten compared 397 

scenarios in this case), the error rates did not dramatically increase. The increase of type I 398 

and II error rates with smaller datasets is (only) slightly faster for raw SS than for LDA-399 

transformed Ss. 400 

 401 

Tests on real datasets 402 

As will be further illustrated below on real datasets, our methodological innovation 403 

is particularly attractive when practitioners have to deal with a large number of complex 404 

scenarios involving a large number of Ss. Table 2 summarizes our results on scenario 405 

choice and probability estimation computing logistic regression on both LDA-transformed 406 

and raw Ss obtained on the real microsatellite datasets of Lombaert et al. (2011). For each 407 

of the five consecutive analyses, the same scenario had the highest probability and was 408 

hence selected using either LDA-transformed or raw Ss. The probabilities of the most 409 

likely scenarios were slightly smaller with LDA-transformed Ss for analyses 1, 3 and 4, 410 

and slightly larger for analysis 2. In contrast to computation based on LDA-transformed 411 

Ss, analysis 5 could not be processed with raw Ss due to computer memory overflow. In all 412 

analyses the 95% CI of the most likely scenario never overlapped those of competing 413 

scenarios. As found with simulated pods, 95% CI with LDA-transformed Ss were smaller 414 

than those with raw Ss. 415 
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In agreement with pods analyses, the gain in computation time with LDA-416 

transformed Ss was substantial. For all analyses, both the number of iterations needed to 417 

reach convergence during the logistic regression and the mean computation time for each 418 

such iteration was smaller with LDA-transformed Ss. This translated into a computation 419 

speed increase by a factor 72 to 101 per iteration and 93 to 159 for a completed logistic 420 

regression analysis. 421 

Figure 3 indicates that analysis 1, processed either on LDA-transformed or raw Ss, 422 

is rather robust to the potential difficulties associated with the curse of dimensionality. 423 

Estimations of the probability of scenario 5 start to fluctuate substantially and 95% CIs to 424 

increase considerably for simulation efforts including less than 2x105 datasets per 425 

scenarios. No obvious differences could be observed between LDA-transformed and raw 426 

Ss. 427 

 428 

Discussion 429 

 430 

Model comparison is an active research field among the widespread developments 431 

currently undergone in ABC (e.g. Beaumont et al. 2009; Bertorelle et al. 2010; Csilléry et 432 

al. 2010; Beaumont 2010; Robert et al. 2011). Here, we propose a methodological 433 

innovation to deal with the discrimination among a large set of complex scenarios through 434 

more efficient ABC probability computation using a linear discriminant analysis (LDA) on 435 

Ss before the logistic regression analysis. Statistical methods to select appropriate Ss to 436 

optimize model selection are still under development and discussed (see for instance 437 
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Fearnhead & Prangle 2012 and associated discussions). Our LDA-based transformation of 438 

Ss represents a practical and straightforward way to tackle this question. 439 

We show, using both simulated and real datasets, that posterior probabilities of 440 

scenarios computed from LDA-transformed and raw Ss are strongly correlated. LDA-441 

transformed Ss tend, however, to provide slightly lower probability values and hence to be 442 

somewhat conservative with respect to scenario discrimination. On the other hand, model 443 

probabilities estimated from LDA-transformed Ss are characterized by smaller 95% CI. 444 

The later feature is expected to decrease the number of inconclusive results if non-445 

overlapping of CI is taken as a criterion to select a scenario. When scenario selection is 446 

made on the basis of the highest probability, type I and II errors were nevertheless similar 447 

for both methods. The lower number of LDA variables used for the logistic regression 448 

analysis (e.g. 9 LDA-transformed Ss versus 86 raw Ss in the pods we analyzed) is likely to 449 

explain, to a large extent, both the smaller 95% CIs of probability estimates and the smaller 450 

number of iterations needed to reach convergence during the regression. 451 

A major practical advantage of using LDA-transformed Ss is that it substantially 452 

decreases the dimension of explanatory variables making computation of scenario 453 

probability (much) faster and sometimes simply feasible when the memory space is not 454 

large enough to compute the matrix of second partial derivatives of the likelihood (p1 of 455 

Supplementary material in Cornuet et al. 2008), as in Analysis 5 using the real dataset of 456 

Lombaert et al. (2011). This allows larger data-scenarios settings to be analyzed. It is 457 

worth stressing, however, that because LDA-transformation only plays on the number of 458 

Ss and not on the number of parameters of the models, such transformation should not 459 

motivate ABC practitioners to over-parameterize their models. 460 
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Faster probability computation increases the ability of ABC practitioners to analyze 461 

large numbers of pods (for instance using the option “Evaluate confidence in scenario 462 

choice” in the package DIYABC). It hence makes it easier to process a manageable 463 

empirical evaluation of the power to discriminate among a given set of scenarios by 464 

computing type I and II errors from sufficiently large number of pods, especially for large 465 

sets of complex scenarios (see e.g. Robert et al. 2011 for theoretical arguments in favor of 466 

such experimental explorations). Several authors have suggested to use scenario 467 

probabilities computed from pods to evaluate type I and II errors to estimate the posterior 468 

probability of a model among a set of k models given the observed posterior probability of 469 

a real dataset, P(Mk is the true model | observed estimated posterior probability = x). Such 470 

computation can then be used to adjust the posterior probabilities estimated from the real 471 

dataset, taking part of the errors associated with ABC into account (see Fagundes et al. 472 

2007; Lombaert et al. 2011). 473 

Other potential advantages of LDA-transformation of raw Ss include reducing the 474 

difficulties associated with the curse of dimensionality and avoiding correlation among 475 

explanatory variables (i.e. multi-co-linearity) during the regression step. At least 476 

theoretically the dimensionality issue might be offset by increasing the number of 477 

simulations, but the amount of time then needed for concrete implementation might be 478 

unreasonable. It is worth stressing, however, that the actual impact of such potential issues 479 

remains difficult to assess in a generic manner as it probably differs depending on the 480 

analyzed observed dataset, as well as on the Ss and/or scenario settings. Table 1 and Figure 481 

3 both indicate a good robustness to the numbers of simulated datasets, as a substantial 482 

effect could be observed only for particularly low (and in practice rarely used) number of 483 

simulated datasets. Analyses carried on pods suggest a slightly better robustness when 484 
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using LDA-transformed rather than raw Ss, at least when using type I and II error rates as 485 

criterion (cf. the slightly smaller increase of errors with smaller datasets for LDA-486 

transformed than raw Ss). It is difficult to know, however, to which extent this result 487 

reflects the lower number of LDA variables used for the regression and/or the fact that a 488 

substantial number of raw Ss are non-independent variables. 489 

We believe that our LDA-based methodological innovation will usefully enlarge 490 

the tool box available to biologists to make ABC inferences on more complex and hence 491 

more realistic demographic processes that have acted on natural populations. 492 
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Figures legends 607 

 608 

Figure 1. Probability estimations of scenario 5 computed using LDA-transformed or 609 
raw summary statistics for 500 pods simulated under scenario 5 (ten scenarios 610 
compared).  611 
Note: (A) Pearson’s correlation coefficient between probability estimations = 0.940 (95% 612 
CI = [0.928, 0.949]). Solid line: y = x; dotted line: linear regression line y = 0.818436 x + 613 
0.004878. (B) 95% CIs (i.e. 2.5% and 97.5% quantiles) for each probability values 614 
obtained from either LDA-transformed summary statistics (black lines) or raw summary 615 
statistics (grey lines). 616 
 617 
Figure 2. Confidence in discriminating scenarios using LDA-transformed or raw 618 
summary statistics. 619 
Note: Type I error: exclude scenario x when it is actually scenario x. Type II error: choose 620 
scenario x when it is not scenario x. Results are based on 100 pods per scenario (total of 621 
ten compared scenarios). The compared scenarios correspond to variants of the scenario 5, 622 
the latter being detailed in Figure S1. 623 
 624 
Figure 3. Probabilities of scenario 5 computed from the real dataset of Lombaert et 625 
al. (2011) for different numbers of simulated datasets. 626 
Note Black = LDA-transformed summary statistics. Grey = raw summary statistics. Plain 627 
and dotted lines are for probability estimations and 95% CIs, respectively. Probabilities of 628 
scenario 5 were estimated for number of datasets simulated for each of the ten compared 629 
scenarios decreasing from 106 to 104, keeping the proportions of datasets closest to the 630 
observed dataset selected for the logistic regression at 1% of the total number of simulated 631 
datasets. 632 
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Table 1. Type I and II error rates estimated for different numbers of simulated 633 
datasets. 634 
 635 
 636 
  Number of simulated datasets for each of 

the 10 compared scenarios 
 

  106 105 5x104 2x104 104 

 
Type I 
error 

LDA-transformed Ss 0.560 0.556 0.584 0.592 0.622 

 Raw Ss 
 

0.450 0.492 0.530 0.536 0.624 

Type II 
error 

LDA-transformed Ss 0.056 0.056 0.052 0.062 0.080 

 Raw Ss 
 

0.060 0.062 0.072 0.088 0.116 

 637 
Note: Type I error rates were estimated for scenario 5 from 500 pods. Type II errors were 638 
estimated for scenario 5 when simulating 500 pods under scenario 1. The number of 639 
datasets simulated for each of the ten compared scenarios decreased from 106 to 104, 640 
keeping the proportions of datasets closest to the observed dataset selected for the logistic 641 
regression at 1% of the total number of simulated datasets 642 
 643 
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Table 2. Scenario choice and posterior probability estimated from either LDA-transformed or raw summary statistics when considering the real 
microsatellite datasets of Lombaert et al. (2011). 
 
 

 

Logistic regression on raw summary statistics 
 
  

Logistic regression on LDA-transformed  
summary statistics 
 

Speed 
gain 
 

Consecutive ABC 
analyses 
(nb simulations per 
scen. \ nb of scen.) 
 

Nb  
of  
stats 
 
 

Selected  
scenario  
# 
 
 

Posterior 
probability 
[95% CI] 
 
 

Mean 
time per  
NR 
iteration 

Nb  
of NR 
iterations 
 
 

Nb 
of 
stats 
 
 

Selected 
scenario 
# 
 
 

Posterior  
probability 
[95% CI] 
 
 

Mean  
time per 
NR 
iteration 
 

Nb  
of NR 
iterations 
 
 

Per iteration 
 \ over all  
iterations 
 
 

Analysis 1            
(106 \ 10 scenarios) 

86 5 0.6242  
[0.5767, 0.6717] 

5’ 05” 11 9 5 0.5420  
[0.5325, 0.5516] 

3” 7 101.7 \ 159.8 

Analysis 2              
(106 \ 15 scenarios) 

124 1 0.4425 
[0.3746, 0.5105] 

38’ 45” 11 14 1 0.5767 
[0.5559, 0.5976] 

31” 7 75.0 \ 117.9 

Analysis 3                 
(106 \ 15 scenarios) 

124 13 0.8134 
[0.7107, 0.9160] 

38’ 38” 9 14 13 0.7487 
[0.7214, 0.7760] 

32” 6 72.4 \ 93.1 

Analysis 4             
(106 \ 15 scenarios) 

124 4 0.9489 
[0.9315, 0.9663] 

33’ 36” 9 14 4 0.9227 
[0.9139, 0.9315] 

27” 7 74.7 \ 96.0 

Analysis 5                 
(5x105 \ 28 scenarios) 

223 NC* NC NC NC 27 4 0.6864 
[0.6456, 0.7272] 

6’ 11” 7 NC 

 
Note: The probabilities of the competing scenarios were computed using a logistic regression on the 1% of simulated datasets closest to the real Harmonia 
axyridis datasets. NR iterations = Newton-Raphton iterations (Cornuet et al. 2008). NC: not computable. * Because the full computation of analysis 5 was 
not feasible (Lombaert et al. 2011), an alternative method was used to compare scenarios by first setting aside 11 scenarios using the direct approach 
(Cornuet et al. 2008) on the 0.01% datasets closest to the observed dataset. The scenario 4 was then selected due to its highest posterior probability in a 
subsequent analysis (using polychotomous logistic regression and raw Ss) performed on the 19 remaining scenarios (see Lombaert et al. 2011 for details). 
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Fig. 1 
 
(A) 

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Probability using raw summary statistics

P
ro

b
a

b
ili

ty
 u

si
n

g
 L

D
A

-t
ra

n
sf

o
rm

e
d

 s
u

m
m

a
ry

 s
ta

tis
tic

s

 



 33

Fig. 1 continued 
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Fig. 2 
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Fig. 3 
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