
A Mixture Approach to Bayesian Goodness of Fit

Christian P. Robert

CREST, INSEE, and CEREMADE, Université Paris Dauphine, 75775 Paris cedex 16
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Summary. We consider a Bayesian approach to goodness of fit, that is, to the problem of
testing whether or not a given parametric model is compatible with the data at hand. We thus
consider a parametric family F = {Fθ, θ ∈ Θ} , where Fθ denotes a cumulative distribution
function with parameter θ. The null hypothesis is H0 : X ∼ Fθ for an unknown θ, that is,
there exists θ such that Fθ(X) ∼ U(0, 1). If H0 does not hold, Fθ(X) is a random variable on
(0, 1) which is not distributed as U(0, 1). The alternative nonparametric hypothesis can thus
be interpreted as Fθ(X) being distributed from a general cdf GΨ on (0, 1), where Ψ is infinite
dimensional. Instead of using a functional basis as in Verdinelli and Wasserman (1998), we
represent GΨ as the (infinite) mixture of Beta distributions,

p0U(0, 1) + (1− p0)
∑

k≥1

pkB(αk, βk) .

Estimation within both parametric and nonparametric structures are implemented using MCMC
algorithms that estimate the number of components in the mixture. Since we are concerned
with a goodness of fit problem, it is more of interest to consider a functional distance to the
tested model d(F,F) as the basis of our test, rather than the corresponding Bayes factor, since
the later puts more emphasis on the parameters. We therefore propose a new test procedure
based on the posterior conditional predictive p-value associated with Eπ[d(f,F)|Xn], with both
an asymptotic justification and a finite sampler implementation.
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1. Introduction

It is both of high interest and of strong difficulty to come up with a satisfactory notion of
a Bayesian test for goodness of fit to a distribution or to a family of distributions

F = {Fθ, θ ∈ Θ} ,

where Fθ denotes a cumulative distribution function with parameter θ, for a given sample
Xn = (x1, . . . , xn). The interest of the problematic being self-explanatory, let us rather
insist on the difficulty.

In regular testing problems, the usual Bayesian solution, as described in most textbooks
(see, e.g., Robert, 2001), is to build a prior distribution on each model and to derive the
Bayes factor, ratio of the marginal distributions for both models: the magnitude of this
factor is then interpreted as a degree of plausibility (or implausibility) of the hypothesis
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being tested. In a goodness of fit setting, there is no such clearcut separation between two
possibilities: outside the case when X ∼ Fθ, the set of alternatives simply is the whole set
of probability distributions, with no obvious structure on which to base the derivation of a
reference prior. Since we do not want to engage in the difficult and disputed construction
of nonparametric priors, we will use the device of Verdinelli and Wasserman (1998), which
reduces the problem to finding a prior distribution on [0, 1], rather than on R or Rp, through
the use of the probability transform, that is, considering Fθ(X). If H0 does not hold, Fθ(X)
is a random variable on (0, 1) which is not distributed as U(0, 1) for any value of θ. If H0

is true then there exists θ ∈ Θ for which Fθ(X) ∼ U(0, 1). The alternative nonparametric
hypothesis can thus be interpreted as Fθ(X) being distributed from a general cdf Gψ on
[0, 1], where ψ is infinite dimensional. The parameter in the alternative hypothesis is then
(θ, ψ). In this setup, an acceptable resolution of the nonparametric problem on [0, 1], is to
use mixtures of Beta distributions, of the form

p0U(0, 1) + (1− p0)
∑

k≥1

pkBe(ak, bk) , (1)

where Be(ak, bk) denotes a Beta random variable with parameters (ak, bk). Their shapes
are variable enough to allow for an approximation of almost any arbitrary distribution on
[0, 1]. We believe that this approach is relevant since it models naturally the distortions
from the uniform distribution. In this respect, Petrone and Wasserman (2002) have studied
Bernstein priors based on Bernstein polynomials. The advantage of Bernstein polynomials
over general mixtures of Beta distributions is that this modeling is easier to implement since
the parameters of the Beta distributions which appear in the modeling of the nonparametric
density are fixed integers; the weights are the only quantities to estimate. However, since
the parameters of the Beta distributions are also allowed to vary in ]0, 1] and are not
restricted to be greater than 1, the mixtures of Beta distributions such as (1) should need
less components to approximate a given density on [0, 1].

As ψ is infinite dimensional, subjective priors cannot be entirely justified, contrarywise
to parametric settings. In other words, non parametric priors are highly arbitrary. It is
therefore necessary to assess the consistency of the posterior distribution, as a validation
for our prior. Diaconis and Freedman (1986) advocate this approach and maintain that this
property is important even for a subjectivist. In this paper, this assessment is paramount
given that we are concerned with a goodness of fit perspective.

The quantity of interest is then the distance between the true density and the proposed
model, d(f,F). As is often the case in nonparametric inference, we consider the Hellinger
distance between two distributions F and G, defined as

d(F,G) =

{∫ (√
dF −

√
dG
)2
}1/2

.

Since we are only concerned with distributions absolutely continuous with respect to Lebesgue
measure, we also denote d(f, g) the Hellinger distance between F and G, where f, g are the
densities with respect to the Lebesgue measure of F and G respectively. Then we define

d(f,F) = inf
θ∈Θ

d(f, fθ) .

We approximate this quantity using its posterior expectation Eπ[d(f,F)|Xn], for some
prior π on (θ, ψ). To test the parametric model, we must therefore compare the above
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posterior expectation with some reference quantity. Actually, the Bayes estimate under the
loss function :

L(δ, f) =

{
a0d(f,F) if δ = 0

a1(2− d(f,F)) if δ = 1
(2)

is given by δ(Xn) = 0, i.e. we accept the null hypothesis, if and only if Eπ[d(f,F)|Xn] ≤
2a1/(a0 + a1). In the general case, the choice of (a0, a1) is quite arbitrary. We therefore
propose in this paper a way to calibrate 2a1/(a0 + a1). In particular, a0 should increase as
the number of observations becomes larger. The informal perspective on this point is that
if the parametric model is not far from the true model, it is better to use such a model,
especially when the number of observations is not large. In other words, the smaller the
sample size is, the more relevant the parametric model might get. The idea is then to
compare Eπ[d(f,F)|Xn] with a quantity that would characterize its behaviour under the
null hypothesis. A usual way to do it is to use posterior predictive p-values, see for instance
Meng (1994). These p-values have interesting features in average, however in practice
they can behave quite poorly due to a strong double use of the data. In this paper, we
investigate the use of the conditional predictive p-value, as defined by Bayarri and Berger
(2000), and associated with the test statistic Eπ[d(f,F)|Xn]. We compute the distribution
of Eπ[d(f,F)|Y n], when Y n is distributed according to

m0(yn|θ̂x) =

∫

Θ

f(yn|θ̂x; θ)π0(θ|θ̂x)dθ , with π0(θ|θ̂x) ∝ g(θ̂x|θ)π0(θ), (3)

where π0 is the prior distribution of θ under the parametric model F ,

θ̂x = arg min
θ

(ln(θ, xn))

is the maximum likelihood estimator in the parametric model F associated with the ob-
servations xn = (x1, ..., xn) and f(yn|θ̂x; θ) is the conditional distribution of the sample yn

given the parameter θ under the fixed mle constraint

θ̂y = θ̂x .

The test consists in evaluating

pcpred = Pr
[
Em0(.|θ̂x)[d(f,F)|yn] ≥ Eπ[d(f,F)|Xn]

]
,

where the probability is calculated under m0(yn|Xn; θ̂x). This quantity is the conditional
predictive p-value, where the statistics on which we condition is the maximum likelihood
estimator.

We prove, in Section 3.2 that such a test is equivalent to using a conditional p-value
(conditional on the mle) and is consistent, in the sense that the above probability goes
to zero as n goes to infinity under the alternative, see Theorem 4. This test procedure is
therefore also satisfying from a frequentist point of view.

The paper is organised as follows: in Section 2, we study the problem of nonparametric
estimation of a density in [0, 1] using mixtures of Beta densities. In Section 3 we consider the
goodness of fit test of a parametric model F . We prove first that the posterior distribution
of the full model is consistent almost surely and we deduce from that the consistency of
the test procedure. In both sections simulations are given to illustrate the behaviour of the
estimates of the density and of the test statistic.
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2. Nonparametric estimation via mixtures of Beta distributions

As in Verdinelli and Wasserman (1998), to test the appropriateness of a parametric family,
we need to consider the estimation of a general density on [0, 1], hence, in this section we
only consider the problem of estimating a given density in [0, 1], which amounts to deriving
a goodness of fit test for a specific density. Let thus U1, · · · , Un be a sample of random
variables in [0, 1] distributed from a density g0. Our aim is mainly to test if g0 is a uniform
random variable, but at this stage we first consider the estimation of the density g0. (The
test can be derived from the general description in Section 3.)

2.1. Representation of the alternative hypothesis
Given that almost any distribution on [0, 1] can be expressed as an infinite mixture of Beta
distributions, ∑

k≥1

pkB(αk, βk) ,

as shown in Theorem 1 below, we define the general alternative to U ∼ U([0, 1]) to be

U ∼
∑

k≥1

pkB(αk, βk)
∑

k≥1

pk = 1 .

We are thus facing a rather standard mixture estimation problem where the number of
components is unknown, as in Richardson and Green (1997) or Stephens (2000). (The
approach we follow is Stephen’s (2000), as detailed below.) Due to the specificity of the
testing problem, we reparameterise the mixture as follows:

p0U(0, 1) + (1− p0)

K∑

k=1

pkB(αkεk, αk(1− εk))
∑

k≥1

pk = 1 , (4)

to signify that the null hypothesis corresponds to p0 = 1 and that the alternative corresponds
to p0 6= 1, under the identifiability constraint that none of the other components B(ak, bk)
is equal to U(0, 1).

Given the difficult identifiability issues connected with mixtures (see Celeux et al., 2000)
and this representation of H0, we circumvent this difficulty by (a) resorting to the estimation
of the distance between (4) and U(0, 1), bypassing parameterisation problems, and by (b)
selecting an appropriate prior distribution.

For simulation reasons discussed in Cappé et al. (2003), we also choose to replace the
weights pk with their unscaled version, ωk, namely (k = 1, . . . ,K)

pk =
ωk∑K
`=1 ω`

, 0 ≤ ωk ≤ 1 .

Note at last that the representation of a Beta distribution as Be(αkεk, αk(1− εk)) is chosen
to distinguish between the scale αk > 0 and the position 0 < εk < 1. The set of parameters
of the mixture is then denoted by ψ = (K,ω1, · · ·ωK , α1, ε1, · · · , αK , εK) which varies in
the space S.

We prove in Section 2.2 that the posterior mean of (4) is a consistent estimate of the
density g0, in terms of Hellinger distance.
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2.2. Consistency of the posterior distribution
In this Section we give general conditions on the prior π1 on ψ to achieve the convergence
of the posterior distribution. This will then imply the consistency of Bayes estimates of the
density such as the posterior mean as well as the consistency of the test procedure.

Let π1 be a prior on ψ ∈ S; π1 is assumed to satisfy the following conditions:

(a) K ∼ P (K). We assume that ∀t > 0, ∃ r > 0 such that

P (K ≥ tn/ logn) ≤ e−rn, (5)

(b) p0 ∼ π(p0) a.c. wrt Lebesgue measure and with support [0, 1].
(c) Conditional on K, we denote h(ω1, ..., ωK) the prior density on (ω1, ..., ωK) wrt

Lebesgue measure on [0, 1]K . We assume that h is continuous.
(d) Conditional on K, we assume that the (aj , bj)’s are independent with identical priors

with density derived from (7) under the reparameterisation aj = αjεj and b = αj(1−
εj).

Obviously we need not assume that K and p0 are independent; however we consider
such a prior as the basis of the following results. Note that the condition (5) is satisfied
in particular by the Poisson distribution. In addition, the type of priors on ψ described in
Section 2.3 and considered in the simulations will satisfy these conditions.

Let thus U1, ..., Un be n iid observations from a distribution with density g0 on [0, 1],
wrt Lebesgue measure. Let

Aε(g0) = {g : d(g0, g) ≤ ε} and Nε = {g : I(g0, g) ≤ ε} ,

where d is the Hellinger distance and I is the Kullback divergence,

I(g0, g) =

∫ 1

0

g0 log

[
g0

g(u)

]
du .

First, we prove that the set of densities that can be approximated, in the sense of
the Kullback-Leibler divergence, by a mixture of Beta distributions, contains the set Ω of
densities g for which ∫ 1

0

g(x) log g(x)dx <∞ ,

and which satisfy : ∀M > 0, the function is piecewise continuous on {x; g(x) ≤M}. It is in
fact well-known (Petrone and Wasserman, 2002) that any continuous density on the closed
set [0, 1] can be approximated by Bernstein polynomials, which constitute a subset of Ω.
The following Theorem proves that more general densities can in fact be approximated.

Theorem 1. Let g ∈ Ω, then, for every ε > 0, there exists gψ, with ψ ∈ S, such that

I(g, gψ) ≤ ε.

The idea of the proof is the following: We approximate g by a continuous function
on {g(x) ≤ M}, when M is large enough, and we use the uniform approximation of a
continuous function by Bernstein densities to obtain the Kullback-Leibler approximation.
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Proof. Let g ∈ Ω and define g1 = (g ∨ ε/12)/(
∫

(g ∨ ε/3)(x)dx), then since

∫
(g ∨ ε/12)(x)dx ≤ 1 + ε/3,

g ≤ g1(1+ε/3) and we can work with g1 instead of g, using Ghosal, Ghosh and Ramamoor-
thi’s result (1999, Lemma 5.2). Let M be such that

∫

g1(x)≥M
g1(x) log g1(x)dx < ε/3,

and define g̃ = g1 Ig1≤M +MIg1>M , then, since g̃ has a finite number of first order discon-
tinuities there exists a continuous function g̃ε such that

sup
x∈[0,1]

|g̃(x)− g̃ε(x)| ≤ ε/12.

Ghosal, Ghosh and Ramamoorthi’s result (1999, Lemma 5.2) implies that there exists a
Bernstein density b(x) such that

sup
x∈[0,1]

|g̃(x)− b(x)| ≤ sup
x∈[0,1]

|g̃ε(x)− b(x)|+ ε/12 ≤ ε/6.

Therefore,

∫

g1(x)≤M
g1(x) log(g1(x)/b(x)dx =

∫

g1(x)≤M
g1(x) log(g̃(x)/b(x)dx

≤
∫

g1(x)≤M
g1(x) log

g̃(x)

g̃(x)− ε/6dx ≤
ε

3
,

since g̃(x) ≥ ε/3. We also have

∫

g1(x)>M

g1(x) log (g1(x)/b(x)dx ≤
∫

g1(x)>M

g1(x) log

(
g1(x)

M − ε/6

)
dx

≤
∫

g1(x)>M

g1(x) log

(
g1(x)

M

)
+

ε

3M
≤ ε

3
,

and Theorem (1) is proved. 2

Note that Bernstein polynomials can approximate any function in Ω, however it is
our belief that general mixtures of Betas would require less components in practice to
approximate densities in Ω, in particular when the density is discontinuous.

We then have the following result on the posterior distribution:

Theorem 2. Let U1, ..., Un be independent and identically distributed r.v.’s from g0 ∈ Ω.
Consider the prior π1 satisfying the above conditions (a)–(d), then the posterior distribution
of π converges in the following strong sense: ∀ε > 0,

π[Aε(g0)|U1, . . . , Un]→ 1, g0 a.s. (6)
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The consistency of the posterior mean of the density (which is a standard Bayesian
estimate for the density) follows from (6) in terms of the Hellinger distance d. The proof
of this theorem is obtained using Theorem 1 of Barron, Schervish and Wasserman (1998)
[hereafter BSW] and is given in Appendix B.

Note also that
Eπ[d(gψ, 1)|U1, ..., Un]→ d(g0, 1), g0 a.s.

since Eπ[d(g0, gψ)|U1, ..., Un]→ 0 g0 a.s. as n goes to infinity.
We describe in the following section the type of priors on ψ we have considered in our

simulations.

2.3. Priors for Beta mixtures
Although a regular conjugate prior could be used in this setting just as in Diebolt and
Robert (1994) or Richardson and Green (1997), we now build a specific prior distribution
in order to oppose the uniform component of the mixture (4) with the other components.

Although we have considered a fully nonparametric approach, for the alternative, we
have in practice chosen a uniform {1, . . . ,Kmax} distribution on the number of components,
K, the prior

p0 ∼ Be(0.8, 1.2),

on p0 [in order to favour small values of p0, since the distribution Be(0.8, 1.2) has an infinite
mode at 0] , the prior

ωk ∼ Be(1, k), k = 1, . . . ,K,

on the ωk’s for parsimony reasons [so that higher order components are less likely] , and a
prior of the form

(αk, εk) ∼ {1− exp [−{β1(αk − 2)c3 + β2(εk − .5)c4}]}
exp

[
−τ0αc0k /2− τ1/{α2c1

k εc1k (1− εk)c1}
]
, (7)

on the (αk, εk)’s, where c0, . . . , c4, τ0, τ1, β1, β2 are hyperparameters. This choice is pur-
posely designed to avoid the (α, ε) = (2, 1/2) region for the parameters of the other compo-
nents. There obviously is a fair amount of arbitrariness there, but it fits our purpose that
(a) the extra-components should avoid the uniform distribution as much as they can and
(b) that small values of αε and α(1− ε) should also be excluded.

In the following simulations, we took the specific form

(αk, εk) ∼
{

1− exp
[
−ξ
{

(αk − 2)2 + (εk − .5)2
}]}

exp
[
−ζ/{α2

kεk(1− εk)} − κα2
k/2
]

(8)

illustrated by Figure 1 for a series of values of (ξ, ζ, κ). Our specific choice in the following,
unless otherwise specified, is (ξ, ζ, κ) = (5, .01, .01), which corresponds to Figure 2.

2.4. Estimating the number of components
Although we are not aware of mixtures of Beta distributions being estimated in the past,
there is nothing inherently complicated in the estimation of a mixture model

K∑

k=1

pkB(αk, βk) ,
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Fig. 1. R’s filled.contour representation of the prior distribution (7) for various values of (ξ, ζ, κ)
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Fig. 2. R’s filled.contour representation of the prior distribution (7) for (ξ, ζ, κ) = (5, 0.01, 0.01)

with a fixed number of components K. For instance, a Gibbs sampling strategy as in Diebolt
and Robert (1994) can be implemented, based on a completion of the sample x1, . . . , xn
into (x1, z1), . . . , (xn, zn) where the zi’s are the component indicators,

zi ∼M(p1, . . . , pK), xi|zi = k ∼ B(αkεk, αk(1− εk)) .

The simulation of the parameters (α, ε) is then based on either an accept-reject algorithm
adapted to the distribution

{
1− exp

[
−ξ
{

(α− 2)2 − (ε− .5)2
}]}

exp
[
−ζ/{α2ε(1− ε)} − κα2/2

]

(
Γ(α)

Γ(αε)Γ(α(1− ε))

)nk {∏

zi=k

xi

}αε{∏

zi=k

(1− xi)
}α(1−ε)

,

based on a N (0, 10) × U([0, 1]) proposal, or more simply on a random walk Metropolis–
Hastings proposal on (logα, log ε/(1 − ε)). As noted in Celeux et al. (2000), the posterior
distribution of a mixture problem is available in close form, except for the normalizing con-
stant, and, therefore, direct [meaning, without completion] Metropolis–Hastings algorithms
can be implemented.

The difficulty with this model arises when the number of components K is unknown. The
setting is, however, familiar, in that several solutions for this problem have been proposed
in the past, the two most prominent being Richardson and Green’s (1997) reversible jump
MCMC algorithm and Stephens’ (2000) birth-and-death process algorithm, who both dealt
with normal mixtures. Although both solutions are intrinsically equivalent, as discussed in
Cappé et al. (2003), we chose to implement the birth-and-death process solution here, be-
cause the birth-and-death process approach is somehow simpler when no additional “split”
and “combine” moves are required, borrowing Richardson and Green’s (1997) terminology.
In the case of normal mixtures, Stephens (2000) showed that the mixing properties of the
algorithm were fairly good and we confirmed through simulations that this is equally the
case here. Note that, in the case of hidden Markov models, Cappé et al. (2003) found that
the “birth” and “death” steps were not sufficient to ensure proper moves for the MCMC
chain of the K’s and the θ’s, thus requiring additional “split” and “combine” moves with a
complexity then equivalent to Richardson and Green’s (1997) algorithm.
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We will not describe in detail Stephens’ (2000) birth-and-death algorithm, nor will we
give the corresponding description for Richardson and Green’s (1997), enough details being
available either in the original papers, or in Cappé et al. (2003). It is sufficient to mention
here that the algorithm is based on a continuous time jump process that changes K at each
jump by +1 [birth] or−1 [death], with a fixed birth intensity λ0 and a death intensity propor-
tional to the sum of the likelihood ratios corresponding to the removal of one of the K com-
ponents. The durations between jumps are exponential variates with inverse expectation the
sum of the birth and the death intensities, that is, with θ(−k) = (θ1, . . . , θk−1, θk+1, . . . , θK),

Ti − Ti−1 ∼ Exp
(
λ0 +

λ0

K

K∑

k=1

L(K − 1, θ(−k)|Xn)

L(K, θ|Xn)

)
,

except at the endpoints K = 1 and K = Kmax. Observation of the jump process chain
at fixed time (or at every jump weighted by the duration time Ti − Ti−1) then leads to a
stationary evaluation of the posterior distribution on (K, θ) (see Cappé et al., 2003).

2.5. Simulations
The purpose of this paper being far from studying the performances of a birth and death
jump process to evaluate the number of components in a mixture of Beta distributions, we
simply report here some basic facts that ensure that the MCMC sampler is working well
for our purpose. The illustration is thus based on 3 simulated data sets, the first one being
artificially made of 1000 equidistant values on [0, 1] which correspond to a flat histogram,
the second one being made of random iid observations from a Beta distribution, and the
third one being made of random iid observations from a mixture of two Beta distributions.

In the first case (Figures 3 and 4), the algorithm does capture the uniform structure
of the sample and it produces an estimate of K equal to 0, as shown by the upper left
and upper central graphs in the monitoring plots. The other graphs are not particularly
relevant when K = 0, since they were designed for the non-uniform case K > 0. One can
still notice that the posterior distribution on (αk, εk) (lower left and lower center graph) is
quite similar to the prior distribution (see Figure 2) and also that the posterior distribution
on the p0’s when K > 0 (central left) is quite concentrated at 1.

In the second case (Figures 5 and 6), the unimodality of the distribution is again well-
captured by the algorithm since the estimate of K is 1 (upper left and upper central graphs
of Figure 5). In addition, the uniform part of the mixture is estimated as negligible (center
left graph of Figure 5) and the position parameter ε1 is well concentrated around 0.4, while
α1 has a wider variation due to the heavy tails of the histogram. (Note on Figure 5 (central
left and center) the artifact induced by the fact that, when K = 1, ω1 is taken equal to 1.)
The fit by the “plugg-in” estimate

Eπ[p0|Xn]U([0, 1]) + Eπ[(1− p0)|Xn]B (Eπ[α1ε1|Xn], Eπ[α1(1− ε1)|Xn])

is quite satisfactory, as shown in Figure 6. It does not exhibit the poor tail fit of the average
of the densities, which is due to the fact that the values of αkεk and of αk(1− εk) that are
less than 1 pull the tails up.

In the third case (Figures 7 and 8), the two components are again well identified, the
algorithm allocating approximately the same posterior weight to the cases K = 2 and K = 3
(upper left graph of Figure 7) but clearly exhibiting the bimodality of the distribution (lower
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central graph of Figure 7 and Figure 8). The same poor fit in the tail of the average of the
densities can be observed in Figure 8, as well as the very good performances of the plugg-in
estimate

E[p0|Xn]U([0, 1]) + (1− E[p0|Xn]) {E[p1|Xn]B(E[α1ε1|Xn], E[α1(1− ε1)|Xn])

+E[(1− p1)|Xn]B(E[α2ε2|Xn], E[α2(1− ε2)|Xn])} .

We now go back to our original problem, namely the goodness of fit test for a parametric
model.

3. General goodness of fit model

As in Verdinelli and Wasserman (1998) [hereafter VW], we rewrite the problem of testing
the appropriateness of a family of distributions

F = {Fθ, θ ∈ Θ} ,

a parameter θ ∈ Θ, for a given sample x1, , . . . , xn, as a test of uniformity for the transforms
u1 = Fθ(x1), . . . , un = Fθ(xn). The alternative to this null hypothesis, also called full
model, is that the sample u1, . . . , un is distributed from an arbitrary distribution on [0, 1],
represented as a possibly infinite mixture of Beta distributions, given by (1).

We first give a result on the consistency of the posterior distribution in terms of Hellinger
neighbourhoods under some general conditions on the model F . This implies in particular
that the posterior mean is a consistent estimate of the density. Using this consistency result,
we will then prove that the test procedure defined in Section 3.2 is consistent and that it is
asymptotically equivalent to using a conditional p-value.

3.1. Consistency of the posterior distribution
The full model on the observations x1, , . . . , xn is thus given, in terms of densities, as

H = {f(x) = fθ(x)gψ(Fθ(x)), θ ∈ Θ, ψ ∈ S} , (9)

where gψ is defined as in the previous section. We now establish the strong consistency
of the posterior distribution, under some regularity conditions on fθ and under the same
conditions on π1(ψ) as in Section 2.2.

We denote by f0 the true density of the xi’s and assume that Θ ⊂ Rp is compact.; π(θ)
is the marginal prior density on Θ. We consider the following assumptions:

H1 For all θ ∈ Θ, supp(fθ) = X , independent of θ and supp(f0) ⊂ X .

H2 For all θ ∈ Θ, ε > 0, ∃ ψ ∈ S such that

I(f0, fθgψ(Fθ)) ≤ ε.

H3 Almost all densities within the parametric family are at a finite Kullback divergence
from f0, that is,

π({θ, I(f0, fθ) <∞}) = 1.
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Fig. 7. Monitorings of the convergence of the birth and death sampler for a random sample of 1250
points (same legend as Figure 3).
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H4 Assume that ∀θ ∈ Θ, fθ is bounded and that ∃ τ0 > 0 such that

∫

X

√
f1−τ0
θ (x)dx <∞.

H5 Assume that ∀θ ∈ Θ, ∃d0, τ1, C, β > 0, such that ∀d ≤ d0, ∃ 0 < τ ≤ τ1dβ , ∃m1,m2 > 0
such that

m1fθ(x)1+τ ≤ fθ′(x) ≤ m2fθ(x)1−τ , ∀|θ′ − θ| < d,

and

m2

∫ ∞

−∞
fθ(x)1−τdx ≤ 1 + Cdβ .

Hypothesis H2 is the equivalent of Theorem 1 modulo the transformations Fθ of the
data for all values of θ. While H3 does not always hold (take for instance the case when f0 is
a Cauchy density and F is the family of Gaussian distributions), it is a general prerequisite
for any hope of consistency of a test based on the likelihood. When H2 holds, H3 is
very mild, given the compacity of Θ. Although the expressions of H4 and H5 are rather
unusual, they are in essence fairly general and are satisfied for most known models, when
the parameter space is compact. For instance, if fθ(x) = θ e−θx, with θ ∈ [ε, E], 0 < ε < E,
then if |θ′ − θ| ≤ dθ,

(1− d)θ−dfθ(x)1+d ≤ fθ′(x) ≤ (1 + d)θdfθ(x)1−d.

More generally, H4 holds for all bounded exponential families such that f
(1−τ0)/2
θ is still

integrable and H5 is a consequence of the boundedness assumption. Heavy tailed distribu-
tions also often satisfy H4 and H5, at least when they have moments of order greater than
2 (for H4 to be satisfied). We have chosen such an expression for the above hypotheses
because it is more appropriate to the mixture of Beta distributions.

We then obtain the following consistency theorem :

Theorem 3. Under the conditions H1–H5, ∀ε > 0,

π[Aε(f0)|Xn]→ 1, as n→∞, f0 a.s. (10)

This result implies that

Eπ [d(f0, fθ,ψ)|Xn]→ 0, f0 a.s.

as n goes to∞. Moreover, since |d(fθ,ψ,F)−d(f0,F)| ≤ d(f0, fθ,ψ), Theorem 3 also implies
that

Eπ [d(f,F))|Xn]→ d(f0,F), f0 a.s. (11)

as n goes to ∞. (The proof of Theorem 3 is given in Appendix C.)

The condition that Θ is compact could be relaxed, but that would imply conditions on
the regularity of the fθ’s stronger than those considered here as well as conditions on the
prior π.
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3.2. Test of Goodness of Fit
One would like to obtain a test such that, if d(f,F) is small, the parametric model is
chosen. The difficulty is obviously to decide what small means. It could be chosen a priori,
depending on the requirements of the statistician. In this case the parametric model would
be selected if

H(Xn) = Eπ[d(f,F)|Xn] ≤ ε,
where ε is fixed before the experiment. This is the Bayesian decision under the loss given
by (2). As was mentioned in the introduction, situations, where ε can be fixed a priori, are
not always possible and we also believe that to some extent ε should depend on the number
of observations. In this respect, one could compare H(Xn) with an approximation of its
(frequentist) distribution under H0. However, since θ is unknown, such an approximation is
not available. We feel that a better approach consists in computing a reference distribution,
characterizing the null hypothesis and being conditional on the observations. The most
commonly used methods are then to compute either the plug-in p-value or the posterior
predictive p-value. However both methods use twice the data in ways that can badly affect
the result, as pointed out by Bayarri and Berger (2002). We therefore propose, here, a
conditional predictive p-value, based on the maximum likelihood estimator. (In cases where
its computation is intractable we can only suggest to use either a plug-in p value or a
posterior predictive p-value.)

Let θ̂x be the maximum likelihood estimator in the parametric model, associated with
the observations x1, ..., xn.

θ1 ∼ π0(θ|θ̂x) , Y n1 ∼ f(Y n|θ̂x; θ1),

θ2 ∼ π0(θ|θ̂x) , Y n2 ∼ f(Y n|θ̂x; θ2),

. . . . . .

θN ∼ π0(θ|θ̂x) , Y nN ∼ f(Y n|θ̂x; θN ),

be iid copies from the conditional predictive distribution (conditional meaning conditional
on the maximum likelihood estimator). Then

Y ni ∼ m0(Y n|θ̂x),

as defined by (3). For each Y ni we can calculate H(Y n) and thus get a sample from the
predictive distribution of H(Y ) under the parametric model. If the null model is quite
wrong then Y n is very different from Xn and therefore, H(Y n) will be very different from
H(Xn). If the null model is correct, then Y n is similar to Xn and so would be H(Y n)
to H(Xn). We then compare H(Xn) with the quantiles of the predictive distribution of
H(Y ). This predictive distribution is calculated under the parametric model. To make
these statements more rigorous we now give the following asymptotic results.

First, we note that the general problem of simulating a sample conditional on a fixed
maximum likelihood estimator θ̂ is quite interesting: within exponential families, since the
maximum likelihood estimator is a sufficient statistic, the conditional distribution usually
is straightforward. For instance, a normal N (θ, 1) sample Y n can be simulated as

(y1, . . . , yn−1) ∼ Nn−1(x̄1, I − 1

n+ 1
11T ) .

(See Section 3.3 for another illustration in the case of the Exp(λ) distribution.) Outside the
exponential families, the conditional distribution depends on both the maximum likelihood
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estimator and the true parameter and its simulation requires more complex tools, like
reversible jump MCMC and tempering (see Robert and Rousseau, 2003, for details).

We assume that θ⊥ = arg minθ J (f0, fθ) is unique (which is obvious when f0 ∈ F) and
that the following three conditions hold, namely

sup
|θ′−θ⊥|<2δn

E0[|D3 log fθ′(X)|4] <∞, (12)

sup
|θ′−θ⊥|<2δn

E0[|D2 log fθ′(X)|4] <∞, (13)

and for all H > 0, there exists K large enough, such that

Pn0

[
|θ̂x − θ⊥| > K logn/

√
n
]
≤ n−H , (14)

We do not really need (14) as written: it is enough to assume the condition with H =
2. However, this condition is generally satisfied under usual regularity conditions on the
parametric model. In particular, (14) is almost a consequence of (12) and (13). In the case
f0 ∈ F (12), (13) and (14) are quite standard. If f0 /∈ F , see Arcones (2002) for simple
conditions to obtain (14).

Theorem 4. Under the above conditions,

pcpred = Pnθ

[
H(Y n) > H(xn)|θ̂y = θ̂x;xn

]
+Rn,

where the residual Rn is such that, for some p, p′ ∈ N,

Pnθ [Rn > M lognp/
√
n] ≤M lognp

′
/
√
n .

If f0 /∈ F , then θ = θ⊥ and if g0(θ̂), the density of the maximum likelihood estimate,
allows for an Edgeworth expansion to the order n−3/2, then

Pn0 [Rn > M
√
n lognp] ≤M lognp

′
[n−3c/2 + n−1/2] ,

for some constant 0 < c ≤ 1 depending on f0, and some p, p′ ∈ N.

This result implies in particular that if the true density f0 /∈ F , for all ε > 0,

lim
n→∞

Pn0 [pcpred > ε]→ 0 .

Also, under H0, i.e. if f0 = fθ,

Pnθ [pcpred ≤ α] = α+O(n−1/2).

The assumption on the Edgeworth expansion of the maximum likelihood estimate, when
f0 /∈ F , is not a strong assumption, regularity conditions on the parametric model associated
with moment conditions on the derivatives of the log-likelihood under f0 (such as (12) and
(13)) would typically imply such a result. Note also that this result is true for any test
statistic H under the above regularity conditions on the parametric model.

The test is therefore asymptotically equivalent to using a conditional p-value, which has
a uniform distribution under H0. Thus, asymptotically, pcpred is uniformly distributed on
[0, 1]. Note also that marginally, pcpred is exactly uniformly distributed on [0, 1].
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Proof. The proof of Theorem 4 is given in Appendix D. The idea is to use the fact that θ̂
is asymptotically a sufficient statistic, so that to first order f(yn|θ̂x; θ) is independent of θ.
Therefore writing pcpred as

pcpred =

∫
IH(yn)>Hx

∫
Θ
f(yn|θ̂x; θ)g(θ̂x|θ)π(θ)dθ
∫

Θ
g(θ̂x|θ)π(θ)dθ

=

∫

Acn

IH(yn)>Hx

∫
|θ̂x−θ|<δn f(yn|θ̂x; θ)g(θ̂x|θ)π(θ)dθ

∫
Θ
g(θ̂x|θ)π(θ)dθ

+

∫

An

IH(yn)>Hx

∫
|θ̂x−θ|<δn f(yn|θ̂x; θ)g(θ̂x|θ)π(θ)dθ

∫
Θ
g(θ̂x|θ)π(θ)dθ

+

∫
IH(yn)>Hx

∫
|θ̂x−θ|>δn f(yn|θ̂x; θ)g(θ̂x|θ)π(θ)dθ

∫
Θ
g(θ̂x|θ)π(θ)dθ

,

where δn = K logn/
√
n and where An is essentially a set on which f(yn|θ̂x; θ) is asymptot-

ically independent of θ. We then use the fact that P nθ [Acn] is small and that g(θ̂x|θ) is also

small when |θ̂x − θ| > K logn/
√
n, for K large enough. 2

This test procedure is therefore asymptotically equivalent to using a conditional p-value,
up to a constant. Note that the order of approximation here is O(n−1/2) which is a lot
smaller than the nonparametric rate of convergence of Eπ[d(f, f0)|Xn].

To simplify the computation of the test procedure, which is quite heavy, we can use
G(Xn) = Eπ[d(gψ, 1)|Xn] (and G(Y n)) instead of H(Xn) (and H(Y n)). Indeed G(Xn)
and G(Y n) have the same properties as H(Xn) and H(Y n). We have

G(Xn) = Eπ[d(fθ,ψ, fθ)|Xn]

≥ d(f0,F)− Eπ[d(f0, fθ,ψ)|Xn] (15)

and

G(Xn) ≤ Eπ[d(f0, fθ)|Xn] + Eπ[d(f0, fθ,ψ)|Xn] (16)

Hence, if d(f0,F) = ε > 0, i.e. under H1, using (15) and the consistency of the posterior,
we obtain that G(Xn) is asymptotically almost surely greater than ε. If f0 ∈ F , then both
Eπ[d(f0, fθ)|Xn] and Eπ[d(f0, fθ,ψ)|Xn] go to 0 as n goes to infinity, almost surely. H and
G therefore have the same asymptotic behaviour and we can build the same test procedure
with G as with H.

Such a simplification is however not entirely satisfying, though, since it forgets the width
of F ; it is somehow, like reducing F to the pluggin density fθ̂, where θ̂ is for instance the
maximum likelihood estimator.

3.3. Evaluation
Two representative cases are considered for the evaluation of our testing procedure: the
parameterised family F is the exponential distribution Exp(θ) and the data is simulated
either from a Exp(1) distribution or from a Gamma Ga(7, 1/7) distribution, that is, when
H0 holds and when it does not.
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In this case, the conditional distribution of a sample Y1, . . . , Yn given the maximum like-
lihood estimator θ̂Y = θ̂x is independent of the true parameter value, since θ̂x is a sufficient
statistics. For the computation of the conditional p-value, we thus simulate samples Y n

j as

uniform distributions over the simplex
∑n
i=1 yi = nθ̂x, which is equivalent to simulate from

the Dirichlet distribution Dn(1, . . . , 1), and multiply by nθ̂x.
For our computation of H(Y n), we replaced the Hellinger distance with the L1 distance,∫
|1− gψ(x)|dx, between the uniform distribution and the mixture of beta distributions, in

order to simplify the numerical approximation (which uses a quadrature of 1000 points).
Using 1500 MCMC iterations and N = 250 Monte Carlo replications, we obtained the

distributions represented on Figures 9 and 10 for the normal and gamma samples. In the
first case, that is when H0 holds, for n = 50, the predictive p-value is 0.82 and for n = 80,
0.75, thus within acceptable values. (This corresponds to H(y) equal to 0.14 and 0.13. In
the second case, that is when H0 does not hold, for both n = 40, and n = 90, the predictive
p-value is 0.00: no simulated H(Y n) has produced a value larger than the observed H(xn),
equal to 0.38 and 0.44, respectively.
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from a Exp(θ) distribution. The observed H(xn) are equal to 0.14 and 0.13, respectively.

H(y)

D
e
n
si

ty

0.15 0.20 0.25 0.30 0.35

0
5

1
0

1
5

2
0

H(y)

D
e
n
si

ty

0.10 0.15 0.20 0.25

0
5

1
0

1
5

2
0

Fig. 10. Predictive distribution of the distance H(Y n) for n = 40 and n = 90, based on a sample x
from a Ga(7, 1/7) distribution.



Bayesian Goodness of Fit 21

Robert, C.P. (2001) The Bayesian Choice (second edition). Springer-Verlag, New York.
Robert, C.P. and Rousseau, J. (2003) Simulation of samples under maximum likelihood
constraints. In preparation.
Stephens, M. (2000) Bayesian analysis of mixture models with an unknown number of
components—an alternative to reversible jump methods. Ann. Statist. 28, 40–74.
Verdinelli, I. and Wasserman, L. (1998) Bayesian goodness-of-fit testing using infinite-
dimensional exponential families. Ann. Statist. 26, 1215–1241.

A. A theorem of Barron, Schervish and Wasserman

Let P be the set of probabilities on X . For ε > 0 and C ⊆ P, define L(C, ε) to be the
logarithm of the infimum of the set of all k such that there exist nonnegative functions
fU1 , . . . , f

U
k such that

(a)
∫
fUi (x)dµ(x) ≤ 1 + ε for all i,

(b) for each P ∈ C there exists i such that fP ≤ fUi µ–a.s.

We now recall Theorem 1 of Barron et al. (1999), which enables us to prove the strong
consistency of the posterior distribution. To do so, we first state the two conditions that
have to be checked in their theorem:

A1 For every ε > 0, π(Nε) > 0.

A2 For every e > 0, there exist a sequence (Fn)∞n=1 of subsets of P, and positive, real
numbers c1, c2, c3 and ε, with

c3 < ([e−√ε]2 − ε)/2, ε < e2/4,

such that

(i) π(Fcn) ≤ c1 exp(−nc2) for all but finitely many n;

(ii) E(Fn, ε) ≤ nc3 for all but finitely many n.

Barron et al. (1999) prove the consistency of the posterior distribution under these two
hypotheses

Theorem 1 of Barron et al. (1999): Let Aε be a Hellinger neighbourhood of f0 the true
density, which is defined in Section 2.2. Under conditions A1 and A2, for every ε > 0,

lim
n→∞

π(Aε|X(n)) = 1 P a.s.

B. Proof of Theorem 2

The proof of this theorem is obtained using Theorem 1 of Barron, Schervish and Wasserman
(1998) [hereafter BSW], recalled above. To begin with, we prove condition A1 in Theorem
1 of BSW. Let g0 = gψ, where ψ = (p0,K, ωi, αi, εi, i ≤ K). So we first consider a finite
mixture of Beta distributions. Then π(Nε) > π(NK

ε ), where NK
ε is the set of densities in

Nε, that are mixtures of K Beta distributions.
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To obtain condition [A1] in Theorem 1 of BSW, we prove that there exists δ > 0 such
that |ψ − ψ′| < δ implies that fψ′ ∈ Nε, and thus π(Nε) > π[{|ψ − ψ′| < δ}]. The prior
density being strictly positive, the above probability will then be strictly positive.

When K is fixed, the model is a parametric model. A Taylor expansion of log gψ′ around
ψ leads to

| log gψ′(u)− log gψ(u)| ≤ M(1 + log u)|ψ − ψ′|,

and thus

I(gψ, gψ′) ≤M |ψ − ψ′|
∫ 1

0

[1 + log u]u−t(1− u)−tdu ≤M ′|ψ − ψ′|.

Let us consider some density g0 ∈ Ω on [0, 1]. Theorem 1 implies that ∀ε > 0, there exists
ψ = (p0,K, ωj , aj , bj , j = 1, ...,K) such that I(g0, gψ) ≤ ε/2. Using the above calculations,
we deduce that for any g0 ∈ Ω, condition [A1] is satisfied.

We now consider condition A2. We construct Fn in the following way:

Fn = {gψ;K ≤ tn/ logn, tn < aj , bj < Tn, j = 1, ...,K},

with Tn = nl, with l ≥ 1/c0 and tn = 2e−Tn , where c0 > 0 is defined by (7). Then simple
calculations imply that π(F cn) ≤ e−nr, for some r > 0.

Let An = {ga,b, 0 < tn ≤ a, b ≤ Tn}, where ga,b is a Beta density with parameters a and
b and η = (a, b) ∈ [tn, Tn]2.

Denote τ = (τ1, τ2), η̄ = a+ b, τ̄ = τ1 + τ2, and let B(η) be the renormalising constant
of the Beta density with parameter η = (a, b) and C and ρ be generic positive constants.
For all η′ = (η′1, η

′
2) ∈ [η − τ, η + τ ]

gη′(u) ≤ gη−τ (u)
B(η − τ)

B(η + τ)
= gU (u).

We now determine conditions on τ1 and τ2 such that

∫
gU (u)du =

B(η − τ)

B(η + τ)
≤ 1 + δ . (17)

Using simple calculations on log Γ(x), we obtain that

(i) If a, b < 2, i = 1, 2

log

(
Γ(a− τ1)Γ(b− τ2)

Γ(a+ τ1)Γ(b+ τ2)

)
+ log

(
Γ(η̄ + τ̄)

Γ(η̄ − τ̄)

)
≤ 2τ1

a− τ1
+

2τ2
b− τ2

− 2(τ1 + τ2)C.

Then the integral is bounded by 1 + δ if τ1 ≤ δρa and τ2 ≤ δρb, with 1/2 > ρ > 0.
(ii) If a < 2, b > 2, then η̄ > 2 and

log

(
Γ(a− τ1)Γ(b− τ2)

Γ(a+ τ1)Γ(b+ τ2)

)
+ log

(
Γ(η̄ + τ̄)

Γ(η̄ − τ̄)

)
≤ 2τ1

a− τ1
+ τ̄ [log (η̄ + 1)− C].

Then the integral is bounded by 1 + δ if τ1 ≤ ρδa (1 + log (η̄ + 1))
−1

and τ2 ≤
ρδ (1 + log (η̄ + 1))

−1
.
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(iii) If b < 2, a > 2, then things are symmetrical to the previous case.
(iv) If a, b > 2, i = 1, 2, then

log

(
Γ(a− τ1)Γ(b− τ2)

Γ(a+ τ1)Γ(b+ τ2)

)
+ log

(
Γ(η̄ + τ̄)

Γ(η̄ − τ̄)

)
≤ −2(τ1 + τ2)[ρ− log (η̄ + 1)].

The integral is then bounded by 1 + δ if τi ≤ ρδ[1 + log (η̄ + 1)]−1, i = 1, 2.

We now count the number of upper bounds in Fn:

(i) In the cube [tn, 2]2, t (1 + ρδ)
K ≥ 2 implies that the number of upper bounds in this

cube is bounded by:

N1 ≤
(

log (2/tn) log (1 + ρδ)
−1
)2

.

(ii) In the cubes [tn, 2]× [2, Tn] or [2, Tn]× [tn, 2], in each column (for b fixed), the number
of upper bounds is bounded by

K ≤ log (2/tn) log (1 + ρδ log (3 + Tn)
−1

)
−1 ≤ 2 log (2/tn)

log (3 + Tn)

ρδ
,

when T is large enough. The total number of bounds in the cube is then bounded by:

N2 ≤
log (2/tn)C

δ2
Tn log Tn

2.

(iii) In the cube [2, Tn]× [2, Tn], the number of upper bounds is bounded by:

N3 ≤
C

δ2
T 2
n log Tn

2.

Finally, the total number of cubes is bounded by

N =
3C

δ2
T 2
n log Tn

2, since tn = 2e−Tn .

Using Genovese and Wasserman (2000), we obtain that the number of upper bounds for
the elements of Fn can be bounded by

Nn =
√

2(kn + 1)
B2kn

ε2kn
N kn

=
√

2(tn/ logn+ 1)
(3MB)2tn/ logn

δ4tn/ logn

(
T 2 log T 2

)tn/ logn
.

When Tn = nl, with l ≥ 1/c0 and by choosing t = c/6l, we obtain logNn ≤ nc and (6) is
proved.

C. Proof of Theorem 3

As in Theorem 1, the proof is based on Theorem 1 of BSW. The hypothesis H2 implies
that ∀ε > 0, ∀θ ∈ Θ,

π[Nε|θ] > 0,
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thus π[Nε] > 0 and condition A1 in BSW is satisfied. We now prove condition A2. Let

F̄n = {fθ(x)gψ(Fθ(x)), ψ ∈ Fn, θ ∈ Θ},

and construct the upper bounds gUj as in the previous section, i.e. in the proof of Theorem
2, but with the constraint: ∫ 1

0

gUj (u)du ≤ 1 + δ/2,

instead of δ. Since fθ,ψ is a mixture of parametric densities, we first count the number of
upper bounds for gψ = ga,b, i.e. a Beta density with parameters (a, b) ∈ R2

+, as in the proof
of Theorem 2. Then, gj(u) has the form of a Beta distribution with a larger renormalisation
constant: it can be written as

gj(u) = ga,b(u)(1 + δ/2) .

We can therefore work as if gj = ga,b. As in the proof of Theorem 2, let tn ≤ a, b ≤ Tn,
with Tn = nl, l ≥ 1/c0 and tn = n−α, for some α ≥ c1 so that π[Fcn] ≤ e−nr for some r > 0.
Throughout the proof, C denotes a generic constant.

We thus need to bound
sup

|θ′−θ|<d
fθ′(x)ga,b(Fθ′(x)).

First, let a, b > 1 and denote

hθ(x) = H−1
1 fθ(x)1−τ , Hθ(x) =

∫ x

−∞
hθ(y)dy,

where H1 is the renormalising constant. Note that the hypothesis H5 implies that H1 <∞.
We have

1− Fθ′(x) =

∫ ∞

x

fθ′(x)dx ≤ m2H1(1−Hθ(x)),

Fθ′(x) ≤ m2H1Fθ(x),

thus, ∀|θ′ − θ| < d, with d ≤ d0,

fθ′ga,b(Fθ′)(x) ≤ ma+b−1
2 Ha+b−1

1 hθ(x)ga,b(Hθ(x)) = h̄(x).

So,
∫

X
h̄(x)dx = ma+b−1

2 Ha+b−1
1 ≤ 1 + δ/3

if m2H1 ≤ (1 + δ/3)1/(a+b−1). Replacing a, b by Tn = nl, this is satisfied if

m2H1 ≤ 1 + δ/(8Tn). (18)

Hypothesis H5 implies that (18 ) is valid when d ≤ δn−l/β/(8C). The number of such
upper bounds, for fixed a, b is then bounded by N(Θ)1

n ≤ Cδ−pn−pl/β .
Let a < 1 and b > 1 (or similarly a > 1 and b < 1). Writing hθ = hαθ h

1−α
θ , with

α = (1 + τ)/(1 + 2τ) and using Holder’s inequality, we obtain,

Hθ(x)1+2τ ≤
(∫ x

−∞
h1+τ
θ (y)dy

)(∫ x

−∞

√
hθ(y)dy

)2τ

(19)
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This is finite because of hypothesis H4. Hypothesis H5 implies that

Fθ′(x) ≥ m1

∫ x

−∞
h

(1+τ)/(1−τ)
θ (y)dy,

we obtain, using τ ′ = (1 + τ)/(1− τ)− 1 instead of τ in equation (19),

Fθ′(x) ≥ m1(∫∞
−∞
√
hθ(y)dy

)2τ ′Hθ(x)1+2τ ′

= m′1Hθ(x)1+2τ ′ . (20)

Note that m′1 goes to 1 and τ ′ goes to 0, as d goes to 0. We thus have

fθ′(x)ga,b(Fθ′(x)) ≤ B(a, b)−1H1m2(m′1)a−1hθ(x)Hθ(x)(1+2τ ′)(a−1)(1−m′1Hθ(x)(1+2τ ′))b−1dx

≤ H1m2(m′1)a−1(1 + τ ′)hθ(x)Hθ(x)(1+2τ ′)(a−1)(1−m′1Hθ(x))(1+2τ ′)(b−1)

= h̄(x),

which implies that

∫

X
h̄(x)dx ≤ H1m2(m′1)a−1(1 + τ ′)

∫ 1

0

u(1+2τ ′)(a−1)(1−m′1u)(1+2τ ′)(b−1)du

≤ H1m2(m′1)−2(1 + τ ′)
B(a′, b′)
B(a, b)

,

where a′ = a+ τ ′(a− 1) and b′ = b+ τ ′(b− 1).
Therefore,

∫
X h̄(x)dx ≤ 1 + δ/3 if

(i) H1 ≤ 1 + δ/15.
(ii) m2 ≤ 1 + δ/15.

(iii) m1H
−4τ/(1−τ)
0 ≥ (1 + δ/15)−1, with H0 =

∫
X fθ(x)1−τ1dx, for some fixed τ1 ≥ τ .

(iv) B(a′, b′)/B(a, b) ≤ 1+δ/15. Using the calculations of Section 2.2, this will be satisfied
if 2τ(1−a)/(1−τ) ≤ ρδa(1+log (b+ 2))−1 and 2τ(b−1)/(1−τ) ≤ ρδ(1+log (b+ 2))−1,
for some ρ > 0.

Note that τ depends on d the distance between θ′ and θ. As a crude upper bound we can
let a = tn and b = Tn, so that when n is large enough, the most constrictive condition is
(iv). We thus need

τ ≤ ρ′δ(1 + l logn)−1n−h = τn, (21)

where h = max(l, α). Let dn be such that when |θ′ − θ| ≤ dn,

m1fθ(x)1+τn ≤ fθ′(x) ≤ m2fθ(x)1−τn ,

as in hypothesis H5, then dn ≥ τ
1/β
n /τ1 ≥ ρ′δ1/βn−h/β−1, where ρ′ is some constant. The

number of such upper bounds, for fixed a, b, is then bounded by Cd−dn = O(nT ), for some
T > 0.

Let a, b < 1. We then use the same calculations as above to obtain

fθ′(x)ga,b(Fθ′(x)) ≤ H1(m′2)b−1(m′1)a−2hθ(x)Hθ(x)(1+2τ ′)(a−1)(1−Hθ(x))(1+2τ ′)(b−1) = h̄(x),
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and

∫

X
h̄(x)dx ≤ H1(m′2)b−1(m′1)a−1B(a′, b′)

B(a, b)
≤ 1 + δ/3

To obtain the above inequality we therefore need the same conditions as previously, i.e. (i)–
(iv), apart from (iv) which is now expressed as

2τ(1− a)/(1− τ) ≤ δρa and 2τ(1− b)/(1− τ) ≤ δρb

as in the proof of Theorem 2. This condition is again the most constrictive, when replacing
a and b by tn = n−α. The above inequality will therefore be satisfied when τ ≤ ρ′δn−α, for
some ρ′ > 0, when n is large enough.

Finally the logarithm of the total number of upper bounds for the densities fθgψ(Fθ),
with θ ∈ Θ and ψ ∈ Fn is bounded by

logNn + C logn,

where Nn is the number of upper bounds defined in Section 2.2, in the case of mixtures of
Beta densities, and C is a positive constant. It is thus bounded by cn, for n large enough.

D. Proof of Theorem 4

Recall that Hx = Eπ [d(f,F)|Xn] the observed value of the test statistic and

pcpred = Prm0(.|θ̂x) [H(Y n) > Hx] , (22)

where m0(yn|θ̂x) is given by (3). We now prove that under the null hypothesis, i.e. if there
exists θ0 ∈ Θ such that f0 = fθ0 , then pn is equivalent to the conditional p-value :

Pθ0 [H(Y n) > Hx|θ̂ = θ̂x] = p0(θ̂x),

and if f0 /∈ F , and if θ⊥ = arg minθ I(f0, fθ) is unique, then pn is equivalent to

Pθ⊥ [H(Y n) > Hx|θ̂ = θ̂x] = Pθ⊥(θ̂x).

To do so, we first prove that when θ is closed to θ̂x, f(yn|θ̂x; θ) is asymptotically independent

of θ. Denote S θ̂xn = {yn; θ̂(yn) = θ̂x} and dλn the Lebesgue measure on S θ̂xn . In the following

M denotes a generic constant. Let yn ∈ S θ̂xn , then using Fraser and Reid’s (1995) result we
have that

f(yn|θ̂x; θ) =
f(yn|θ)|ĵ||lθ;y(θ̂x, y)|−1

g(θ̂x|θ)

where ĵ = −D2ln(θ̂)/n is the observed Fisher information matrix and

|lθ;y(θ̂x, y)| = |(∂2ln(θ̂x)/(∂θ∂y))(∂2ln(θ̂x)/(∂θ∂y))t|1/2
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is therefore the determinant of a k × k matrix. Then

f(yn|θ̂x; θ)

f(yn|θ̂x; θ)
=

eln(θ)−ln(θ̂)

eln(θ0)−ln(θ̂)

g(θ̂x|θ0)

g(θ̂x|θ)

=
1 +Rn(θ)/

√
n

1 +Rn(θ)/
√
n

∫
Sθ̂xn

f(yn|θ̂x)|ĵ||lθ;y(θ̂x, y)|−1(1 +Rn(θ0)/
√
n)dλn(yn)

∫
Sθ̂xn

f(yn|θ̂x)|ĵ||lθ;y(θ̂x, y)|−1(1 +Rn(θ)/
√
n)dλn(yn)

,

where

1 +Rn(θ) = exp{−n(θ̂x − θ)tZn,2(θ̂x)(θ̂x − θ)/2
√
n} exp{n3/2(θ̂x − θ)(3)µ(3)

n (θ̄)/
√
n},

Zn,2(θ) =
√
n

(
−D

2ln(θ)

n
− I(θ)

)
,

I(θ) = Eθ
[
−D2 log f(X|θ)

]
, the differential being wrt θ, θ̄ ∈ (θ, θ̂), and

µ(3)
n (θ) =

D3ln(θ)

n
.

The notation (θ̂x − θ)(3)µ
(3)
n means the sum over the components of these two terms.

Let |θ− θ̂x| < K logn/
√
n = δn, with K large enough, and denote An the set of yn such

that

sup
|θ′−θ̂|<δn

∣∣∣∣
D3ln(θ′)

n

∣∣∣∣ ≤M, |Zn,2(θ̂x)| ≤ √n/(4K2 logn2).

Then, on An,

|Rn(θ)| ≤ 2|n(θ̂x − θ)tZn,2(θ̂x)(θ̂x − θ)/2|+M |n3/2(θ̂x − θ)(3)µ(3)
n (θ̄)|.

We have

pcpred =

∫

Sθ̂xn

IH(yn)>Hx

∫
Θ
f(yn|θ̂x; θ)g(θ̂x|θ)π(θ)dθ
∫

Θ
g(θ̂x|θ)π(θ)dθ

dλn(yn)

=

∫

Sθ̂xn ∩Acn
IH(yn)>Hx

∫
|θ̂x−θ|<δn f(yn|θ̂x; θ)g(θ̂x|θ)π(θ)dθ

∫
Θ
g(θ̂x|θ)π(θ)dθ

dλn(yn)

+

∫

Sθ̂xn ∩An
IH(yn)>Hx

∫
|θ̂x−θ|<δn f(yn|θ̂x; θ)g(θ̂x|θ)π(θ)dθ

∫
Θ
g(θ̂x|θ)π(θ)dθ

dλn(yn) (23)

+

∫

Sθ̂xn

IH(yn)>Hx

∫
|θ̂x−θ|>δn f(yn|θ̂x; θ)g(θ̂x|θ)π(θ)dθ

∫
Θ
g(θ̂x|θ)π(θ)dθ

dλn(yn).

We first consider the first term of the right hand side of (23) and we denote pn,1 this term.
Then

pn,1 ≤
∫
|θ̂x−θ|<δn π(θ)

∫
Sθ̂xn ∩Acn

f(yn|θ̂x; θ)dλn(yn)g(θ̂x|θ)dθ
∫

Θ
g(θ̂x|θ)π(θ)dθ

=

∫
|θ̂x−θ|<δn π(θ)Pnθ [Acn|θ̂x]g(θ̂x|θ)dθ

∫
Θ
g(θ̂x|θ)π(θ)dθ

.
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Using the hypotheses (12) and (13) we obtain that uniformly in θ,

Pnθ [Acn] ≤ M logn4

n2
.

Since

Pnθ [Acn] ≥
∫

|θ̂−θ|<δn
Pnθ

[
Acn|θ̂

]
g(θ̂|θ)dθ̂,

we have
∫

|θ̂−θ|<δn
Pnθ

[
Acn|θ̂

]
g(θ̂|θ)dθ̂ ≤ M logn4

n2
.

1. We first consider the case f0 = fθ0 .Then
∫

Θ

g(θ̂x|θ)π(θ)dθ > c0 (24)

for some c0 small enough and for n large enough. Indeed, the approximation of the density
g(θ̂|θ) can be uniformly approximated by

g(θ̂x|θ0) = nk/2|I(θ0)|1/2ϕ(I1/2
√
n(θ̂x − θ0))

[
1 +

P (
√
n(θ̂x − θ0))√

n

]
+O(n−1/2), (25)

where ϕ(u) is the density of a standard Gaussian random variable and P (u) is a polynomial
function with degree 3, see Bhattacharya and Ghosh (1978). We then obtain that

∫

Θ

g(θ̂|θ)π(θ)dθ ≥ π(θ̂)

∫

|u|<√nδn
ϕI−1/2(u)du−M logn/

√
n

≥ π(θ̂)− C logn/
√
n

≥ c0

for c0 < infΘ π(θ), when n is large enough. Hence,

Pnθ0
[
pn,1 > M/

√
n
]
≤ Pnθ0

[∫

|θ̂x−θ|<δn
π(θ)Pnθ [Acn|θ̂x]g(θ̂x|θ)dθ > Mc0/

√
n

]

≤ M
√
n

c0

∫

|θ̂x−θ0|<δn

∫

|θ̂x−θ|<δn
g(θ̂x|θ0)g(θ̂x|θ)Pnθ [Acn|θ̂x]π(θ)dθdθ̂x + n−1

Therefore,

Pnθ0
[
pn,1 > M/

√
n
]
≤ M

√
nnk/2

∫

|θ̂x−θ0|<δn

∫

|θ̂x−θ|<δn
g(θ̂x|θ)Pnθ [Acn|θ̂x]π(θ)dθdθ̂x +Mn−1/2

≤ M
√
nnk/2

∫

|θ̂0−θ|<2δn

Pθ[A
c
n]π(θ)dθ +Mn−1/2

≤ M logn4nk/2√
n

π[|θ̂0 − θ| < 2δn]

≤ M
logn4+k/2

√
n

.
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We now consider the third term of (23), namely pn,3.

pn,3 =

∫

Sθ̂xn

IH(yn)>Hx

∫
|θ̂x−θ|>δn f(yn|θ̂x; θ)g(θ̂x|θ)π(θ)dθ

∫
Θ
g(θ̂x|θ)π(θ)dθ

.

Using (24), we have :

pn,3 ≤ c−1
0

∫

Sθ̂xn

IH(yn)>Hx

∫

|θ̂x−θ|>δn
f(yn|θ̂x; θ)g(θ̂x|θ)π(θ)dθdλn(yn)

≤ c−1
0

∫

|θ̂x−θ|>δn
g(θ̂x|θ)π(θ)dθ.

Moreover, by choosing K large enough in the definition of δn and using (25) ,

pn,3 ≤ Mn−1/2. (26)

We now consider the second term of (23), namely pn,2. We prove that pn,2 is equal to
the conditional p-value, to the order n−1/2.

pn,2 =

∫

Sθ̂xn ∩An
IH(yn)>Hx

∫
|θ̂x−θ|<δn f(yn|θ̂x; θ)g(θ̂x|θ)π(θ)dθ

∫
Θ
g(θ̂x|θ)π(θ)dθ

,

we have proved that on An,

|Rn(θ)| ≤ 2|n(θ̂x − θ)tZn,2(θ̂x)(θ̂x − θ)/2|+M |n3/2(θ̂x − θ)(3)µ(3)
n (θ̄)| ≤ √n/2

whenever |θ − θ̂x| < δn. Therefore,

∣∣∣∣∣
f(yn|θ̂x; θ)

f(yn|θ̂x; θ0)
− 1

∣∣∣∣∣ ≤M
|Rn(θ)|+ |Rn(θ0)|√

n

and

∣∣∣pn,2 − p0(θ̂x)
∣∣∣ ≤ M

∫

Sθ̂xn ∩An
IH(yn)>Hxf(yn|θ̂x; θ0)

∫

|θ̂x−θ|<δn

|Rn(θ)|+ |Rn(θ0)|√
n

g(θ̂x|θ)π(θ)dθdλn

+

∫

Sθ̂xn ∩Acn
f(yn|θ̂x; θ0)IH(yn)>Hx

∫
|θ̂x−θ|<δn g(θ̂x|θ)π(θ)dθdλn

∫
Θ
g(θ̂x|θ)π(θ)dθ

+

∫

Sθ̂xn

f(yn|θ̂x; θ0)IH(yn)>Hx

∫
|θ̂x−θ|>δn g(θ̂x|θ)π(θ)dθdλn

∫
Θ
g(θ̂x|θ)π(θ)dθ

≤ M√
n
Eθ0

[
|Zn(θ̂x)||θ̂x

] (
1 + logn3

)
+ Pθ0

[
Acn|θ̂x

]
+

∫
|θ̂x−θ|>δn g(θ̂x|θ)π(θ)dθdλn

∫
Θ
g(θ̂x|θ)π(θ)dθ

≤ Mn−1/2,

except on a set of probability (P nθ0) less than n−1/2, using the above calculations.

2. We now consider the case f0 /∈ F .
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To begin with, using condition (14), (25) and (24) remain unchanged.

We need to consider the asymptotic distributions of the mle θ̂x under f0 ; we denote
g0(θ̂x) its density. We have, as usual

√
n(θ̂x − θ⊥) = I0(θ⊥)−1Zn(θ⊥) +Rn/

√
n,

under assumptions (12), (13) and (14), which implies that

|g0(θ̂)− nk/2ϕI−1
0

(
√
n(θ̂x − θ⊥)| ≤Mn−1/2. (27)

In other words, g0(θ̂) behaves similarly to g(θ̂|θ) and we can then apply exactly the same
argument as in the upper bound of P nθ0 [pn,1 > M/

√
n] to obtain

Pn0
[
pn,1 > M/

√
n
]
≤ M logn4+k/2

√
n

. (28)

We also have that

pn,3 ≤ c−1
0

∫

|θ̂x−θ|>δn
g(θ̂x|θ)π(θ)dθ ≤Mn−1/2. (29)

Moreover, we have the same decomposition for pn,2 leading to
∣∣∣pn,2 − p0(θ̂x)

∣∣∣ ≤ M√
n
Eθ⊥

[∣∣∣Zn(θ̂x)
∣∣∣ θ̂x

] (
1 + logn3

)
+ Pθ⊥

[
Acn|θ̂x

]

+

∫
|θ̂x−θ|>δn g(θ̂x|θ)π(θ)dθdλn

∫
Θ
g(θ̂x|θ)π(θ)dθ

.

Replacing g0(θ̂) and g(θ̂|θ⊥) by their Edgeworth expansion to the order n−3/2 in our cal-

culations, we obtain that g̃0(u) ≤ K̃g̃(u|θ⊥)c, where u =
√
n(θ̂ − θ⊥), c ∈ (0, 1] and where

g̃ denotes the corresponding Edgeworth expansion. Hence, if

Bn = {Pθ⊥
[
Acn|θ̂x

]
≥ K logn)p/

√
n} ,

up to a term of order n−3/2,

Pn0 [Bn] ≤ K̃

∫

|u|<δn
g̃c(u|θ⊥)IBn(u)du

for some 1 ≥ c > 0 and with δn = K logn. Using Jensen’s inequality we obtain that

Pn0 [Bn] ≤ K̃

(∫

|u|≤δn
g̃(u|θ⊥)(u)IBn(u)du

)2−c(∫

|u|≤δn
g̃2(u|θ⊥)(u)IBn(u)du

)−(1−c)

≤ K̃

(∫

|u|≤δn
g̃(u|θ⊥)(u)IBn(u)du

)2−c(∫

|u|≤δn
g̃(u|θ⊥)IBn(u)du

)−(1−c)

×
(∫

|u|≤δn
IBn(u)du

)1−c

≤ K
(
Pθ⊥ [Bn] +Mn−3/2

)c
logn1−c ≤ K ′n−3c/2 logn1−c(1+p),

and the theorem is proved.


