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Machine learning

I An increase interest in the field of machine learning

I Has Become an important tool to many fields

I Medicine, Biology, Sociology, health care
I Security
I Finance, economy

I Goal Build programs so that computers can perform tasks in an intelligent way
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Machine learning

Shai Shalev-Shwarts and Shai Ben-David: Understanding Machine Learning: From
theory to Algorithms, 2014 Cambridge University Press

Why do we need machine learning ?
I Tasks that are too complex

I Tasks performed by humans but we do not know how we do them:
I Image understanding, speech recognition,

I Tasks beyond human capabilities:
I Analysis of very large and complex data sets: weather prediction, analysis of genomic data, web

search engines and electronic commerce, to name a few
I Understand meaningful information buried in large and complex data sets.

I Tasks needs to be tailored to the input data
I Decoding handwritten text
I Spam detection programs
I Speech recognition programs.

4 / 38



Machine learning

New advances

New processing
paradigms

Big data

Figure: Big data: Challenges and potential tools
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Random matrix theory

Random matrix theory: Study the behavior of large random matrices

I Allow the prediction of the behavior of random quantities depending on large
random matrices

I Key of success: Randomness + High dimensionality

Large dimensional
Random Matrix

Theory

Ra
ndomness

High dimensio
na
lit

y
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Random matrix theory: Example

Large random matrices
I High dimensional random matrices

I Self-averaging effect mechanism similar to that met in the law of large numbers
I More determinism in the system

Emblematic result from random matrix theory
I Let H ∈ Cn×p with i.i.d entries with zero mean and variance 1

n
.

I We assume that p, n→∞ with p
n
→ c.
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Figure: Histogram of eigenvalues of HHH

As n, p tends to infinity with p
n
→ c,

the histogram can be approximated by a
”Deterministic” curve !

As n, p tends to infinity with p
n
→ c,

all the eigenvalues are contained in the in-
terval

[
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√
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√
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]
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Applications of random matrix theory

Signal processing

I Large number of antenna arrays, vs large number of observations

I Outcomes Improved signal processing techniques

Wireless Communication

I Large-scale MIMO systems, Large number of users

I Outcomes Improved transmission and detection strategies
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Machine Learning & Random Matrix Theory

Machine Learning Random Matrix Theory

I Goal: Design algorithms that
allow computers to perform
intelligent processing

I Applications: Hyperspectral
imagery, Biology, Business

I Challenges: High dimensional
data & data of different kind

I Data is often considered as
deterministic!

=⇒ Dimensionality is viewed as ”a
curse”

I Attribute: Efficient handling of
high dimensional data

I Has proved to bring important
results to several engineering
disciplines

I Main ingredient: Consider Data
as random

=⇒ Dimensionality is viewed as a
”blessing”

RMT tools to rise to the challenges of Machine Learning
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Random matrix approach for machine learning

Machine
Learning

Supervised
Learning

Semi-supervised
Learning

Undsupervised
Learning

Classification

Regression

Classification

Regression

Dimensionality
reduction

Clustering
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Classification

Classification: Classification is the task of selecting the best match for any input
among a set of the underlying categories.
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Discriminant analysis

I Widely used statistical method for supervised classification
I Principle: Builds a classification rule that allows to assign for an unseen

observation its corresponding class.
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Let x be the input data and f be the classification rule.

Classifier ,

{
Assign class 1 if f(x) < 0
Assign class 2 if f(x) > 0
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Discriminant analysis

Basic assumptions

I We assume that there are x1, · · · ,xn observations with known classes.

I Observations are independent but take different distributions across classes.

I We assume the prior probability of class k is πk.

I We assume known the class-conditional probability associated with each class

class-conditional probability , P [X = x | x ∈ class k]

Principle

I For an unseen data x compute using the Bayes rule the maximum posterior
probability

ĝk(x) = P [x ∈ class k | x]

I Assign to x the class with the highest posterior probability

arg max
k

ĝk(x)
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Gaussian discriminant analysis

Gaussian mixture model for binary classification (2 classes)

I x1, · · · ,xn ∈ Rp

I Class k is formed by x ∼ N (µk,Σk) , k = 0, 1

Linear discriminant analysis (LDA) Different mean but equal covariances. Σ0 = Σ1.

WLDA =

(
x−

µ0 + µ1

2

)T

Σ−1(µ0 − µ1)− log
π1

π0{
Assign x to class 0 if WLDA > 0
Assign x to class 1 otherwise

→ Decision rule is linear in x. The LDA is a linear classifier
Quadratic discriminant analysis Different mean and covariances across classes:

WQDA = −
1

2
log
|Σ0|
|Σ1|

−
1

2
(x− µ0)T Σ−1

0 (x− µ0) +
1

2
(x− µ1)T Σ−1

1 (x− µ1)

{
Assign x to class 0 if WQDA > 0
Assign x to class 1 otherwise

→ Decision rule is quadratic in x, hence the name quadratic classifier.
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Linear discriminant analysis

I Assume Σ, µ1 and µ2 known.

I Equal priors : π1 = π2 = 0.5

I No asymptotic regime, p is fixed.

The total misclassification rate is equal to :

R = Φ

(
−

∆

2

)
where ∆ =

√
(µ0 − µ1)T Σ−1(µ0 − µ1) and Φ the

CDF of a standard normal random variables

Takeaways:

I The higher is the difference in means, the lower is the misclassification rate,

I The variance tends to have a side effect on the classification performance.
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Linear discriminant Analysis

I In practice, the means and covariance matrices on which depends the decision
rule are unknown.

I Moreover, Σ0 6= Σ1.
I We assume availability of Training data: observations for which the class label is

known.

observations observations

Figure: Training data

I We use empirical means and sample covariance matrices as plug-in estimators.

Sample mean in class i : xi =
1

ni

∑
xi∈classi

xi

Covariance matrix in class i : Σ̂i =
1

ni
(xi − xi) (xi − xi)

T

Pooled covariance matrix : Σ̂ =
n1

n
Σ̂1 +

n2

n
Σ̂2

I The LDA discriminant function becomes:

ŴLDA =

(
x−

x0 + x1

2

)T

Σ̂−1 (x0 − x1)− log
π1

π0 19 / 38



Linear discriminant analysis: Asymptotic regime

Cheng Wang and Binyan Jiang. On the dimension effect of regularized linear
discriminant analysis

Asymptotic growth regime. Let n = n0 + n1.

I n0, n1, p→∞ such that n0
n1
→ 1 and p

n
→ c < 1

I Σ0 = Σ1

I µ , µ0 − µ1 is such that ‖µ‖ = O(1).

Under these assumptions, the misclassification rate converges to:

RLDA → Φ
[
−

∆

2

√
1− c

↓
Price of dimensionality

]

Takeaways:

I When c→ 1, the misclassification rate tends to 0.5.

→ For the LDA to result in acceptable performance, we need c close to 0.

I Because its use of the inverse of the pooled covariance matrix, the LDA applies
only when c < 1.
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Regularized linear discriminant analysis

Regularizaed Linear Discriminant Analysis :R-LDA

I Applies for c ∈ (0,∞).

I Uses a regularized estimation of the inverse of the covariance matrix:

Σ̂(γ) =
(
γΣ̂ + Ip

)
I The discriminant score for the R-LDA is:

ŴR−LDA =

(
x−

x0 + x1

2

)T

Σ̂(γ)−1 (x0 − x1)− log
π1

π0
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Analysis of regularized discriminant analysis

Assumptions

I p, n1, n2 →∞ with p
n
→ c (0,∞), n1

n
= n2

n
→ 0.5

I The difference in means µ = µ1 − µ2 satisfies ‖µ‖ = O(1). The spectral norms
of Σ0 and Σ1 are bounded

Results

Equal covariance matrices [Zollanvari 2015]

R− Φ

[
−

ξ
√
D

]
→ 0.

where ξ > 0 and D depends on the classes statistics.

Different covariance matrices [ElKhalil, Kammoun, Couillet, 2017]

R−
1

2
Φ

[
−

ξ
√
D0

+
β
√
D0

]
−

1

2
Φ

[
−

ξ
√
D1
−

β
√
D1

]
→ 0.

with ξ, D0 and D1 are positive.

Takeaways

I Different misclassification rate across classes,

I The enhancement in the misclassification rate in one class is likely to be lost by
the increase in the mis-classification rate of the other class.

→ LDA does not leverage well the information about the class differences.
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Regularized quadratic discriminant analysis

Regularized Quadratic Discriminant Analysis: R-QDA

I Applies for c ∈ (0,∞).

I Uses a regularized estimation of the inverse of the covariance matrix associated
with each class

Σ̂0(γ) =
(
γΣ̂0 + Ip

)
Σ̂1(γ) =

(
γΣ̂1 + Ip

)
I The Discriminant score for the R-QDA is:

ŴR−QDA = −
1

2
log
|Σ̂0(γ)|
|Σ̂1(γ)|

−
1

2
(x−x0)T Σ̂−1

0 (γ)(x−x0)+
1

2
(x−x1)T Σ̂−1

1 (γ)(x−x1)
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Regularized quadratic discriminant analysis

Assumptions

I p, n1, n2 →∞ with p
n
→ c (0,∞), n1

n
= n2

n
→ 0.5

I The difference in means µ = µ0 − µ1 satisfies ‖µ‖2 = O(
√
p).

I The spectral norms of Σ0 and Σ1 are bounded

I Matrix Σ0 −Σ1 has at most O(
√
p) eigenvalues of order 1.

Khalil EL Khalil, Kammoun, Couillet 2017
Under these assumptions, the misclassification error rate converges to:

RQDA −
1

2
Φ

(
ξ0 − b0√

2B0

)
−

1

2
Φ

(
−
ξ1 − b1√

2B1

)
→ 0.

where for i ∈ {0, 1}, ξi, bi, Bi depends on the classes’ statistics.
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Regularized quadratic discriminant analysis

What happens if

‖µ0 − µ1‖ = O(1).

Response The difference in means will not be asymptotically used by R-QDA.
Only the information about the covariance matrices is leveraged.

Matrix Σ0 −Σ1 has more than O(
√
p) eigenvalues of order 1

Response R-QDA will perform asymptotically perfect classification.

‖Σ0 −Σ1‖ = o(1) and ‖µ0 − µ1‖ = O(1)

ResponseThe misclassification rate of R-QDA will converge to 0.5

‖Σ0 −Σ1‖F = O(1) and ‖µ0 − µ1‖ = O(1)

Response The misclassification rate of R-QDA will converge to 0.5

Unbalanced training: n0
n1

does not converge to 1

Response R-QDA will be equivalent to the classifier that assigns all observations
to the class with the highest number of training samples.
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Setting of the regularization parameter

R-QDA

I is prone to estimation errors due to insufficiency in the number of observations,

I The setting of the regularization parameter is very important

Evaluation of the performances

Training data Testing data

Derive the 
classifier

Assess the 
performances

Model selection Given a set of candidate regularization factors

I Evaluate the performance using the test data for each regularization value

I Select the value that presents the lowest mis-classification rate
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Setting of the regularization parameter

R-QDA Proposed method

I Provide a consistent estimator for the misclassification error rate.

I Select the regularization factor that minimizes the estimated misclassification
error rate.
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Figure: Misclassification error rate for R-QDA with respect to the regularization factor γ. The data
are drawn from USPS data sets.
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Rising to the high dimensionality challenge

Drawbacks of the insufficiency in the number of observations

I Instability due to the ill-conditioning of the precision matrix (LDA-QDA)

I High noise in the estimation of the covariance matrix

Solutions

I Use a regularization parameter that shrinks the covariance matrix towards identity
I Employ a dimensionality reduction method prior to classification

I Random projection
I PCA
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Subspace linear discriminant analysis

Figure: Illustration of the choice of the discriminative direction

Drawbacks

I The direction that contains the most variance is not always optimal from the
classification point of view.
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Subspace linear discriminant analysis

Gaussian mixture problem
I x1, · · · ,xn ∈ Rp, i.i.d.,
I 2 classes with the same number of observations in each class
I xi in class j take the form:

xi =
(
σ2Ip + P

) 1
2 z + µj

where x ∼ N(0, Ip), P has finite rank r with distinct eigenvalues ω1, · · · , ωr.
I Let X = [x1, · · · ,xn] Form the covariance matrix

Ĉ =
1

n
X

(
I−

11T

n

)
XT

Subspace LDA
I Select the k principal eigenvectors of Ĉ with k � n, û1, · · · , ûk

I Let Û = [u1, · · · ,uk]. Project observations on the subspace spanned by Û

ÛT x1, · · · ,UT x̂n

I Let x a test observation. Perform LDA on the projection of x onto the subspace
of Û.

Questions
I How to choose the directions in Û ?
I What is the optimal number k?
I How PCA-LDA compare with R-LDA?
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Preliminary results

Methodology

I Accurate eigenvalue analysis of the covariance matrix Ĉ.
I Two level of perturbations:

I Additive perturbation caused by the shift in the mean vector
I Multiplicative perturbation carried by matrix P.

Initial results

I Worst case: Assume (µ1 − µ0)T P(µ1 − µ0)→ 0.

I At most r + 1 spikes, only one of them will have a non-vanishing alignment with
(µ1 − µ0)

Takeaways

I In some situations, only one dimension is relevant

The corresponding eigenvalue does not always lie at the edge of the spectrum
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Subspace Linear Discriminant Analysis

What happens if

If (µ1 − µ0)T P(µ1 − µ0) does not go to zero

Response All the spikes matter as they will present a non vanishing alignment
with (µ0 − µ1)

If only some of the eigenvectors of P are aligned to (µ1 − µ0)

Response Only their corresponding spikes matter + an additional spike caused by
the mean perturbation
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Illustration

4 6 8 10 12
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Figure: Classification error rate with respect to ‖µ1 − µ0‖, with rank P = 4; It has 4 non-zero
eigenvalues equal to 5, 4, 2.6 and 4.7, Moreover µ1 − µ0 it not orthogonal to any of its
eigenvectors; p = 5000 and n = 12000
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Conclusion

I Random matrix theory is a powerful tool that has been applied with success to
the fields wireless communications and signal processing, providing solutions to
very challengning problems

I High dimensionality along with stochasticity are the sole prerequisite of this tool

I Encounter between random matrix theory and machine learning will bring about
many new theoretical problems

38 / 38


	Introduction
	Random matrix approach for machine learning
	Discriminant analysis
	Performance analysis of LDA
	Regularized discriminant analysis
	Regularized quadratic discriminant analysis

	New perspectives

