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Machine learning

> An increase interest in the field of machine learning
> Has Become an important tool to many fields

> Medicine, Biology, Sociology, health care

> Security

> Finance, economy

> Goal Build programs so that computers can perform tasks in an intelligent way



Machine learning

Shai Shalev-Shwarts and Shai Ben-David: Understanding Machine Learning: From
theory to Algorithms, 2014 Cambridge University Press

Why do we need machine learning ?

» Tasks that are too complex
»> Tasks performed by humans but we do not know how we do them:
» Image understanding, speech recognition,
»> Tasks beyond human capabilities:

P Analysis of very large and complex data sets: weather prediction, analysis of genomic data, web
search engines and electronic commerce, to name a few
P Understand meaningful information buried in large and complex data sets.

» Tasks needs to be tailored to the input data

» Decoding handwritten text
» Spam detection programs
> Speech recognition programs.
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Machine learning

New advances

e Increase in data storage capacities

e Availability of more powerful
computer processing

Big data

e Higher volume

New processing
| paradigms

e Higher velocity e Optimization

o Higher variety e Statistics

e Compressive sensing

Figure: Big data: Challenges and potential tools



Random matrix theory

Random matrix theory: Study the behavior of large random matrices

> Allow the prediction of the behavior of random quantities depending on large
random matrices

> Key of success: Randomness + High dimensionality
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Random matrix theory: Example

Frequency of Eigenvalues

Large random matrices
» High dimensional random matrices

> Self-averaging effect mechanism similar to that met in the law of large numbers

» More determinism in the system
Emblematic result from random matrix theory

> Let H € C™"*P with i.i.d entries with zero mean and variance %

> We assume that p,n — co with £ — ¢.

R Histogram
=== Marchenko-Pastur Law

Marchenko-Pastur
Bulk

As n, p tends to infinity with 2 — ¢,
the histogram can be approximated by a
" Deterministic” curve !

As n, p tends to infinity with 2 — ¢,
all the eigenvalues are contained in the in-

terval [(1— /0)2, (1 + v/)?]

(1-ve)? (1++0)?

Eigenvalues

Figure: Histogram of eigenvalues of HH"
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Applications of random matrix theory

Signal processing
» Large number of antenna arrays, vs large number of observations
> Outcomes Improved signal processing techniques

Wireless Communication
> Large-scale MIMO systems, Large number of users

» Qutcomes Improved transmission and detection strategies
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Machine Learning

Machine Learning & Random Matrix Theory

Random Matrix Theory

Goal: Design algorithms that
allow computers to perform
intelligent processing

Applications: Hyperspectral
imagery, Biology, Business
Challenges: High dimensional
data & data of different kind

Data is often considered as
deterministic!

Dimensionality is viewed as "a
curse”

Attribute: Efficient handling of
high dimensional data

Has proved to bring important
results to several engineering
disciplines

Main ingredient: Consider Data
as random

Dimensionality is viewed as a
" blessing”

RMT tools to rise to the challenges of Machine Learning




Random matrix approach for machine learning

Machine

Learning

Supervised I Semi-supervised I Undsupervised I
Learning Learning Learning
. . Dimensionalit
Classification —= Classification . y
reduction

Regression L—»| Regression L— | Clustering
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Classification

Classification: Classification is the task of selecting the best match for any input
among a set of the underlying categories.
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Discriminant analysis

> Widely used statistical method for supervised classification
> Principle: Builds a classification rule that allows to assign for an unseen
observation its corresponding class.
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Let x be the input data and f be the classification rule.

.. a | Assignclass 1 if f(x)<O0
Classifier = { Assign class 2 if f(x)>0
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Discriminant analysis

Basic assumptions
> We assume that there are x1,--- , X, observations with known classes.
> Observations are independent but take different distributions across classes.
> We assume the prior probability of class k is 7.

> We assume known the class-conditional probability associated with each class
class-conditional probability £ P[X =x | x € class k]

Principle

> For an unseen data x compute using the Bayes rule the maximum posterior
probability
gr(x) =P[x € class k | x]

> Assign to x the class with the highest posterior probability

arg max gk (x)
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Gaussian discriminant analysis

Gaussian mixture model for binary classification (2 classes)
> X1, ,Xn €ERP

> Class k is formed by x ~ N (g, ) , k=0,1

Linear discriminant analysis (LDA) Different mean but equal covariances. 3o = 3

T
=+ _ s
wibA _ (X,M) » 1(#0*#1)*10g*1
2 T
Assign x toclass 0 if WEPA >
Assign x toclass 1 otherwise
— Decision rule is linear in x. The LDA is a linear classifier
Quadratic discriminant analysis Different mean and covariances across classes:
wepa _ _1, 5ol

1

T 1 I 1

X — W > X—po)+ -(X—pn b} X— W
2 ‘21| 2( O) 0 ( 0) 2( 1) 1 ( l)

Assign x toclass 0 if WQPA >
Assign x to class 1 otherwise

— Decision rule is quadratic in x, hence the name quadratic classifier.
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Discriminant analysis
Performance analysis of LDA
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Linear discriminant analysis

> Assume 3, p1 and po known.
» Equal priors : 3 = w2 = 0.5
» No asymptotic regime, p is fixed.

The total misclassification rate is equal to :

-o(3)

where A = /(o — p1)TZ "1 (po — p1) and @ the
CDF of a standard normal random variables




Linear discriminant analysis

> Assume 3, p1 and po known.
» Equal priors : 3 = w2 = 0.5
» No asymptotic regime, p is fixed.

The total misclassification rate is equal to : T
X o " ®

R:@(f— 71 g0
2

where A = /(o — p1)TZ "1 (po — p1) and @ the
CDF of a standard normal random variables

Takeaways:
> The higher is the difference in means, the lower is the misclassification rate,

» The variance tends to have a side effect on the classification performance.



Linear discriminant Analysis
> In practice, the means and covariance matrices on which depends the decision
rule are unknown.

> Moreover, 3g # X;.
> We assume availability of Training data: observations for which the class label is

| ‘ N(NmEO) ‘ N(M1721>
—

70 observations 721 Observations

Figure: Training data
> We use empirical means and sample covariance matrices as plug-in estimators.

. L 1
Sample meaninclassi: X; = — E X;
g

x; Eclass;
. .. . o 1 _ _
Covariance matrix in class i : 3, = — (x; — X;) (% — %)
ng
. . - ni & n2 &
Pooled covariance matrix : X = —3X1 + —3o
n n

» The LDA discriminant function becomes:

— = \T
WLDA _ (X_XO';‘XI) -

-

19/38



Linear discriminant analysis: Asymptotic regime

Cheng Wang and Binyan Jiang. On the dimension effect of regularized linear
discriminant analysis

Asymptotic growth regime. Let n = ng + n1.
> ng,n1,p — oo such that Z—‘z —land 2 —sc<1
> 3o =3
> 12 o — pyis such that ||u|| = O(1).

Under these assumptions, the misclassification rate converges to:

RLDA%q)[f% 170]

Price of dimensionality

Takeaways:
» When ¢ — 1, the misclassification rate tends to 0.5.
— For the LDA to result in acceptable performance, we need c close to 0.

> Because its use of the inverse of the pooled covariance matrix, the LDA applies
only when ¢ < 1.
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Regularized linear discriminant analysis

Regularizaed Linear Discriminant Analysis :R-LDA
> Applies for ¢ € (0, 00).

> Uses a regularized estimation of the inverse of the covariance matrix:
() = (v +1,)
> The discriminant score for the R-LDA is:

— = \T
WhR-LDA _ (X _ ?) S(y) 7 (Ro — X1) — log %
0

N
N



Analysis of regularized discriminant analysis

Assumptions
> p,ni,ng — oo with £ — ¢(0,00), 7L =22 - 0.5
> The difference in means p = 1 — po satisfies ||p|| = O(1). The spectral norms
of 3¢ and X are bounded

Results

Equal covariance matrices [Zollanvari 2015]

Rf¢{f%] — 0.

where £ > 0 and D depends on the classes statistics.
Different covariance matrices [EIKhalil, Kammoun, Couillet, 2017]

1 ¢ 6}_1(@[_5 51,
2

R—-® |- + -
2 \/Do \/50 \/Dl \/51

with &, Do and D; are positive.

Takeaways
> Different misclassification rate across classes,
> The enhancement in the misclassification rate in one class is likely to be lost by
the increase in the mis-classification rate of the other class.
— LDA does not leverage well the information about the class differences.
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Regularized quadratic discriminant analysis

Regularized Quadratic Discriminant Analysis: R-QDA
> Applies for ¢ € (0, c0).

> Uses a regularized estimation of the inverse of the covariance matrix associated
with each class

So(v) = (Vio + Ip)
Bi(y) = (721 + Ip>
» The Discriminant score for the R-QDA is:

WR-epa _ _ 1 |XA30(’Y)|7}
2 7Byl 2

(x=x0) "85 () (x5 () T B () (x—)



Regularized quadratic discriminant analysis

Assumptions
> p,n1,n2 — oo with % — ¢(0,00), % = % — 0.5
> The difference in means p = po — p satisfies ||ul|? = O(v/p)-
> The spectral norms of 3 and 3; are bounded

> Matrix 3¢ — 31 has at most O(,/p) eigenvalues of order 1.

Khalil EL Khalil, Kammoun, Couillet 2017

Under these assumptions, the misclassification error rate converges to:

1 £y — bo 1 & — b
R DA — —® — ——® | — — — 0.
@ 2 ( \/2BO> 2 < V2B

where for i € {0,1}, ;, b;, B; depends on the classes’ statistics.
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Regularized quadratic discriminant analysis

SN
%

Q o — p1l| = O(1).

What happens if
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Regularized quadratic discriminant analysis

$7
%’ What happens if

Q Jluo — pall = O(1).
Response The difference in means will not be asymptotically used by R-QDA.
Only the information about the covariance matrices is leveraged.
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Regularized quadratic discriminant analysis
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%

Q o — p1l| = O(1).
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Response The difference in means will not be asymptotically used by R-QDA.

Only the information about the covariance matrices is leveraged.

Q Matrix 39 — X has more than O(+/p) eigenvalues of order 1

Response R-QDA will perform asymptotically perfect classification.
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Regularized quadratic discriminant analysis

$7
%’ What happens if

Q Jluo — pall = O(1).
Response The difference in means will not be asymptotically used by R-QDA.
Only the information about the covariance matrices is leveraged.

Q Matrix 39 — X has more than O(+/p) eigenvalues of order 1

Response R-QDA will perform asymptotically perfect classification.
Q |[Zo - 1] = o(1) and [0 — p1]| = O(1)

ResponseThe misclassification rate of R-QDA will converge to 0.5
Q 20 ~ By = 0(1) and |luo — || = O(1)

Response The misclassification rate of R-QDA will converge to 0.5
Q Unbalanced training: Z—(l’ does not converge to 1

Response R-QDA will be equivalent to the classifier that assigns all observations
to the class with the highest number of training samples.
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i

R-LDA

When

o

o |20 -3 =0(1)
and |[po — || = O(1)

e |lpo — mll = O(p®)

=

e [[Zo -2 =0(1)
and [|po — pu | = o(1)
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R-LDA

When

@

o |20 -3 =0(1)
and |[po — || = O(1)

e |lpo — mll = O(p®)

<

R-QDA

e [[Zo -2 =0(1)
and [|po — pu | = o(1)

When

S

e ¥; — ¥, has "rank” scaling

at least with rate O(\/p)

=

o X0 — 3]l = o(1)
o [ —Zi]lr=0(1)

e Unbalanced training
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Setting of the regularization parameter

R-QDA
> is prone to estimation errors due to insufficiency in the number of observations,
> The setting of the regularization parameter is very important

Evaluation of the performances

Training data Testing data
Derive the Assess the
classifier performances

Model selection Given a set of candidate regularization factors
» Evaluate the performance using the test data for each regularization value

> Select the value that presents the lowest mis-classification rate
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Setting of the regularization parameter

R-QDA Proposed method
» Provide a consistent estimator for the misclassification error rate.

> Select the regularization factor that minimizes the estimated misclassification
error rate.

o = 100 o = 400
015 035
T g —— N = = —K-QDA (Empirical Error)
RQDAG 03 RQDAG } /l
= = = RLDA (Empirical Error) - = = RLDA (Empirical Error) /£
RIDAG 025 [ ——RripAG

ny = 100 my = 400

= = —R.QDA (Bwupirical Error)

Figure: Misclassification error rate for R-QDA with respect to the regularization factor . The data
are drawn from USPS data sets.
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Rising to the high dimensionality challenge

Drawbacks of the insufficiency in the number of observations
> Instability due to the ill-conditioning of the precision matrix (LDA-QDA)
> High noise in the estimation of the covariance matrix

Solutions

> Use a regularization parameter that shrinks the covariance matrix towards identity
» Employ a dimensionality reduction method prior to classification

> Random projection
» PCA



Subspace linear discriminant analysis

= ;N

Figure: lllustration of the choice of the discriminative direction
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Subspace linear discriminant analysis

Figure: lllustration of the choice of the discriminative direction

Drawbacks

> The direction that contains the most variance is not always optimal from the
classification point of view.
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Subspace linear discriminant analysis

Gaussian mixture problem
> X1, ,Xp €RP,iid,,
2 classes with the same number of observations in each class

v

\4

X; in class j take the form:

X; = (O'QIerP)%eruj

where x ~ N(0,1,), P has finite rank r with distinct eigenvalues wy, -+ ,wy.
Let X = [x1,- - ,Xn] Form the covariance matrix

1 117
C:fX(I——)XT
n n

v

Subspace LDA
> Select the k principal eigenvectors of C with k < n, g, -+, 0
> Let U = [ui, - ,ug]. Project observations on the subspace spanned by U

UTxy,---, U %,
> Let x a test observation. Perform LDA on the projection of x onto the subspace
of U.
Questions
» How to choose the directions in U ?

» What is the optimal number k7
» How PCA-LDA compare with R-LDA?



Preliminary results

Methodology

> Accurate eigenvalue analysis of the covariance matrix C.
> Two level of perturbations:

> Additive perturbation caused by the shift in the mean vector
> Multiplicative perturbation carried by matrix P.

Initial results
> Worst case: Assume (1 — o) P (1 — po) — 0.
> At most r + 1 spikes, only one of them will have a non-vanishing alignment with
(b1 — po)
Takeaways

> In some situations, only one dimension is relevant

The corresponding eigenvalue does not always lie at the edge of the spectrum
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Subspace Linear Discriminant Analysis

What happens if

SN
%

Q if (1 — o)TP(p1 — po) does not go to zero
Response All the spikes matter as they will present a non vanishing alignment
with (po — p1)

Q |f only some of the eigenvectors of P are aligned to (1 — o)

Response Only their corresponding spikes matter 4+ an additional spike caused by
the mean perturbation
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Illustration

I I
—e— Theoretical
—=— Empirical
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Figure: Classification error rate with respect to ||iz1 — po|, with rank P = 4; It has 4 non-zero
eigenvalues equal to 5, 4, 2.6 and 4.7, Moreover 11 — po it not orthogonal to any of its
eigenvectors; p = 5000 and n = 12000



Conclusion

» Random matrix theory is a powerful tool that has been applied with success to
the fields wireless communications and signal processing, providing solutions to
very challengning problems

» High dimensionality along with stochasticity are the sole prerequisite of this tool

> Encounter between random matrix theory and machine learning will bring about
many new theoretical problems
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