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» Data: xjj, j-th feature of i-th sample

> e.g., education: p test scores of n students
Factor analysis: Are there unobserved features that drive variability in
the data?

» factors: skills

v

v

Very common problem in psychology, econometrics, biology etc.

Dates back to Spearman’s “general intelligence” (1904)

v
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Factor analysis

» xjj is a linear function of common factors 7 and noise ¢j;:

,
Xjj = Zn,‘k)\jk + €jj
k=1

» Factor scores 7y and the factor loadings Ajx are not observed

» Education: 7 is student i’s level on the k-th skill, Aj is the relevance of
the k-th skill to the j-th test.
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> In matrix form, xjj = >} _; nikAjx + €jj is

X =nA\T +E&.
» X =(x1,...,%)" is n x p data matrix; normalized st Var [x;] = 1
» 7 is the n X r matrix containing the factor values 7;; normalized st
Var [n5] = 1
» Ais p x r factor loading matrix with entries A

v

€ is n x p matrix containing the noise ¢;;

» Statistical inference?
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Inference is challenging!

» Not well-specified (pAT = nMM~AT). Need constraints.

» MLE severely nonconvex. Unknown how to solve it. PCA often used.
» Inference in high dimensions requires delicate analysis:

» Selecting number of factors
» Estimating factors
» Testing hypotheses

see e.g., Anderson, 2003, Intro Multivariate Analysis
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How to select the number of factors?

» Textbook by Brown (2014): “the most crucial decision” in FA. Affects
every downstream step.

» Approaches:

1.

o wn

Bartlett's likelihood ratio test (1950)

Kaiser's “eigenvalue larger than one” rule (1960)

Scree plot (Cattell, 1966)

Parallel analysis [PA] (Horn, 1965; Buja & Eyuboglu 1992)

Many others: Kritchman and Nadler (2008); Onatski (2012); Josse and
Husson (2012); Gaskin and Happell (2014), etc
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What is parallel analysis?

1. Generate X; by permuting the entries in each column of X separately.
2. Repeat a few times.
3. For k=1,2,...

3.1 Select the k-th factor if the k-th singular value of X is larger than 95%-th

percentile of the k-th singular values of the permuted matrices.
3.2 If this is not true, exit loop.

4. Return k-1



PA is recommended in many reviews on FA

1. Brown (2014): PA "is accurate in the vast majority of cases’

2. Hayton et al. (2004): evidence from social science and management that
PA is “one of the most accurate factor retention methods”

3. Costello and Osborne (2005): PA is “accurate and easy to use’

4. Friedman et al. (2009) use it as the default method for selecting the
number of PCs.



PA is used by leading applied statisticians

Trevor Hastie
Robert Tibshirani
Jerome Friedman

The Elements of
Statistical Learning
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PA is used by leading applied statisticians
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FIGURE 14.24. The 256 singular values for the digitized threes, compared to
those for a randomized version of the data (each column of X was scrambled).



PA

used by leading applied statisticians

A general framework for multiple testing dependence

Jeffrey T. Leek? and John D. Storey®!

“Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287; and ®Lewis-Sigler Institute and Department of Molecular Biology,
544

Princeton University, Princeton, NJ 08!

Communicated by Burton H. Singer, Princeton University, Princeton, NJ, September 4, 2008 (received for review May 8, 2008)

We devel

pageneral le signifi-
cance testing in the presence of arbitrarily strong dependence. We
derive a low-dimensional set of random vectors, called a depen-
dence kernel, that fully captures the dependence structure in an
observed high-dimensional dataset. This result shows a suvpnsmg
reversal of the “curse of di i ity” in the high-dii

among multiple tests; no assumptions about a restricted depen-
dence structure are required. By exploiting the dimensionality of
the problem, we are able to account for dependence on each spe-
cific dataset, rather than relying on a population-level solution.
We introduce a model that, when fit, makes the tests indepen-

hypothesis testing setting. We show theoretically that (ondmon-
ingona kernel is icient to render stati test:

independent regardless of the level of dependence in the observed
data. This framework for multiple testing dependence has implica-
tions in a variety of common multiple testing problems, such as in
gene expression studies, brain imaging, and spatial epidemiology.

empirical null | false discovery rate | latent structure |
simultaneous inference | surrogate variable analysis

ence, there has been a rapid increase in the

ted inany given study. cis due
pelsairibi

I n many are
amount of data u)l]
o

dent for all subsequent inference steps. Utilizing our framework
allows all existing multiple testing procedures requiring indepen-
dence to be extended so that they now provide strong control
in the presence of general dependence. Our general character-
ization of multiple testing dependence directly shows that latent
structure in high-dimensional datasets, such as population genetic
substructure (1) or expression heterogencity (12),isa special cas
nf muI(lpIc u,sm|5 dependence. We propose and demonstrate an
chnique for impl ing our framework in practice,
able to a large class of problems considered here.

w]\u_h is appli

Notation and Assumptions
We assume that m related hypothes sare simultancously per-
formed. each based on an n-vector of data samnled from a common
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Simultaneous dimension reduction and adjustment for

confounding variation

Zhixiang Lin?, Can Yang®, Ying Zhu?, John Duchi®®, Yao Fuf, Yong Wang?, Bai Jiang®, Mahdi Zamanighomi®,

Xuming Xu?, Mingfeng Li%, Nenad Sestan®", Hongyu Zhao®', and Wing Hung Wong*"
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“Department of Statistics, Stanford University, Stanford, CA 94305; *Department of Mathematics, Hong Kong Baptist University, Kowloon Tong,
Hong Kong; “Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520; “Department of Neuroscience, Kavli Institute for
Neuromence Yale School of Medicine, New Haven, CT 06510; “Department of Electrical Engineering, Stanford University, Stanford, CA 94305; 'Program of

Biology & atic

, Yale University, New Haven, CT 06511; 9Academy of Mathematics & Systems Science, Chinese Academy of
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Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510;
and 'Department of Health Research & Policy, Stanford University, Stanford, CA 94305

Contributed by Wing Hung Wong, October 21, 2016 (sent for review April 19, 2016; reviewed by Rafael Irizzary and Fengzhu Sun)

Dimension redu:tlon methods are commonly applied to high-
ical datasets. , the results can be hin-
dered by confounding factors, either blologl(al or technical in ori-
gin. In this study, we extend principal component analysis (PCA)
to propose AC-PCA for slmultaneous dimension reduction and
for (AQ) vari We show that AC-
PCA can adjust for (i) variations across individual donors present
in a human brain exon array dataset and (ii) variations of dif-
ferent species in a model organism ENCODE RNA sequencing
dataset. Our approach is able to recover the anatomical struc-
ture of neocortical regions and to capture the shared vanatlon
amnnn enariac durina Far nana

implemented AC-PCA with sparsity constraints to enable vari-

able/gene selection and better interpretation of the PCs.

Results

AC-PCA in a General Form. Let X denote the N x p data matrix,

where N is the number of observations and p is the number of

variables/genes. X is centered by column. Let ;) denote the ith

observation. Let v denote a p-dimensional vector and ¢; = () - v

du\ou the projection induced by v. = Z;\‘_‘(u,, )2 =
"X " Xuv is proportional to the total variation after the projec-

mm and classical PCA seeks v that maximizes it. The dimension
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Unifying and Generalizing Methods for Removing Unwanted
Variation Based on Negative Controls
David Gerard' and Matthew Stephens'?

Departments of Human Genetics' and Statist
University of Chicago, Chicago, IL, 60637, USA

May 23, 2017

Abstract

Unwanted variation, including hidden confounding, is a well-known problem in many fields, partic-
ularly large-scale gene expression studies. Recent proposals to use control genes — genes assumed to
be unassociated with the cc ates of interest have led to new methods to deal with this problem.
Going by the moniker Removing Unwanted Variation (RUV), there are many versions — RU RUV2,
RUV4, RUVinv, RUVrinv, RUVfun. In this paper, we introduce a general framework, RUV*, that both
unites and generalizes these approaches. This unifying framework helps clarify connections between ex-
isting methods. In particular we provide conditions under which RUV2 and RUV4 are equivalent. The
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» Extensive empirical evidence that it “works”
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A theory for parallel analysis

> A theory for PA, using random matrices
» Clarifies what it does

» Leads to improvements (joint work with Art Owen)
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What happens when you permute the low-rank signal?

> original signal S = uv' = [vu,. .., v,u] of rank one

» permuted signal S; = [vimi(u),. .., vpmp(u)]

> if v is “spread out”, S; typically has full rank.

» each column has effectively independent entries with variance vjz/n
» total energy preserved: |S:|r = |S|&

» Conclusion:

» signal becomes small noise: |Sy|op < |S]op
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What happens when you permute the noise?

T

v

original noise N = (e1,...,&n)

v

in the classical factor model, the n samples are iid

» the noise in each coordinate is independent

v

therefore: noise is permutation-invariant in distribution Ny =4 N
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What does PA do?

v

signal-plus-noise X = S + N (e.g., X = nAT + &)
permute each column independently: X, = S; + N,

» signal becomes small noise: |Sy|op < |S|op
» noise invariance: N, =4 N

Recall PA selects first factor if o1(X) > | Xx|op

PA estimates noise operator norm:

\4

v

v

| Xlop = |Sr + Nixlop = [Nr|op =d |N|op

v

PA selects factors above noise op norm: o (X) > |N|op
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Factor model x; = An; + ¢;,
Matrix form X = npAT + &
Asymptotic setting, n, p — oo (will specify later how)

v

v

v

Define the size of the noise b > 0 st (after normalizing)
|Elop — b

almost surely (a.s.), or in probability.
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Formalizing the intuition

» Define perceptible factors as those indices k for which
ok(X) > b+e

a.s or in probability, for some € > 0.

» Similarly, define imperceptible factors as those indices k for which
O'k(X) <b-c=¢

for some £ > 0.
» Closely related to “above/below the phase transition” in spiked models.
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Parallel analysis selects the perceptible factors

Theorem
n iid samples from the p-dimensional factor model x; = A\n; + €;. Assume:

1. Factors: n; = W1/2y; where U; have r independent standardized entries.

2. Idiosyncratic terms: ¢; = ®1/27; where ®'/2 s a diagonal matrix, and
Z; have p indepedent standardized entries.

3. Asymptotics: n, p — oo st one of the following holds:

3.1 p/n—~ >0, while p~t > 00, = H, and max®; — U(H).
3.2 p/n — oo, while the entries ®; < Ctr[®]/p for all j.

4. Factor loadings: Let AWY/2 = [by,... b,]. Then by are delocalized,
|bk|4/|bk|2 — 0.

Then with prob — 1, parallel analysis selects all perceptible factors, and no
imperceptible factors.
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Comments

» Shows that PA “works” when

» dimension p is relatively large
> the factors are “delocalized”; load on more than just a few variables
» the strength of factors is comparable

» Proof: new bounds on operator norms of permutation random matrices

» Use moment method
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Limitations of parallel analysis

» Requires random permutations

» Randomness may lead to superfluous variability
» Extra work in computing SVDs (20 permutations - 20x work)

» Does not work well with both strong and weak factors
» The noise generated by strong factors “shadows” the weak ones



Our contribution

» Develop a method that addresses these two limitations.
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Do we need randomness?

v

We have seen that PA selects factors above the noise operator norm
b>0st
|Elop — b

» Permutations are a randomized estimator

» Can we estimate this deterministically?

v

Yes! This is the upper edge of the MP distribution, well understood
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What is the Marchenko-Pastur distribution?

» Under our conditions ¢; = <1>1/2Z,-, the noise entries are independent with
variances ®;

» Asymptotics: n,p — oo st p/n— v >0
» The variance distribution H, = p~! ZJ- oo, = H
> Let A\, be the eigenvalues of n~lETE

» The Marchenko-Pastur distribution is the (weak) limit of their
distribution function F, = F, 4

» Under conditions, max\; — U(F, 1), where U(F) = suppsup(F).
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How to estimate the upper edge?

» To estimate upper edge U(F, 4), enough to estimate variance
distribution H

» The Spectrode algorithm (Dobriban, 2015) computes the MP
distribution H — F, y

> To estimate H, use plug-in: H, = n~!diag(XTX)

» Accurate if empirical variances are not too affected by factors: In
X = 7]/\T + Z¢1/2, factors are delocalized
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How to deal with strong and weak factors?

v

A strong factor is nAT for large |\|s.

v

Transformed into large noise by permutation. Noise level is
overestimated, weaker factors are “shadowed”

v

How to remove the strong factors?
Deflate:
> If select top factor, set X < X — oyuyvf

v

v

Works if strong factors are well estimated by empirical PCs



An algorithm: DDPA

Algorithm 1 DDPA: Deflated Deterministic Parallel Analysis

1: input: Data X € R"P, centered, containing p features of n samples
Initialize: k < 0.
Compute variance distribution: H, «+ diag(n~1XTX).
if o1(n1/2X) > (L + ep)U(F, 1 )"/ [by default ¢, = 0] then
k+— k+1
X < X —o1uv{ (from the SVD of X)
Return to step 3.

© N s enN

return: Selected number of factors k.




DDPA selects perceptible factors

Theorem
Let x; =NAn;+¢e;,i=1,...,n. Assume, for somee,§ >0

1. Factors: n; = W/2U;, where U; have r independent standardized entries
with bdd moment 4 + 6.

2. Idiosyncratic terms: ¢; = ®1/2Z; where ®/2 s a diagonal matrix, and
Z; have p indepedent standardized entries bdd moment 8 + €.

3. Asymptotics: n,p — oo, p/n — v >0, ESD(®) = H and
maxi<j<p CDJ' — U(H)



DDPA selects perceptible factors

Theorem
Let x; =NAn;+¢e;,i=1,...,n. Assume, for somee,§ >0
1. Factors: n; = W/2U;, where U; have r independent standardized entries
with bdd moment 4 + 6.
2. Idiosyncratic terms: ¢; = ®1/2Z; where ®/2 s a diagonal matrix, and
Z; have p indepedent standardized entries bdd moment 8 + €.
3. Asymptotics: n,p — oo, p/n — v >0, ESD(®) = H and
maxi<j<p CDJ' — U(H)
4. Factor loadings: are delocalized: ||dy||cc — 0. Also delocalized wrt ®:

xT(® = zl,)tdy — my y(2) - xTd
el

—0

uniformly for ||x|| <1,¢=1,...,r, and z € C with Im(z) > 0 fixed.

Then wp — 1, DDPA selects all perceptible factors, and no imperceptible
factors.
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» DDPA works well in simulations, but selects too many factors on
empirical data
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How does it work?

» DDPA works well in simulations, but selects too many factors on
empirical data

We think it is because it does not take estimation accuracy into account

v

To fix this, we raise threshold, generalizing Perry (2009); Gavish and
Donoho (2014)

Call this method DDPA+-

v

v
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» Human Genome Diversity Project (HGDP) dataset (e.g., Li et al., 2008).
Goal was “to evaluate the diversity in the patterns of genetic variation
across the globe.”
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How does it work now? HGDP example

» Human Genome Diversity Project (HGDP) dataset (e.g., Li et al., 2008).
Goal was “to evaluate the diversity in the patterns of genetic variation
across the globe.”

» 51 populations from Africa, Europe, Asia, Oceania and the Americas.

» n = 1043 samples, p = 9730 SNPs on chromosome 22. n x p data
matrix X, where Xj; € {0,1,2} is the number of copies of the minor
allele of SNP j in the genome of individual i.



HGDP example

PA
— — DPA
—=-—= DDPA

10 15 20 25
Singular value

Figure : Singular value histogram of HGDP data, and the thresholds where factor
selection stops. PA: 212, DPA: 122, DDPA: 1042, DDPA+: 4.
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Summary



Summary

v

Theory for PA
Deterministic Deflated PA (DDPA+):

» fast, derandomized, adapts to signal strength

v

References:

» E. Dobriban. Factor selection by permutation. arxiv.
» E. Dobriban, A.B. Owen. Deterministic parallel analysis. arxiv.

v

v

Talk slides: github.com/dobriban/Talks (can get there from my
webpage)
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