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Community detection
The Stochastic Block Model (SBM)

G is generated as follows:

> n vertices: 1,...,n.

» Each vertex i has a label X; € {1,2}
where (X3), ~ 1+ Ber(1 — p).

» Two vertices ¢, j are then connected
with probability Mx, x;.

'~ pn vertices ~ (1 —p)n vertices '



Community detection
The Stochastic Block Model (SBM)

G is generated as follows:

> n vertices: 1,...,n.

» Each vertex i has a label X; € {1,2}
where (X)) ~ 14 Ber(1 — p).

» Two vertices i, j are then connected
with probability Mx, x;.

'~ pn vertices  ~ (1 —p)n vertices -

» Goal: given the graph G we want to recover the labels X.
» Weak Reconstruction: Estimate X better than a “random guess".
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Setting

» The connectivity matrix will be of the form:

dfa b
M:n<b c>

a,c>band pa+ (1—pb=pb+ (1—p)c=1.
» Important quantity: the signal-to-noise ratio

A=d(1-b)?

Mossel et al., 2015, Massoulié, 2014, Mossel et al., 2013
In the case of two symmetric communities (p = 1/2), when d > 1 is fixed
and n — oo,

» if A <1 itis not possible to recover the partition X better that a
“random guess”.

» if A > 1 it is possible to recover the labels better than chance.



Asymmetric communities

The main picture

» Does this phase transition at A = 1 still hold when p < 1/27
> The physicist’s conjecture for the large degree limit (d — oo):
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The main picture
» Does this phase transition at A = 1 still hold when p < 1/27
> The physicist's conjecture for the large degree limit (d — o0):
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Part 1.
Local weak convergence of the

SBM



Local weak convergence of the SBM

The Stochastic Block Model converges locally weakly to a “Labeled Poison
Galton-Watson tree”.

®/.
— @
.\.<§
» Offspring distribution: Pois(d).
» The labels “propagate” from the root according to the transition matrix

e



Reconstruction on trees

» An issue: the Galton-Watson tree, without the labels,
does not give any information about the label of the root!
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Reconstruction on trees

» An issue: the Galton-Watson tree, without the labels,
does not give any information about the label of the root!

» We thus suppose that the labels at depth 7 are revealed. Can we infer
the label of the root as r — oo 7

Marginal

{@ 80%
@ 20%

» Belief-Propagation gives the marginal distribution of the root given G
and the labels at depth 7.



An impossibility result

> Studying the “BP recursion” one see that when A < Ay, the marginal
does not contain any information about the true label.



An impossibility result

> Studying the “BP recursion” one see that when A < Ay, the marginal
does not contain any information about the true label.

We thus obtain the “impossibility curve” A, (p) below:
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Part 2.

| ow-rank matrix estimation



Low-rank matrix estimation

From Bernoulli to Gaussian noise

n n

Ai’j ~ Ber (d + \/g\/XXZXJ>

(1-p)/p fXp=1

Vp/A—p) fXp=2"

where Xk = {

1Vash Deshpande and Emmanuel Abbe (2016). “Asymptotic mutual information for the
balanced binary stochastic block model”. In: Information and Inference, iaw017.



Low-rank matrix estimation

From Bernoulli to Gaussian noise

AleBer<n ffXX) (1)

n

where Xk{ (1_p)/p if X, =1

p/(1—p) FXp=2"

The Bernoulli noise model (1) is “equivalent” to the Gaussian noise model

g, =t gy, ﬁ Zi (2)

(when n,d — co)*:
n

where Zi)j s ./\/’(07 1),

1Vash Deshpande and Emmanuel Abbe (2016). “Asymptotic mutual information for the
balanced binary stochastic block model”. In: Information and Inference, iaw017.



Low-rank matrix estimation

From Bernoulli to Gaussian noise

AleBer<n ffXX) (1)

n

where Xk{ (1_]9)/]9 if X, =1

p/(1—p) FXp=2"

The Bernoulli noise model (1) is “equivalent” to the Gaussian noise model

g, =t gy, ﬁ Zi (2)

(when n,d — co)*:
n

where Z; ; "% N(0,1), and thus to

”_\[XX 1 L

1Yash Deshpande and Emmanuel Abbe (2016). “Asymptotic mutual information for the
balanced binary stochastic block model". In Informat/on and Inference, iaw017.




Low-rank matrix estimation

The new statistical model

“Spiked Wigner" model

A
Y =,-XX"+ 7Z
~~ n —— =~
observations signal noise

» X: vector of dimension n with entries X; < P,. EX; = 0, EX? = 1.
Zij=2Z;; ~ N(0,1).
A: signal-to-noise ratio.

v

v

v

A and Py are known by the statistician.

Goal: recover the low-rank matrix XXT from Y.



Principal component analysis (PCA)
B.B.P. phase transition

Spectral estimator:
Estimate X using the eigenvector X,, associated with the largest
eigenvalue p,, of Y/4/n.



Principal component analysis (PCA)
B.B.P. phase transition

Spectral estimator:

Estimate X using the eigenvector X,, associated with the largest
eigenvalue p,, of Y/4/n.

B.B.P. phase transition

a.s.

Lon, =2
» ifA<1 e
Kosey, —=0

n—00

a.s. 1
fin A5 D+ L >2
> ifA>1 n—00 v

X %, =2 /1-1/A>0
n— o0

Baik et al., 2005; Benaych-Georges and Nadakuditi, 2011



Questions

» PCA fails when A <1, but is it still possible to recover the
signal?
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Questions

» PCA fails when A <1, but is it still possible to recover the
signal?

» When \ > 1, is PCA optimal?

» More generally, what is the best achievable estimation
performance in both regimes?



MMSE and information-theoretic threshold

Definitions

“MMSE"” = Minimal Mean Square Error

o1 A 2
MMSE, = min —E [XXT - §(Y)]
6 N
1
= 1<Z< (X:X; — E[X;X;|Y])* < Ep[X?
=hI=r Dummy MSE

The information-theoretic threshold is the critical value A\, such that
> if A > )\, lim MMSE,, < Dummy MSE

n—oo

> if A< A, lim MMSE,, = Dummy MSE
n—oo



Related work

A short overview

> Approximate Message Passing (AMP) algorithms: Rangan and Fletcher,
2012, Deshpande and Montanari, 2014; Lesieur et al., 2015 allows to
derive the MMSE when AMP is optimal.

> In presence of a “hard phase”, Barbier et al., 2016 uses AMP and spatial
coupling techniques to compute the MMSE under some additional
assumptions.

» Banks et al., 2016; Perry et al., 2016 obtained bounds on the
information-theoretic threshold by second moment computations and
contiguity.



Main result
Limiting formula for the MMSE

Theorem

MMSE, —— Ep[X?]? — ¢*(\)?
n—o0 N ,
Dummy MSE

where ¢*(A) is the maximizer of

A
q = >0+ EXONPO [Iog/ dPO xo)e\/_ZozoJr)\qu:Jcof—wo _ Zq2



Proof ideas
A planted spin system



Proof ideas
A planted spin system

1
PX=x]Y) = Z—Po(x)eH"(x) where

A A
H,(x) = Z \/;)ﬁjxixj — %xfaﬂ?

i<j

Two step proof:
» Lower bound: Guerra's interpolation technique. Adapted in Korada and
Macris, 2009; Krzakala et al., 2016.

{Y =i VA XXT 4+ Z
Y =vIi-t VA X + 7

» Upper bound: Cavity computations (Mézard et al., 1987).
Aizenman-Sims-Starr scheme: Aizenman et al., 2003; Talagrand, 2010.



Some curves

Recall Y = /A/nXXT + Z, where (Xi)1<i<n ~ Po.

» We will plot the MMSE and MSEF? curves for priors of the form

1= with probabilit
X; = P P y D
= lj'%p with probability 1 — p

for some p € (0,1).

> One can show (similarly to Deshpande and Abbe, 2016) that the
corresponding matrix estimation problem is, in some sense, equivalent to
the community detection problem with 2 asymmetric communities of
sizes pn and (1 — p)n.



Plot of MMSE
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Plot of MMSE
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Phase diagram for asymmetric community detection
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Thank you for your attention.

Any questions?
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