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Factor analysis

I Fundamental statistical technique for unsupervised discovery of the
factors driving variability in the data

I Data: xij , j-th feature of i-th sample
I e.g., education: p test scores of n students

I Factor analysis: Are there unobserved features that drive variability in
the data?

I factors: skills

I Very common problem in psychology, econometrics, biology etc.

I Dates back to Spearman’s “general intelligence” (1904)
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Factor analysis

I xij is a linear function of common factors ηik and noise εij :

xij =
r∑

k=1

ηikλjk + εij

I Factor scores ηik and the factor loadings λjk are not observed

I Education: ηik is student i ’s level on the k-th skill, λjk is the relevance of
the k-th skill to the j-th test.
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Factor analysis

I In matrix form, xij =
∑r

k=1 ηikλjk + εij is

X = ηΛT + E .

I X = (x1, . . . , xn)T is n × p data matrix; normalized st Var [xij ] = 1
I η is the n × r matrix containing the factor values ηij ; normalized st

Var [ηij ] = 1
I Λ is p × r factor loading matrix with entries λjk
I E is n × p matrix containing the noise εij

I Statistical inference?
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Inference is challenging1

I Not well-specified (ηΛT = ηMM−1ΛT). Need constraints.

I MLE severely nonconvex. Unknown how to solve it. PCA often used.
I Inference in high dimensions requires delicate analysis:

I Selecting number of factors
I Estimating factors
I Testing hypotheses

1see e.g., Anderson, 2003, Intro Multivariate Analysis
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How to select the number of factors?

I Textbook by Brown (2014): “the most crucial decision” in FA. Affects
every downstream step.

I Approaches:

1. Bartlett’s likelihood ratio test (1950)
2. Kaiser’s “eigenvalue larger than one” rule (1960)
3. Scree plot (Cattell, 1966)
4. Parallel analysis [PA] (Horn, 1965; Buja & Eyuboglu 1992)
5. Many others: Kritchman and Nadler (2008); Onatski (2012); Josse and

Husson (2012); Gaskin and Happell (2014), etc
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What is parallel analysis?

1. Generate Xπ by permuting the entries in each column of X separately.

2. Repeat a few times.

3. For k = 1, 2, . . .

3.1 Select the k-th factor if the k-th singular value of X is larger than 95%-th
percentile of the k-th singular values of the permuted matrices.

3.2 If this is not true, exit loop.

4. Return k − 1



What is parallel analysis?

1. Generate Xπ by permuting the entries in each column of X separately.

2. Repeat a few times.

3. For k = 1, 2, . . .

3.1 Select the k-th factor if the k-th singular value of X is larger than 95%-th
percentile of the k-th singular values of the permuted matrices.

3.2 If this is not true, exit loop.

4. Return k − 1



What is parallel analysis?

1. Generate Xπ by permuting the entries in each column of X separately.

2. Repeat a few times.

3. For k = 1, 2, . . .

3.1 Select the k-th factor if the k-th singular value of X is larger than 95%-th
percentile of the k-th singular values of the permuted matrices.

3.2 If this is not true, exit loop.

4. Return k − 1



What is parallel analysis?

1. Generate Xπ by permuting the entries in each column of X separately.

2. Repeat a few times.

3. For k = 1, 2, . . .

3.1 Select the k-th factor if the k-th singular value of X is larger than 95%-th
percentile of the k-th singular values of the permuted matrices.

3.2 If this is not true, exit loop.

4. Return k − 1



What is parallel analysis?

1. Generate Xπ by permuting the entries in each column of X separately.

2. Repeat a few times.

3. For k = 1, 2, . . .

3.1 Select the k-th factor if the k-th singular value of X is larger than 95%-th
percentile of the k-th singular values of the permuted matrices.

3.2 If this is not true, exit loop.

4. Return k − 1



PA is recommended in many reviews on FA

1. Brown (2014): PA “is accurate in the vast majority of cases”

2. Hayton et al. (2004): evidence from social science and management that
PA is “one of the most accurate factor retention methods”

3. Costello and Osborne (2005): PA is “accurate and easy to use”

4. Friedman et al. (2009) use it as the default method for selecting the
number of PCs.



PA is used by leading applied statisticians
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I Extensive empirical evidence that it “works”

I No theory or formal understanding; mysterious?
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A theory for parallel analysis

I A theory for PA, using random matrices

I Clarifies what it does

I Leads to improvements (joint work with Art Owen)
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I permute each column independently: Xπ = Sπ + Nπ
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What happens when you permute the low-rank signal?

Figure : Heatmap of rank one S (left) and Sπ (right).
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I original signal S = uvT = [v1u, . . . , vpu] of rank one

I permuted signal Sπ = [v1π1(u), . . . , vpπp(u)]

I if v is “spread out”, Sπ typically has full rank.

I each column has effectively independent entries with variance v2
j /n

I total energy preserved: |Sπ|Fr = |S |Fr
I Conclusion:

I signal becomes small noise: |Sπ|op � |S |op
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What happens when you permute the noise?

I original noise N = (ε1, . . . , εn)T

I in the classical factor model, the n samples are iid

I the noise in each coordinate is independent

I therefore: noise is permutation-invariant in distribution Nπ =d N
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Formalizing the intuition

I Factor model xi = Ληi + εi ,

I Matrix form X = ηΛT + E

I Asymptotic setting, n, p →∞ (will specify later how)

I Define the size of the noise b > 0 st (after normalizing)

|E|op → b

almost surely (a.s.), or in probability.
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Formalizing the intuition

I Define perceptible factors as those indices k for which

σk(X ) > b + ε

a.s or in probability, for some ε > 0.

I Similarly, define imperceptible factors as those indices k for which

σk(X ) < b − ε

for some ε > 0.

I Closely related to “above/below the phase transition” in spiked models.
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Parallel analysis selects the perceptible factors

Theorem
n iid samples from the p-dimensional factor model xi = Ληi + εi . Assume:

1. Factors: ηi = Ψ1/2Ui , where Ui have r independent standardized entries.

2. Idiosyncratic terms: εi = Φ1/2Zi , where Φ1/2 is a diagonal matrix, and
Zi have p indepedent standardized entries.

3. Asymptotics: n, p →∞ st one of the following holds:

3.1 p/n→ γ > 0, while p−1
∑

j δΦj ⇒ H, and max Φj → U(H).
3.2 p/n→∞, while the entries Φj ≤ C tr[Φ]/p for all j .

4. Factor loadings: Let ΛΨ1/2 = [b1, . . . , br ]. Then bk are delocalized,
|bk |4/|bk |2 → 0.

Then with prob → 1, parallel analysis selects all perceptible factors, and no
imperceptible factors.
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Comments

I Shows that PA “works” when
I dimension p is relatively large
I the factors are “delocalized”; load on more than just a few variables
I the strength of factors is comparable

I Proof: new bounds on operator norms of permutation random matrices

I Use moment method
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Limitations of parallel analysis

I Requires random permutations

I Randomness may lead to superfluous variability
I Extra work in computing SVDs (20 permutations - 20x work)

I Does not work well with both strong and weak factors
I The noise generated by strong factors “shadows” the weak ones
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Our contribution

I Develop a method that addresses these two limitations.
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I We have seen that PA selects factors above the noise operator norm
b > 0 st

|E|op → b

I Permutations are a randomized estimator

I Can we estimate this deterministically?

I Yes! This is the upper edge of the MP distribution, well understood
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What is the Marchenko-Pastur distribution?

I Under our conditions εi = Φ1/2Zi , the noise entries are independent with
variances Φj

I Asymptotics: n, p →∞ st p/n→ γ > 0

I The variance distribution Hp = p−1
∑

j δΦj
⇒ H

I Let λp be the eigenvalues of n−1ETE
I The Marchenko-Pastur distribution is the (weak) limit of their

distribution function Fp ⇒ Fγ,H
I Under conditions, maxλi → U(Fγ,H), where U(F ) = supp sup(F ).
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How to estimate the upper edge?

I To estimate upper edge U(Fγ,H), enough to estimate variance
distribution H

I The Spectrode algorithm (Dobriban, 2015) computes the MP
distribution H → Fγ,H

I To estimate H, use plug-in: Ĥp = n−1 diag(XTX )

I Accurate if empirical variances are not too affected by factors: In
X = ηΛT + ZΦ1/2, factors are delocalized
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How to deal with strong and weak factors?

I A strong factor is ηλT for large |λ|2.

I Transformed into large noise by permutation. Noise level is
overestimated, weaker factors are “shadowed”

I How to remove the strong factors?
I Deflate:

I If select top factor, set X ← X − σ1u1v
T
1

I Works if strong factors are well estimated by empirical PCs
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An algorithm: DDPA

Algorithm 1 DDPA: Deflated Deterministic Parallel Analysis

1: input: Data X ∈ Rn×p, centered, containing p features of n samples
2: Initialize: k ← 0.
3: Compute variance distribution: Ĥp ← diag(n−1XTX ).
4: if σ1(n−1/2X ) > (1 + εp)U(Fγp ,Ĥp

)1/2, [by default εp = 0] then
5: k ← k + 1
6: X ← X − σ1u1v

T
1 (from the SVD of X )

7: Return to step 3.

8: return: Selected number of factors k .



DDPA selects perceptible factors

Theorem
Let xi = Ληi + εi , i = 1, . . . , n. Assume, for some ε, δ > 0

1. Factors: ηi = Ψ1/2Ui , where Ui have r independent standardized entries
with bdd moment 4 + δ.

2. Idiosyncratic terms: εi = Φ1/2Zi , where Φ1/2 is a diagonal matrix, and
Zi have p indepedent standardized entries bdd moment 8 + ε.

3. Asymptotics: n, p →∞, p/n→ γ > 0, ESD(Φ)⇒ H and
max1≤j≤p Φj → U(H).

4. Factor loadings: are delocalized: ‖d`‖∞ → 0. Also delocalized wrt Φ:

xT(Φ− zIp)−1d` −mγ,H(z) · xTd`
‖d`‖

→ 0

uniformly for ‖x‖ ≤ 1, ` = 1, . . . , r , and z ∈ C with Im(z) > 0 fixed.

Then wp → 1, DDPA selects all perceptible factors, and no imperceptible
factors.
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How does it work?

I DDPA works well in simulations, but selects too many factors on
empirical data

I We think it is because it does not take estimation accuracy into account

I To fix this, we raise threshold, generalizing Perry (2009); Gavish and
Donoho (2014)

I Call this method DDPA+
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How does it work now? HGDP example

I Human Genome Diversity Project (HGDP) dataset (e.g., Li et al., 2008).
Goal was “to evaluate the diversity in the patterns of genetic variation
across the globe.”

I 51 populations from Africa, Europe, Asia, Oceania and the Americas.

I n = 1043 samples, p = 9730 SNPs on chromosome 22. n × p data
matrix X , where Xij ∈ {0, 1, 2} is the number of copies of the minor
allele of SNP j in the genome of individual i .
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HGDP example

Figure : Singular value histogram of HGDP data, and the thresholds where factor
selection stops. PA: 212, DPA: 122, DDPA: 1042, DDPA+: 4.
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Summary

I Theory for PA
I Deterministic Deflated PA (DDPA+):

I fast, derandomized, adapts to signal strength

I References:
I E. Dobriban. Factor selection by permutation. arxiv.
I E. Dobriban, A.B. Owen. Deterministic parallel analysis. arxiv.

I Talk slides: github.com/dobriban/Talks (can get there from my
webpage)
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