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Abstract

We introduce a new class of control problems in which the gain depends on the
solution of a stochastic differential equation reflected at the boundary of a bounded
domain, along directions which are controlled by a bounded variation process. We
provide a PDE characterization of the associated value function. This study is moti-
vated by applications in mathematical finance where such equations are related to the
pricing of barrier options under portfolio constraints.
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1 Introduction

This paper is motivated by a previous work [2] where a new class of parabolic PDE with
Neumann and Dirichlet conditions is introduced. The starting point of [2] is the problem
of hedging a barrier option under portfolio constraints. It shows that the super-hedging
price is a viscosity solution of an equation of the form

min
{
−Lϕ ,min

e∈E
Heϕ

}
= 0 on [0, T )×O

min
{
ϕ , min

e∈E
Heϕ

}
= 0 on [0, T )× ∂O

ϕ− ĝ = 0 on {T} × Ō .

(1.1)

Here, O is an open domain of Rd outside of which the option is desactivated, E is a
compact subset of R` which depends on the constraints imposed on the portfolio, Lϕ =
∂
∂tϕ+ 1

2Tr
[
σσ∗D2ϕ

]
is the Dynkin operator of the diffusion which models the evolution of

the risky assets, Heϕ := δ(·, e)ϕ− 〈γ(·, e), Dϕ〉 for some (oblique) inward direction γ(x, e)
and ĝ is a “smoothed” version of the payoff of the option which satisfies min

e∈E
Heĝ ≥ 0 (see

[2] for details and Section 4 below for an example).
When the solution ϕ of the above equation is positive, the spacial boundary condition
reduces to min

e∈E
Heϕ = 0 on [0, T ) × ∂O, and, in particular cases, see [13] and [14], the
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constraint Heϕ ≥ 0 on the parabolic boundary of [0, T ) × O propagates in the domain,
which allows to simplify the above equation in

−Lϕ = 0 on [0, T )×O
min
e∈E

Heϕ = 0 on [0, T )× ∂O

ϕ− ĝ = 0 on {T} × Ō .

(1.2)

When E is a singleton {e0}, such equations formally admit a Feynman-Kac representation
of the form

E
[
e−

R T
t δ(X(s),e0)dL(s)ĝ(X(T ))

]
(1.3)

where L is a non-decreasing process such that (X,L) solves on [t, T ]

X(s) = x+
∫ s
t σ(X(r))dW (r) +

∫ s
t γ(X(r), e0)dL(r)

X(s) ∈ Ō and L(s) =
∫ s
t 1{X(r)∈∂O} dL(r) , t ≤ s ≤ T , (1.4)

for a given standard Brownian motion W . Thus, in this particular case, the price of the
barrier option is, at least formally, given by the expectation of a functional depending on
the solution of a stochastic differential equation which is reflected at the boundary of O
along the direction γ(·, e0). This phenomenon was already observed in [13] in a particular
setting and can be easily explained when ĝ ≥ 0 and ĝ is non-decreasing on O, see Remark
4.4 below.
By analogy, (1.2) should be associated to a control problem of the form

sup
ε∈E

E
[
e−

R T
t δ(Xε(s),ε(s))dLε(s)ĝ(Xε(T ))

]
(1.5)

where (Xε, Lε) is the solution on [t, T ] of

Xε(s) = x+
∫ s
t σ(Xε(r))dW (r) +

∫ s
t γ(X

ε(r), ε(r))dLε(r)

Xε(s) ∈ Ō and Lε(s) =
∫ s
t 1{Xε(r)∈∂O} dL

ε(r) , t ≤ s ≤ T (1.6)

and E is a suitable set of adapted processes with values in E. The difference with (1.3) is
that the direction of reflection is now controlled by the process ε ∈ E .

This naturally leads to the introduction of a new class of control problems of the form
(1.5), which, to the best of our knowledge, have not been studied so far.

In this paper, we first show that (1.6) admits a strong solution in the case where O is
bounded, |γ| = 1 and (O, γ) satisfies a uniform exterior cone condition:⋃

0≤λ≤r

B (x− λγ(x, e), λr) ⊂ Oc for all (x, e) ∈ ∂O × R` . (1.7)

There is a huge literature on reflected SDEs and we refer to [7] for an overview of mains
results. In the case where (X, ε) is the solution of a SDE with Lipschitz coefficients, the
existence of a strong solution under the exterior sphere condition (1.7) is easily deduced

2



from [6]. Indeed, it suffices to consider the extended system (X, ε) reflected at the boundary
of O× Ẽ for some open ball Ẽ = B(0, r̃) which contains the compact set E along a smooth
direction γ̃ such that γ̃ = (γ, 0) on O×E and γ̃ = (γ,−e/r̃)/

√
2 on O× ∂Ẽ. This system

satisfies the exterior sphere condition of [6]. Since ε takes values in E, the reflection does
not operate on this component and we deduce the existence of a solution to (1.6) from
the results of [6]. However, this formulation is quite restrictive and we are interested by a
more general class of controls.

We therefore come back to the initial deterministic Skorokhod problem and follow the
steps of [6] which are inspired by [11]. The existence to the Skorokhod problem with
directions of reflection controlled by a continuous function ε with bounded variations is
deduced from [6] by using the above arguments which consists in considering an extended
system. We then use suitable estimates on a family of test functions introduced in [5] to
prove the existence of a solution to (1.6) in our general setting. Moreover, by considering
SDEs with random coefficients, we are able to incorporate another control on the direction
which takes the form of an Itô process, see Section 2.

We then introduce a control problem which generalizes (1.5) and prove that its value
function is a viscosity solution of an equation of the form (1.2), for which we provide a
comparison result. In the case where γ(x, e) does not depend on e, it essentially follows
from the results of [5]. In this paper, we propose a new set of conditions which is more
adapted to our setting and does not seem to be covered by the existing literature, see
Section 3.4 below.

In the last section, we discuss the link between (1.5) and the pricing of barrier options
under portfolio constraints. In a particular setting, we prove that (1.5) coincides with
the super-hedging price of the option, when (1.2) admits a sufficiently smooth solution.
This generalizes previous results of [13]. When E is reduced to a singleton, this leads to
a natural Monte-Carlo approach for its estimation. We let the discussion of more general
cases for further researches.

Notations. Given E ⊂ Rm, m ≥ 1 and Ei ⊂ Rmi , mi ≥ 1 for i ≤ I, we denote by
Ck1,...,kI (E1 × · · · × EI , E) (resp. Ck1,...,kI

b (E1 × · · · × EI , E)) the set of continuous maps
ϕ from E1 × · · · × EI into E that admit continuous (resp. bounded) derivatives up to
order ki in their i-th component xi. We omit ki when it is equal to 0 and only write
Ck1(E1 × · · · × EI , E) when k1 = k2 = . . . = kI . We omit E when E = R, and, in
this case, we denote by Dxiϕ and D2

xi
ϕ the (partial) Jacobian and Hessian matrix with

respect to xi. We simply write Dϕ and D2ϕ for Dx2ϕ and D2
x2
ϕ if I = 2. For T > 0, we

define BV([0, T ], E) as the set of continuous maps from [0, T ] into E with a bounded total
variation. For ε ∈ BV([0, T ], E), we set |ε| :=

∑
i≤m |εi| where |εi|(t) is the total variation

of εi on [0, t], t ≥ 0. We write Ec for Rm \ E, ∂E and Ē denote the boundary and the
closure of E, Rm

+ = [0,∞)m, Rm
− = −Rm

+ . The Euclidean norm of x = (x1, . . . , xm) ∈ Rm

is denoted by |x|, B(x, r) is the open ball centered on x with radius r, 〈·, ·〉 is the natural
scalar product on Rm. We denote by Mm the set of square matrices of dimension m and we
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extend the definition of | · | to Mm by identifying Mm to Rm×m. For x ∈ Rm, diag [x] is the
diagonal matrix of Mm whose i-th diagonal element is xi, Tr [M ] is the trace of M ∈ Mm,
M∗ its transposition. All inequalities between random variables have to be taken in the
a.s. sense.

2 SDEs with controlled reflecting directions

The aim of this section is to construct a stochastic differential equation wich is reflected
at the boundary of some bounded open set O ⊂ Rd, d ≥ 1, along a direction which is
controlled by an adapted continuous process with bounded variations taking values in a
compact subset E of R`, ` ≥ 1. We follow the arguments of [6] and start with the resolution
of the associated (deterministic) Skorokhod problem.

2.1 The Skorokhod problem with controlled reflecting directions

For sake of completeness, we first recall one of the main results of [6] which provides a
solution to the Skorokhod problem for oblique reflection on general bounded sets.

Theorem 2.1 (Dupuis and Ishii [6]) Fix γ ∈ C2(Rd,Rd) with |γ| = 1. Assume that there
exists some r ∈ (0, 1) such that⋃

0≤λ≤r

B (x− λγ(x), λr) ⊂ Oc for all x ∈ ∂O . (2.1)

Then, for all ψ ∈ C([0, T ],Rd) satisfying ψ(0) ∈ Ō, there exists (φ, η) ∈ C([0, T ], Ō) ×
BV([0, T ],R+) such that

φ(t) = ψ(t) +
∫ t

0
γ(φ(s))dη(s) , η(t) =

∫ t

0
1{φ(s)∈∂O}d|η|(s) , t ≤ T .

Moreover, (φ(t), η(t)) ∈ σ(ψ(s), s ≤ t) for all t ≤ T , and uniqueness holds if ψ ∈
BV([0, T ],Rd).

Proof. See Theorem 4.8 and the discussion after Corollary 5.2 in [6]. 2

We now fix an open bounded set O ⊂ Rd, a compact set E ⊂ R` and γ satisfying

γ ∈ C2(Rd+`,Rd) , |γ| = 1 (2.2)

∃ r ∈ (0, 1) s.t.
⋃

0≤λ≤r

B (x− λγ(x, e), λr) ⊂ Oc for all (x, e) ∈ ∂O × R` . (2.3)

We then deduce from Theorem 2.1 the following result.

Corollary 2.1 Let the conditions (2.2) and (2.3) hold. Then, for all ψ ∈ BV([0, T ],Rd)
satisfying ψ(0) ∈ Ō and ε ∈ BV([0, T ], E), there exists a unique couple (φ, η) ∈ C([0, T ], Ō)×
BV([0, T ],R+) such that

φ(t) = ψ(t) +
∫ t

0
γ(φ(s), ε(s))dη(s) and η(t) =

∫ t

0
1{φ(s)∈∂O}d|η|(s) , t ≤ T . (2.4)

Moreover, (φ(t), η(t)) ∈ σ((ψ(s), ε(s)), s ≤ t) for all t ≤ T
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Proof. This is an immediate consequence of Theorem 2.1. Since ε is valued in a compact
set, it suffices to apply the above result to an extended fictitious reflected system (ψ, ε). We
detail the proof for completeness. Fix r̃ > 0 so that Ẽ := B(0, r̃) strictly contains E. Fix
ζ ∈ C2(R`, [0, 1]) such that ζ(e) = 0 for e ∈ E and ζ(e) = 1 for e ∈ ∂Ẽ and set, on Rd+`,
γ̃(x, e) = (γ(x, e),−eζ(e)/r̃)/|(γ(x, e),−eζ(e)/r̃)|. Since |γ| = 1, |(γ(x, e),−eζ(e)/r̃)| ≥ 1
and γ̃ ∈ C2(Rd+`,Rd+`). Moreover, |(γ(x, e),−eζ(e)/r̃)|2 ≤ 2 on the closure of O × Ẽ,
|(γ(x, e),−eζ(e)/r̃)|2 = 2 if e ∈ ∂Ẽ, and B(e+λe/r̃, λr)∩ Ẽ = ∅ for all e ∈ ∂Ẽ and λ > 0,
recall that r < 1. We then deduce from (2.3) that for (x, e) ∈ ∂(O× Ẽ) and λ ∈ [0, r/

√
2]

|(y, f)− ((x, e)− λγ̃(x, e))|2 ≤ λ2(r/
√

2)2 ⇒ (y, f) /∈ O × Ẽ .

We can therefore apply Theorem 2.1 to the couple (ψ, ε) reflected at the boundary of
O × Ẽ. Since ε does not reach the boundary of Ẽ, this leads to the required result.

2

2.2 The stochastic Skorokhod problem with controlled reflecting direc-

tion

We now consider some probability space (Ω,F ,P) supporting a d-dimensional standard
Brownian motion W . We denote by F = (Ft)t≤T the natural filtration induced by W ,
satisfying the usual conditions, and assume that F = FT . Given two uniformly Lipschitz
functions µ and σ from Rd into Rd and Md respectively, it is shown in [6] that, under
the condition (2.1), there exists a unique couple (X,L) of F-adapted continuous processes
such that L is real valued, has bounded variations and

X(t) = x+
∫ t
0 µ(X(s))ds+

∫ t
0 σ(X(s))dW (s) +

∫ t
0 γ(X(s))dL(s)

X(t) ∈ Ō and L(t) =
∫ t
0 1{X(s)∈∂O} d|L|(s) , t ≤ T . (2.5)

The aim of this section is to extend this result to the case where µ and σ are random,
and γ is controlled by some continuous bounded variation process ε taking values in the
compact set E, we refer to Remark 2.2 and 2.3 below for comments on this a-priori strong
regularity assumption on the control ε.

In the following, given two subsets E1 and E2 of Rm1 and Rm2 , m1,m2 ≥ 1, we denote by
LF(E1, E2) the set of measurable maps

f : (ω, t, x) ∈ Ω× [0, T ]× E1 −→ ft(ω, x) ∈ E2

such that t 7→ ft(·, x) is progressively measurable for each x ∈ E1, and

|ft(ω, x)− ft(ω, y)| ≤ K|x− y| ∀ x, y ∈ E1 dP(ω)− a.s.

for some K > 0 independent of (t, ω) ∈ [0, T ]×Ω. In the sequel, we shall only write ft(x)
for ft(ω, x).

5



We denote by BVF(E2) the set of E2-valued continuous adapted processes with bounded
variations. For ease of notations, we write E for BVF(E) and we set

Eb
m := {ε ∈ E : |ε|(T ) ≤ m P− a.s.} , m > 0 .

In the rest of this section, we fix (µ, σ) ∈ LF(Rd,Rd×Md) and assume that the conditions
(2.2) and (2.3) hold. Our first result extends Theorem 5.1 in [6].

Lemma 2.1 Let X be a continuous semimartingale with values in Ō. Fix m > 0 and
ε ∈ Eb

m. Assume that Y is a continuous semimartingale with values in Ō satisfying for
0 ≤ t0 ≤ t ≤ T

Y (t) = X(t0) +
∫ t

t0

µs(X(s))ds+
∫ t

t0

σs(X(s))dW (s) +
∫ t

t0

γ(Y (s), ε(s))dL(s) ,

where L is an element of BVF(R+) such that

L(t) =
∫ t

t0

1{Y (s)∈∂O} d|L|(s) , t0 ≤ t ≤ T .

Let X ′ be an other continuous semimartingales with values in Ō and assume that (Y ′, L′)
satisfies the same properties as (Y, L) with X ′ in place of X. Then, there is a constant
Cm > 0 such that

E
[

sup
t0≤s≤t

|∆Y (s)|4
]

≤ CmE
[
|∆X(t0)|4 +

∫ t

t0

sup
t0≤s≤u

|∆X(s)|4du
]

, t0 ≤ t ≤ T

where ∆Y and ∆X stand for Y − Y ′ and X −X ′.

In order to prove Lemma 2.1, we shall appeal to the following technical result. It is a
simple extension of Theorem 3.2 in [6] which is based on Theorem 4.1 in [5].

Lemma 2.2 Given θ ∈ (0, 1) there exists a family of functions (fε)ε>0 in C2(Ō × Ō ×E)
and a constant K > 0 independent of ε > 0 such that, for all (y, y′, e) ∈ Ō × Ō × E,

|y − y′|2

ε
≤ fε(y, y′, e) ≤ K

(
ε+

|y − y′|2

ε

)
(2.6)

〈γ(y, e), Dyfε(y, y′, e)〉 ≤ K
|y − y′|2

ε
if 〈y′ − y, γ(y, e)〉 ≥ −θ|y − y′| , (2.7)

〈γ(y′, e), Dy′fε(y, y′, e)〉 ≤ K
|y − y′|2

ε
if 〈y − y′, γ(y′, e)〉 ≥ −θ|y − y′| , (2.8)

|Dyfε(y, y′, e) +Dy′fε(y, y′, e)| ∨ |Defε(y, y′, e)| ≤ K
|y − y′|2

ε
, (2.9)

|Dyfε(y, y′, e)| ∨ |Dy′fε(y, y′, e)| ≤ K
|y − y′|

ε
, (2.10)

D2
(y,y′)fε(y, y′, e) ≤

C

ε

(
Id −Id
−Id Id

)
+K

|y − y′|2

ε
I2d . (2.11)

Moreover, there is h ∈ C2(Ō × E) with non-negative values such that

〈Dyh(y, e), γ(y, e)〉 ≥ 1 for all (y, e) ∈ ∂O × E . (2.12)
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Proof. This follows from the proof of Theorem 4.1 in [5]. Since it is long, we only provide
the main arguments. Let g : (p, x) ∈ Rd × Rd be as in Lemma 4.4 of [5]. In particular, it
satisfies

|Dxg(p, x)| ≤ C |p|2 , (2.13)

for some C > 0. Let ψ ∈ C2(R) be a real non-decreasing function such that ψ(t) = t for
t ≥ 2, ψ(t) = 1 for t ≤ 1/2 and ψ(t) ≥ t for all t ∈ [1/2, 2]. For ε > 0, we then define

fε(x, y, e) := εg̃

(
x− y

ε
, x, e

)
, (x, y, e) ∈ Rd × Rd × R` ,

with
g̃(p, x, e) := ψ(g(p, γ(x, e)) , (p, x, e) ∈ Rd × Rd × R` .

All the estimates, except the one on |Defε(y, y′, e)|, follows directly from the property of
g stated in Lemma 4.4 of [5] as in the proof of Theorem 4.1 in [5] (pp 1136-1137) for fixed
values of e. Here, the constant K can be taken independent of e because E is bounded.
The estimate on |Defε(y, y′, e)| follows from (2.13), the smoothness condition on γ and
the boundedness of O and E. The existence of the function h follows from Theorem 3.2
in [6], see (3.20) of this paper. It suffices to repeat the argument of the proof of Corollary
2.1, i.e. consider a fictitious extended reflected system (x, e). 2

Remark 2.1 Observe that given θ ∈ (0, 1) such that θ2 > 1−r2, we can find δ ∈ (0, r) for
which 〈y′− y, γ(y, e)〉 ≥ −θ|y− y′| for all e ∈ E, y ∈ ∂O and y′ ∈ Ō such that |y− y′| ≤ δ.
This follows from (2.3) and the observation that 〈y′ − y, γ(y, e)〉 ≤ −θ|y − y′|, |y − y′| ≤ δ

and |γ| = 1 implies that

|y′ − (y − λγ(y, e))|2 ≤ |y′ − y|2 − 2λθ|y − y′|+ λ2 = λ2(1− θ2) ≤ λ2r2

for λ := |y − y′|/θ ≤ δ/(1− r2)
1
2 with δ small enough so that λ ≤ r.

Proof of Lemma 2.1. As in [6], we first observe that we can restrict to the case where
|Y −Y ′| ≤ δ where δ is defined as in Remark 2.1 for θ := (1+

√
1− r2)/2. Indeed, since O

is bounded, there is r̃ > 0 such that B(0, r̃/2) ⊃ Ō and if τ is the first time after t0 when
|Y − Y ′| ≥ δ then

E

[
sup

t0≤s≤T
|∆Y (s)|4

]
≤ r̃4

δ4
E
[

sup
t0≤s≤τ

|∆Y (s)|4
]
.

From now on, we therefore assume that |Y −Y ′| ≤ δ. For ease of notations, we also restrict
to the case where t0 = 0, the general case is handled similarly.
Recall from Lemma 2.2 the definitions of h and fε for θ defined as above. We fix ε, λ > 0
and define the smooth function f̃ε on Ō × Ō × E by

f̃ε(y, y′, e) := e−λ(h(y,e)+h(y′,e))fε(y, y′, e) . (2.14)
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Fix K̄ > 0. Set

At :=
∫ t

0
e−K̄|ε|(s)

(∣∣∣Def̃ε(Y (s), Y ′(s), ε(s))
∣∣∣− K̄f̃ε(Y (s), Y ′(s), ε(s))

)
d|ε|(s)

and βs := e−K̄|ε|(s)e−λ(h(Y (s),ε(s))+h(Y ′(s),ε(s))). Since, by the estimates of Lemma 2.2,

e−K̄|ε|(s)
∣∣∣Def̃ε(Y (s), Y ′(s), ε(s))

∣∣∣
≤ βs

(
2λ sup

(y,e)∈Ō×E

|Deh(y, e)|+ 1

)
K

(
ε+

|Y (s)− Y ′(s)|2

ε

)
and

e−K̄|ε|(s)K̄f̃ε(Y (s), Y ′(s), ε(s)) ≥ βsK̄
|Y (s)− Y ′(s)|2

ε

we can find C > 0, independent of λ and ε, such that At ≤ λCε for K̄ large enough with
respect to K, λ and |Deh|.
Thus, applying Itô’s Lemma to ξ := (e−K̄|ε|(t)f̃ε(Y (t), Y ′(t), ε(t)))t≤T leads to

ξt ≤ ξ0 + TλCε+Gt +G′
t +Ht (2.15)

where

Gt :=
∫ t

0
e−K̄|ε|(s)〈Dyf̃ε(Y (s), Y ′(s), ε(s)), γ(Y (s), ε(s))〉dL(s)

G′
t :=

∫ t

0
e−K̄|ε|(s)〈Dy′ f̃ε(Y (s), Y ′(s), ε(s)), γ(Y ′(s), ε(s))〉dL′(s) ,

and

Ht :=
∫ t

0
e−K̄|ε|(s)〈Dyf̃ε(Y (s), Y ′(s), ε(s)), µs(X(s))− µs(X ′(s))〉ds

+
∫ t

0
e−K̄|ε|(s)〈Dyf̃ε(Y (s), Y ′(s), ε(s)), [σs(X(s))− σs(X ′(s))]dWs〉

+
∫ t

0
e−K̄|ε|(s)〈Dy′ f̃ε(Y (s), Y ′(s), ε(s)) +Dyf̃ε(Y (s), Y ′(s), ε(s)), µs(X ′(s))〉ds

+
∫ t

0
e−K̄|ε|(s)〈Dy′ f̃ε(Y (s), Y ′(s), ε(s)) +Dyf̃ε(Y (s), Y ′(s), ε(s)), σs(X ′(s))dWs〉

+
1
2

∫ t

0
e−K̄|ε|(s)Tr

[
D2

(y,y′)f̃ε(Y (s), Y ′(s), ε(s))as(X(s), X ′(s))
]
ds

with

as(x, x′) =

[
σs(x)σs(x)∗ σs(x)σs(x′)∗

σs(x′)σs(x)∗ σs(x′)σs(x′)∗

]

where ∗ denotes the transposition.
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Now, observe that the estimates (2.6), (2.7) and (2.12) of Lemma 2.2, Remark 2.1 and the
assumption |Y − Y ′| ≤ δ imply that

Gt =
∫ t

0
βs〈Dyfε(Y (s), Y ′(s), ε(s)), γ(Y (s), ε(s))〉dL(s)

− λ

∫ t

0
βsfε(Y (s), Y ′(s), ε(s))〈Dyh(Y (s), ε(s)), γ(Y (s), ε(s))〉dL(s)

≤ (K − λ)
∫ t

0
βs
|∆Y (s)|2

ε
dL(s) .

Similarly,

G′
t ≤ (K − λ)

∫ t

0
βs
|∆Y (s)|2

ε
dL′(s) .

Taking λ = K, it then follows from (2.15) that

ξt ≤ ξ0 + TλCε+Ht . (2.16)

Moreover, it follows from Doob’s inequality, the estimates of Lemma 2.2, the a.s. Lipschitz
continuity of µ and σ, the fact that Y , Y ′, X and X ′ are bounded, and the inequality
α2β2 ≤ α4 + β4, α, β ∈ R, that

E
[
sup
s≤t

H2
s

]
≤ C ′ E

[∫ t

0

e−2K̄|ε|(s)

ε2
(
ε4 + |∆Y (s)|4 + |∆X(s)|4

)
ds

]

where C ′ is a positive constant which does not depend on ε. Since |ε|(T ) ≤ m, it follows
from (2.16) and the left hand-side of (2.6) of Lemma 2.2 that

E
[
sup
s≤t

|∆Y (s)|4
]
≤ Cm

(
ε4 + |∆X(0)|4 +

∫ t

0
E
[
sup
r≤s

|∆Y (r)|4 + sup
r≤s

|∆X(r)|4
]
ds

)
where Cm is a positive constant independent of ε. The required result is then obtained by
sending ε→ 0 and using Gronwall’s Lemma. 2

We can now provide the main result of this section, which ensures the strong existence
and uniqueness of a SDE with random coefficients and controlled reflecting directions.

Theorem 2.2 Fix ε ∈ E, t ∈ [0, T ] and ξ a Ft-measurable random variable with values in
Ō. Then, there exists a unique continuous adapted process (X,L) such that L ∈ BVF(R+)
and

X(s) = ξ +
∫ s

t
µr(X(r))dr +

∫ s

t
σr(X(r))dW (r) +

∫ s

t
γ(X(r), ε(r))dL(r)

L(s) =
∫ s

t
1{X(r)∈∂O} d|L|(r) , t ≤ s ≤ T . (2.17)

Proof. Observe that Lemma 4.7 in [6] can be easily extended to our setting by appealing
to the arguments already used in the proof of Corollary 2.1. The existence and uniqueness
when |ε|(T ) is uniformly bounded then follows from Corollary 2.1, Lemma 2.1 and the
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same arguments as in [6], see the discussion after their Corollary 5.2, or as in the proof
of Proposition 4.1 in [11]. In the case where |ε|(T ) is not uniformly bounded, we use a
localization argument. For each m ≥ 1, we define τm := inf{s ≥ t : |ε|(s) ≥ m} and let
(Xm, Lm) be the unique solution of (2.17) associated to εm(·) := ε(· ∧ τm). We then define
(X,L) by

(X,L)(s) := (X1, L1)(s)1t≤s≤τ1 +
∑
m≥2

(Xm, Lm)(s)1τm−1<s≤τm .

It solves (2.17) associated to ε. The same argument provides uniqueness. 2

Remark 2.2 The presence of the control ε in γ plays a similar role as the time depen-
dence in non-linear Neumann type boundary conditions of the form L(t, x, u,Du) = 0
in the viscosity literature. To the best of our knowledge the papers dealing with such a
time dependence impose rather strong regularity conditions. The less stringent seem to
appear in [3] where, for fixed (x, u, p), the map t 7→ L(t, x, u, p) is absolutely continuous
with respect to the Lebesgue measure, see condition (H6) of this paper. In particular,
t 7→ L(t, x, u, p) has bounded variations. It is therefore not surprising to retrieve such a
condition in the definition of the set of controls E .

Remark 2.3 Let (a, b) be a predictable process with values in M` × R` satisfying∫ t

0
(|b(s)|+ |a(s)|2) <∞ P− a.s.

and assume that the process Z defined on [t, T ] by

Z(s) := z +
∫ s

t
b(r)dr +

∫ s

t
a(r)dW (r)

takes values in a compact set F of R`. Then, it follows from Theorem 2.2 that existence
and uniqueness holds for

X(s) = x+
∫ s

t
µr(X(r))dr +

∫ s

t
σr(X(r))dW (r) +

∫ s

t
γ̃(X(r), Z(r), ε(r))dL(r)

L(s) =
∫ s

t
1{X(r)∈∂O} d|L|(r) , t ≤ s ≤ T

when γ̃ ∈ C2(Rd × R` × R`,Rd) satisfies⋃
0≤λ≤r

B (x− λγ̃(x, z, e), λr) ⊂ Oc for all (x, z, e) ∈ ∂O × R2` ,

for some r ∈ (0, 1). This is easily checked by arguing as in the proof of Corollary 2.1, i.e.
introduce the fictitious reflected system (X,Z) and apply Theorem 2.2. This allows us to
introduce a new control on the direction of reflection which corresponds to an Itô process.

3 Optimal control

As in the previous section, we consider a bounded open set O ⊂ Rd and γ ∈ C2(Rd+`,Rd)
such that |γ| = 1 and (2.3) holds.

10



3.1 Definitions and assumptions

We fix a compact subset A of R` and denote by A the set of predictable processes with
values in A.
Let µ and σ be two continuous maps on Rd×A with values in Rd and Md respectively. We
assume that both are Lipschitz with respect to their first variable uniformly in the other
one, so that (µα, σα) defined by

(µα
t , σ

α
t )(·) := (µ, σ)(·, α(t)) , t ≤ T

belongs to LF(Rd; Rd × Md) for all α ∈ A. It then follows from Theorem 2.2 that, for
all (t, x) ∈ [0, T ] × Ō, their exists a unique solution (Xα,ε

t,x , L
α,ε
t,x ) to (2.17) associated to

(µα, σα) with initial conditions given by (Xα,ε
t,x , L

α,ε
t,x )(t) = (x, 0).

The aim of this section is to provide a PDE characterization for the control problem

v(t, x) := sup
(α,ε)∈A×E

J(t, x;α, ε) (3.1)

where

J(t, x;α, ε) := E
[
βα,ε

t,x (T )g
(
Xα,ε

t,x (T )
)

+
∫ T

t
βα,ε

t,x (s)f
(
Xα,ε

t,x (s), α(s)
)
ds

]
,

βα,ε
t,x (s) := e−

R s
t ρ(Xα,ε

t,x (r),ε(r))dLα,ε
t,x (r) ,

and ρ, g, f are continuous real valued maps on Ō ×E, Ō and Ō ×A respectively. In order
to ensure that J is well defined, we assume that ρ ≥ 0. We also assume that
(i) g is Lipschitz continuous,
(ii) f is Lipschitz continuous in its first variable, uniformly in its second one,
(iii) ρ is C1 with Lipschitz first derivative in its first variable, uniformly in the second one,
and Lipschitz in its second variable, uniformly in the first one.

3.2 Dynamic programming

We first provide some useful estimates on Xα,ε
t,x and J which will be used to derive the

dynamic programming principle of Lemma 3.2 below.

Proposition 3.1 For each m > 0, there is a constant Cm > 0 such that for all (α, ε) ∈
A× Eb

m, t ≤ t′ ≤ T and x, x′ ∈ Ō, we have:

E

[
sup

t′≤s≤T
|Xα,ε

t,x (s)−Xα,ε
t′,x′(s)|

4

] 1
4

≤ Cm

(
|x− x′|+ |t′ − t|

1
4

)
, (3.2)

E

[
sup

t≤s≤t′
|Xα,ε

t,x (s)− x|4
] 1

4

+ E
[
Lα,ε

t,x (t′)2
] 1

2 ≤ Cm |t′ − t|
1
4 , (3.3)

E

[
sup

t′≤s≤T
| ln(βα,ε

t,x (s))− ln(βα,ε
t′,x′(s))|

]
≤ Cm

(
|x− x′|+ |t′ − t|

1
4

)
. (3.4)
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Proof. We write (X,L, β) and (X ′, L′, β′) for (Xα,ε
t,x , L

α,ε
t,x , β

α,ε
t,x ) and (Xα,ε

t′,x′ , L
α,ε
t′,x′ , β

α,ε
t′,x′).

1. It follows from Lemma 2.1 and Gronwall’s Lemma that

E

[
sup

t′≤s≤T
|X(s)−X ′(s)|4

]
≤ Cm E

[
|X(t′)− x′|4

]
where Cm > 0 denotes a generic constant independent of (t, t′, x, x′). Choosing some large
K̄ > 0, applying Itô’s Lemma to (e−K̄|ε|(t)f̃ε(X(t), y, ε(t)))t≤T , y ∈ Ō and f̃ε defined as
in (2.14), and using the same arguments as in Lemma 2.1 (the terms corresponding to At

and Gt are treated similarly, the term corresponding to Ht is bounded by using the fact
that the integrands are bounded by C/ε for some C > 0 by Lemma 2.2), leads to

E

[
sup

t≤s≤t′
|X(s)− y|4

]
≤ Cm (|t′ − t|+ |x− y|4) . (3.5)

This proves (3.2) and the bound for the first term in (3.3).
2. We now provide the bound for the second term in (3.3). Let h be defined as in Lemma
2.2. Applying Itô’s Lemma to h(X, ε)− h(x, ε) and using (2.12) leads to:

0 ≤ L(t′) ≤
∫ t′

t
〈Dxh(X(s), ε(s)), γ(X(s), ε(s))〉dL(s)

= h(X(t′), ε(t′))− h(x, ε(t′))

−
∫ t′

t

(
〈Dxh(X(s), ε(s)), µs(X(s))〉+

1
2
Tr[D2

xh(X(s), ε(s))σsσ
∗
s(X(s))]

)
ds

−
∫ t′

t
〈Dxh(X(s), ε(s)), σs(X(s))dWs〉

−
∫ t′

t
〈Deh(X(s), ε(s))−Deh(x, ε(s)), dε(s)〉

where, by the Lipschitz continuity of Deh,∣∣∣∣∣
∫ t′

t
〈Deh(X(s), ε(s))−Deh(x, ε(s)), dε(s)〉

∣∣∣∣∣ ≤ C sup
t≤s≤t′

|X(s)− x| |ε|(T ) ,

for some C > 0 which depends only on h. Since, |ε|(T ) ≤ m, the bound for the second
term in (3.3) then follows from the Lipschitz continuity of the coefficients, the previous
estimates and the boundedness of O and E.
3. We finally prove (3.4). Since |γ| = 1 and ρ|γ|2 is bounded, we have for s ∈ [t′, T ]

| lnβ(s)− lnβ′(s)|

= |
∫ s

t
(ρ|γ|2)(X(s), ε(s))dL(s)−

∫ s

t′
(ρ|γ|2)(X ′(s), ε(s))dL′(s) |

≤ |
∫ s

t
〈(ργ)(X(s), ε(s)), γ(X(s), ε(s))〉dL(s)−

∫ s

t′
〈(ργ)(X(s), ε(s)), γ(X ′(s), ε(s))〉dL′(s) |

+|
∫ s

t′
〈(ργ)(X(s), ε(s))− (ργ)(X ′(s), ε(s)), γ(X ′(s), ε(s))〉dL′(s)|

≤ |
∫ s

t′
〈ργ(X(s), ε(s)), γ(X(s), ε(s))〉dL(s)−

∫ s

t′
〈ργ(X(s), ε(s)), γ(X ′(s), ε(s))〉dL′(s) |

+C

(
L(t′) + sup

t′≤s≤T
|X(s)−X ′(s)|L′(T )

)
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for some C > 0 independent of (s, x, x′, t, t′). If we assume that ρ ∈ C2,1(Rd+`,R), then
applying Itô’s Lemma to 〈X−X ′, γ(X, ε)ρ(X, ε)〉 on [t′, T ] as in 2. and using the Lipschitz
continuity of the coefficients and the bound on |ε| allows to show that

E
[
supt′≤s≤T |

∫ s
t′ 〈ργ(X(s), ε(s)), γ(X(s), ε(s))〉dL(s)−

∫ s
t′ 〈ργ(X(s), ε(s)), γ(X ′(s), ε(s))〉dL′(s) |

]
≤ Cm E

[
supt′≤s≤T |X(s)−X ′(s)|2

] 1
2

(
1 + E

[
L(T )2

] 1
2

)
where Cm depends on ρ only through the bounds on |ρ|, on the first and second derivatives
in its first variable and on the first derivative in its second variable. Thus, by Cauchy-
Schwartz inequality,

E

[
sup

t′≤s≤T
| lnβ(s)− lnβ′(s)|

]

≤ Cm

E
[
L(t′)

]
+ E

[
sup

t′≤s≤T
|X(s)−X ′(s)|2

] 1
2 (

E
[
(L′(T ))2

] 1
2 + E

[
(L(T ))2

] 1
2 + 1

) ,

for some Cm > 0 as above. In view of the previous estimates, the result follows for ρ
smooth enough. Since the estimate of (3.3) clearly does not depend on ρ, this result is
easily extended to the general case by a standard approximation argument. 2

Remark 3.1 It follows from the pathwise uniqueness result of Theorem 2.2 and standard
arguments, see e.g. Theorem 5.3.19 and Theorem 5.4.20 of [10], that Xα,ε

t,x is a strong
Markov process.

Lemma 3.1 Fix m > 0 and set

vm(t, x) := sup
(α,ε)∈A×Eb

m

J(t, x;α, ε) , (t, x) ∈ [0, T ]× Ō .

Then, there is Cm > 0 such that

|J(t, x;α, ε)− J(t′, x′;α, ε)|+ |vm(t, x)− vm(t′, x′)| ≤ Cm

(
|t− t′|

1
4 + |x− x′|

)
for all (t, t′, x, x′) ∈ [0, T ]2 × Ō2 and (α, ε) ∈ A × Eb

m. Moreover, v = limm→∞ ↑ vm =
supm>0 vm on [0, T ]× Ō and v is lower semi-continuous.

Proof. Since

|vm(t, x)− vm(t′, x′)| ≤ sup
(α,ε)∈A×Eb

m

|J(t, x;α, ε)− J(t′, x′;α, ε)| ,

the first assertion follows from the uniform estimates of Proposition 3.1, the Lipschitz
continuity assumptions on the parameter g, f and the fact that ρ ≥ 0 so that βα,ε

t,x ≤ 1
for all (t, x) ∈ [0, T ] × Ō and (α, ε) ∈ A × E . Clearly (vm)m>0 is non-decreasing and
v ≥ supm>0 vm. Thus, it remains to prove that v ≤ supm>0 vm, the lower semi-continuous
of v will then follow from the continuity of each vm. To see this fix, (t, x) ∈ [0, T ) × Ō,
(α, ε) ∈ A × E and set τm := inf{s ∈ [t, T ] : |ε|(s) ≥ m} and εm := ε(· ∧ τm), m > 0.
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Since τm → ∞, we have βα,εm
t,x f(Xα,εm

t,x , α) → βα,ε
t,x f(Xα,ε

t,x , α) dt × dP-a.e. on [t, T ] and
(Xα,εm

t,x , βα,εm
t,x )(T ) → (Xα,ε

t,x , β
α,ε
t,x )(T ) P − a.s. as m → ∞. By dominated convergence

and the continuity of g, we then deduce that J(t, x;α, εm) → J(t, x;α, ε). This implies
that, for each ε > 0, we can find m > 0 such that v(t, x) − ε ≤ vm(t, x) and therefore
v(t, x) ≤ supm>0 vm(t, x). 2

We can now prove the following dynamic programming principle.

Lemma 3.2 Fix (t, x) ∈ [0, T ]× Ō. For all [t, T ]-valued stopping time θ, we have

v(t, x) = sup
(α,ε)∈A×E

E
[
βα,ε

t,x (θ)v
(
θ,Xα,ε

t,x (θ)
)

+
∫ θ

t
βα,ε

t,x (s)f
(
Xα,ε

t,x (s), α(s)
)
ds

]
.

Proof. Fix (t0, x0) ∈ [0, T ) × Ō (the case t0 = T is trivial). The fact that v(t0, x0) is
bounded from above by

sup
(α,ε)∈A×E

E
[
βα,ε

t0,x0
(θ)v

(
θ,Xα,ε

t0,x0
(θ)
)

+
∫ θ

t0

βα,ε
t0,x0

(s)f
(
Xα,ε

t0,x0
(s), α(s)

)
ds

]
follows from the Markov feature of our model, see Remark 3.1. We now prove the converse
inequality.
1. Fix m > 0. Let (Bn)n≥1 be a partition of [0, T ]×Ō and (tn, xn)n≥1 be a sequence such
that (tn, xn) ∈ Bn for each n ≥ 1. By definition, we can find ξn := (αn, εn) ∈ A×Eb

m such
that

J(tn, xn; ξn) ≥ vm(tn, xn)− ε/3 , (3.6)

where ε > 0 is a fix parameter. Moreover, by the uniform continuity of vm and J(·; ξ) for
ξ ∈ A× Eb

m, see Lemma 3.1, we can choose (Bn, tn, xn)n≥1 in such a way that

|J(·; ξn)− J(tn, xn; ξn)|+ |vm − vm(tn, xn)| ≤ ε/3 on Bn . (3.7)

2. Given ξ ∈ A×Eb
m and θ a stopping time with values in [t0, T ], we define ξ̄ ∈ A×Eb

m by

ξ̄(t) := ξ(t)1t<θ + 1t≥θ

∑
n≥1

ξn(t) 1{(θ,Xξ
t0,x0

(θ))∈Bn} .

Using successively the Markov feature of our model, see Remark 3.1, (3.7), (3.6), (3.7)
again and the fact that ρ ≥ 0 (which implies that β·t0,x0

(θ) ≤ 1), we deduce that, for all
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ξ = (α, ε) ∈ A× Eb,

J(t0, x0; ξ̄) ≥ E
[
βξ

t0,x0
(θ)J(θ,Xξ

t0,x0
(θ); ξ̄) +

∫ θ

t
βξ

t0,x0
(s)f(Xξ

t0,x0
(s), α(s))ds

]

= E

βξ
t0,x0

(θ)
∑
n≥1

J(θ,Xξ
t0,x0

(θ); ξn)1{(θ,Xξ
t0,x0

(θ))∈Bn}


+ E

[∫ θ

t
βξ

t0,x0
(s)f(Xξ

t0,x0
(s), α(s))ds

]

≥ E

βξ
t0,x0

(θ)
∑
n≥1

J(tn, xn; ξn)1{(θ,Xξ
t0,x0

(θ))∈Bn}


+ E

[∫ θ

t
βξ

t0,x0
(s)f(Xξ

t0,x0
(s), α(s))ds

]
− ε/3

≥ E

βξ
t0,x0

(θ)

∑
n≥1

vm(tn, xn; ξn)1{(θ,Xξ
t0,x0

(θ))∈Bn}


+ E

[∫ θ

t
βξ

t0,x0
(s)f(Xξ

t0,x0
(s), α(s))ds

]
− 2ε/3

≥ E
[
βξ

t0,x0
(θ)vm(θ,Xξ

t0,x0
(θ)) +

∫ θ

t
βξ

t0,x0
(s)f(Xξ

t0,x0
(s), α(s))ds

]
− ε .

By arbitrariness of ε > 0, this shows that

v(t0, x0) ≥ E
[
βξ

t0,x0
(θ)vm(θ,Xξ

t0,x0
(θ)) +

∫ θ

t
βξ

t0,x0
(s)f(Xξ

t0,x0
(s), α(s))ds

]
. (3.8)

Since vm → v as m→∞ by Lemma 3.1, it follows by dominated convergence that, for all
ξ ∈ A× Eb,

v(t0, x0) ≥ E
[
βξ

t0,x0
(θ)v(θ,Xξ

t0,x0
(θ)) +

∫ θ

t
βξ

t0,x0
(s)f(Xξ

t0,x0
(s), α(s))ds

]
.

The same localization argument as in the proofs of Theorem 2.2 and Lemma 3.1 then
imply that the above inequality actually holds for all ξ ∈ A× E . 2

3.3 PDE characterization for the optimal control problem

In this section, we show that v is a solution of

Kϕ = 0

where

Kϕ :=


min
a∈A

(−Laϕ− f(·, a)) = 0 on [0, T )×O

min
e∈E

Heϕ = 0 on [0, T )× ∂O

ϕ− g = 0 on {T} × Ō

and, for a smooth function ϕ on [0, T ]× Ō and (a, e) ∈ A× E, we set

Laϕ :=
∂

∂t
ϕ+ 〈µ(·, a), Dϕ〉+

1
2
Tr
[
σ(·, a)σ(·, a)∗D2ϕ

]
Heϕ := ρ(·, e)ϕ− 〈γ(·, e), Dϕ〉 .
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3.3.1 Definitions

Since v may not be smooth, we need to consider the above equation in the viscosity sense.
Moreover, the boundary conditions may not be satisfied in a strong sense and, as usual,
we have to consider a relaxed version, see e.g. [4]. We therefore introduce the operator
K+ and K− defined as

K+ϕ :=


Kϕ on [0, T ]×O

max
{

min
a∈A

−Laϕ− f(·, a) , min
e∈E

Heϕ

}
on [0, T )× ∂O

ϕ− g on {T} × ∂O

and

K−ϕ :=


Kϕ on [0, T ]×O

min
{

min
a∈A

−Laϕ− f(·, a) , min
e∈E

Heϕ

}
on [0, T )× ∂O

min
{
ϕ− g , min

e∈E
Heϕ

}
on {T} × ∂O .

Definition 3.1 We say that a lower-semicontinuous (resp. upper-semicontinuous) func-
tion w on [0, T ]× Ō is a viscosity supersolution (resp. subsolution) of

Kϕ = 0 (3.9)

if for all ϕ ∈ C1,2([0, T ] × Ō) and all (t, x) ∈ [0, T ) × Ō which realizes a local minimum
(resp. maximum) of w − ϕ equal to 0, we have K+ϕ ≥ 0 (resp. K−ϕ ≤ 0) We say that a
locally bounded function w is a (discontinuous) viscosity solution of (3.9) if w∗ (resp. w∗)
is a supersolution (resp. subsolution) of (3.9) where

w∗(t, x) := lim sup
(t′,x′)→(t,x), (t′,x′)∈D

w(t′, x′)

w∗(t, x) := lim inf
(t′,x′)→(t,x), (t′,x′)∈D

w(t′, x′) , (t, x) ∈ [0, T ]× Ō ,

with D := [0, T )×O.

Remark 3.2 Take E = K̃1 := K̃∩∂B(0, 1) where K̃ is the domain of the support function
δ of a closed convex set K ⊂ R`, i.e.

δ(e) := sup
y∈K

〈y, e〉 , e ∈ R` ,

and assume that ρ(x, e) = δ(e) and γ(x, e) = e on ∂O × E. Then, for ϕ ∈ C1(Ō, (0,∞)),
the constraint

min
e∈E

Heϕ = min
e∈E

(δ(e)ϕ− 〈e,Dϕ〉) ≥ 0

means that Dϕ/ϕ ∈ K, see e.g. [12]. In this case, the term Heϕ ≥ 0 can be assimilated
to a constraint on the gradient of the logarithm of the solution at the boundary of O. A
similar constraint appears in [2], but in the whole domain.
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Remark 3.3 Assume that O is C2 and that σ satisfies the non-characteristic boundary
condition

min
a∈A

|σ(x, a)ξ| > 0 for all x ∈ ∂O and ξ ∈ Rd \ {0} . (3.10)

Then, it follows from the same arguments as in 2. of the proof of Proposition 6.3 of [2]
that w is a supersolution of K+ϕ = 0 only if it is a supersolution of K̄+ϕ = 0 where

K̄+ϕ :=

 K+ϕ on ([0, T ]×O) ∪ ({T} × Ō)
min
e∈E

Heϕ on [0, T )× ∂O

Similarly, it follows from the same arguments as in 2. of Proposition 6.6 in [2] that w is a
subsolution of K−ϕ = 0 only if it is a subsolution of K̄−ϕ = 0 where

K̄−ϕ :=

 K−ϕ on ([0, T ]×O) ∪ ({T} × Ō)
min
e∈E

Heϕ on [0, T )× ∂O .

3.3.2 Super and subsolution properties

Proposition 3.2 The function v∗ is a viscosity supersolution of (3.9).

Proof. The fact that v∗ ≥ g on {T}×Ō is a direct consequence of the lower-semicontinuity
of v, see Lemma 3.1. Fix (t0, x0) ∈ [0, T )× Ō and ϕ ∈ C1,2([0, T ]× Ō) such that

0 = (v∗ − ϕ)(t0, x0) = min
[0,T ]×Ō

(v∗ − ϕ) .

1. We first assume that (t0, x0) ∈ [0, T )× ∂O and that

max
{

min
a∈A

−Laϕ(t0, x0)− f(x0, a) , min
e∈E

Heϕ(t0, x0)
}

=: −2ε < 0

and work toward a contradiction. Under the above assumption, we can find (a0, e0) ∈ A×E
and δ ∈ (t0, T − t0) for which

max {−La0ϕ− f(·, a0) , He0ϕ} ≤ −ε (3.11)

on B̄0 ∩ D̄0 where B0 := B(t0, δ)× B(x0, δ) and D0 := (t0 − δ, t0 + δ)×O. Observe that
we can assume, without loss of generality, that (t0, x0) achieves a strict local minimum so
that

inf
∂pB0∩D̄0

(v∗ − ϕ) =: ζ > 0 , (3.12)

where ∂pB0 = ([t0 − δ, t0 + δ] × ∂B(x0, δ)) ∪ ({t0 + δ} × B(x0, δ)). Let (tk, xk)k≥1 be a
sequence in B0 ∩D0 satisfying

(tk, xk) −→ (t0, x0) and v(tk, xk) −→ v∗(t0, x0) as k −→∞
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so that

ηk := v(tk, xk)− ϕ(tk, xk) −→ 0 as k −→∞ . (3.13)

Let us write (Xk, Lk, βk) for (Xa0,e0
tk,xk

, La0,e0
tk,xk

, βa0,e0
tk,xk

) where (a0, e0) is viewed as an element
of A× E . Set

θk := inf
{
s ≥ tk : (s,Xk(s)) /∈ B0

}
, ϑk := inf

{
s ≥ tk : Xk(s) /∈ O

}
.

It then follows from Itô’s Lemma, (3.11) and (3.12) that

v(tk, xk) ≤ ηk + E

[
βk(θk)v(θk, Xk(θk)) +

∫ θk

tk

βk(s)f(Xk(s), a0)ds

]
− E

[
ζ1θk<ϑk +

(
βk(θk)ζ + εLk(θk)

)
1θk≥ϑk

]
where we used the fact that βk(θk) = 1 on {θk < ϑk}. Let c > 0 be such that |ρ| ≤ c on
Ō × E and observe that

ν := inf
`∈[0,∞)

e−c`ζ + ε` > 0 .

It follows that

v(tk, xk) ≤ ηk − ζ ∧ ν + E

[
βk(θk)v(θk, Xk(θk)) +

∫ θk

tk

βk(s)f(Xk(s), a0)ds

]
which leads to a contradiction to Lemma 3.2 for k large enough, recall (3.13).
2. The case where (t0, x0) ∈ [0, T )×O is treated similarly. We assume that

min
a∈A

−Laϕ(t0, x0)− f(x0, a) =: −2ε < 0 ,

and repeat the above argument with δ small enough so that B(x0, δ) ⊂ O and therefore
θk < ϑk (so that the reflection does not operate on [t0, θk]). 2

Proposition 3.3 The function v∗ is a viscosity subsolution of (3.9).

Proof. Fix (t0, x0) ∈ [0, T )× Ō and ϕ ∈ C1,2([0, T ]× Ō) such that

0 = (v∗ − ϕ)(t0, x0) = max
[0,T ]×Ō

(v∗ − ϕ) .

The case where (t0, x0) ∈ [0, T ) × Ō is treated by similar arguments as in the proof of
Proposition 3.2, see also below. We therefore assume that t0 = T .
1. We first consider the case where x0 ∈ ∂O. We assume that

min
{
ϕ− g , min

e∈E
Heϕ

}
=: 2ε > 0 .

Set φ(t, x) = ϕ(t, x) +
√
T − t so that (∂/∂t)φ(t, x) → −∞ as t → T and observe that

(T, x0) also achieves a maximum for v∗ − φ. Without loss of generality, we can therefore
assume that (∂/∂t)ϕ(t, x) → −∞ as t→ T and that we can find δ ∈ (t0, T − t0) for which

min
{

min
a∈A

−Laϕ− f(·, a) , ϕ− g , min
e∈E

Heϕ

}
≥ ε (3.14)
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on B̄0 ∩ D̄0 where B0 := [t0 − δ, T ) × B(x0, δ) and D0 := (t0 − δ, T ) × O. Observe that
we can assume, without loss of generality, that (t0, x0) achieves a strict local maximum so
that

max
∂pB0∩D̄0

(v∗ − ϕ) =: −ζ < 0 , (3.15)

where ∂pB0 = ([t0− δ, T ]× ∂B(x0, δ))∪ ({T}×B(x0, δ)). Let (tk, xk)k≥1 be a sequence in
B0 ∩D0 satisfying

(tk, xk) −→ (t0, x0) and v(tk, xk) −→ v∗(t0, x0) as k −→∞

so that

ηk := v(tk, xk)− ϕ(tk, xk) −→ 0 as k −→∞ . (3.16)

Let us write (Xk, Lk, βk) for (Xα,ε
tk,xk

, Lα,ε
tk,xk

, βα,ε
tk,xk

) where (α, ε) is a given element of A×E .
Set

θk := inf
{
s ≥ tk : (s,Xk(s)) /∈ B0

}
, ϑk := inf

{
s ≥ tk : Xk(s) /∈ O

}
.

It follows from Itô’s Lemma, (3.14), (3.15) and the identity v(T, ·) = g that

v(tk, xk) ≥ ηk + E

[
βk(θk)v(θk, Xk(θk)) +

∫ θk

tk

βk(s)f(Xk(s), α(s))ds

]
+ E

[
ζ1θk<ϑk +

(
βk(θk)(ζ ∧ ε) + εLk(θk)

)
1θk≥ϑk

]
.

Arguing as in 1. of the proof of Proposition 3.2, this implies that

v(tk, xk) ≥ ηk + ζ ∧ ν

+ E

[
βk(θk)v(θk, Xk(θk)) +

∫ θk

tk

βk(s)f(Xk(s), α(s))ds

]
for some ν > 0 independent of (α, ε). By arbitrariness of (α, ε) and (3.16), this leads to a
contradiction to Lemma 3.2 for k large enough.
2. The case where x0 ∈ O is treated similarly, it suffices to take δ small enough so that
B(x0, δ) ⊂ O and therefore θk < ϑk. 2

3.4 A comparison result

A lot of work has been done so far on comparison results for quasilinear second-order
parabolic PDEs with non-linear or oblique derivative Neumann condition, see e.g. [1],
[9], [3] or [5] and the references therein. However, as in the three first above papers,
they usually require additional smoothness conditions on O or, as in [5], do not allow for
non-linearities at the boundary.
In this section, we provide a comparison theorem for (3.9) in the case where there exist ē
and e in E such that

e ∈ arg min{ρ(x, e) , e ∈ E} , ē ∈ arg max{ρ(x, e) , e ∈ E} ∀ x ∈ ∂O , (3.17)
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and additional conditions on the directions of reflection are imposed:
1. As in Section 7.B of [4], we first make an uniform exterior ball assumption in the
direction γ:

∃ b > 0 s.t. B(x− bγ(x, e), b) ∩ O = ∅ for all (x, e) ∈ ∂O × E . (3.18)

2. We then assume that there is a C2(Ō) function ĥ such that

〈γ(x, e) , Dĥ(x)〉 ≥ 1 for all x ∈ ∂O and e ∈ E . (3.19)

3. The direction γ(·, ē) satisfies

inf
e∈E

〈γ(x, e) , γ(x, ē)〉 > 0 for all x ∈ ∂O . (3.20)

Remark 3.4 The condition (3.19) holds in the case where E is a singleton, see (2.12).
When ∂O is C2, i.e. the algebraic distance d to ∂O is C2, and

min
e∈E

〈γ(x, e) , Dd(x)〉 ≥ ε for all x ∈ ∂O ,

for some ε > 0, then we can choose ĥ = ε−1d. This imposes a restriction on the direction
of reflection with respect to the unit normal inward vector at x ∈ ∂O.

Under these conditions, we can state the following comparison theorem for super- and
subsolutions of (3.9).

Proposition 3.4 Assume that (3.17), (3.18), (3.19) and (3.20) hold. Let u (resp. w) be a
bounded upper-semicontinuous viscosity subsolution (resp. lower-semicontinuous viscosity
supersolution) of (3.9). Then, u ≤ w on [0, T ]× Ō.

Proof. We argue by contradiction and assume that maxD̄(u−w) > 0, withD := [0, T )×O.
We can then find ε > 0 small enough and (t0, x0) ∈ D̄ such that

max
D̄

(ũ− w̃ − 2εH) = (ũ− w̃ − 2εH)(t0, x0) =: η > 0 (3.21)

where ũ(t, x) = eκtu(t, x), w̃(t, x) = eκtw(t, x) and H(t, x) := e−κt−ĥ(x) where ĥ is defined
as in (3.19) and κ > 0 is a constant parameter such that

−LaH ≥ 0 on D̄ for all a ∈ A . (3.22)

We first asume that

u(t0, x0) ≥ 0 . (3.23)

The case u(t0, x0) < 0 will be treated in 4. below.
Given λ ∈ N, we next define

Φλ(t, x, y) := ũ(t, x)− w̃(t, y)−Ψλ(t, x, y)
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where

Ψλ(t, x, y) := ε(H(t, x) +H(t, y)) + ρ(x0, e)u(t0, x0)〈γ(x0, e) , x− y〉

+
λ

2
|x− y|2 + |t− t0|2 + |x− x0|4 ,

for some ζ > 0.
Let (tλ, xλ, yλ) be a global maximum point for Φλ on D̄. Using standard arguments, one
easily checks that

(tλ, xλ) → (t0, x0) , λ|xλ − yλ|2 → 0 , (ũ(tλ, xλ), w̃(tλ, yλ)) → (ũ(t0, x0), w̃(t0, x0)) (3.24)

as λ→∞, see e.g. Lemma 3.1 and Proposition 3.7 in [4].
Moreover, Ishii’s Lemma, see Theorem 8.3 in [4], implies that we can find pλ,1, pλ,2 ∈ R
and two symmetric matrices Xα,λ and Yα,λ, depending on a parameter α > 0, such that

(pλ,1, DxΨλ(tλ, xλ, yλ), Xα,λ) ∈ P̄2,+
Ō ũ(tλ, xλ)

(pλ,2,−DyΨλ(tλ, xλ, yλ), Yα,λ) ∈ P̄2,−
Ō w̃(tλ, yλ) (3.25)

and

pλ,1 − pλ,2 = 2(tλ − t0)− κε(H(tλ, xλ) +H(tλ, yλ)) (3.26)(
Xα,λ 0

0 −Yα,λ

)
≤ (Aλ +Bλ) + α (Aλ +Bλ)2 (3.27)

where

Aλ := ε

(
D2H(tλ, xλ) 0

0 D2H(tλ, yλ)

)
+ 12(xλ − x0)⊗ (xλ − x0)

Bλ := λ

(
Id −Id
−Id Id

)
,

see [4] for the notations P̄2,+
Ō and P̄2,−

Ō .
1. Assume that xλ ∈ ∂O. Fix e ∈ E. Since yλ ∈ Ō, it follows from (3.18) that
|xλ − bγ(xλ, e)− yλ|2 ≥ b2. Since |γ| = 1, this implies

2〈γ(xλ, e) , yλ − xλ〉 ≥ −b−1|xλ − yλ|2 . (3.28)

Then, it follows from the definition of e, the fact that |γ| = 1, the assumptions ρ ≥ 0,
(3.23), (3.17), (3.19), (3.24) and (3.28) that

ρ(xλ, e)u(tλ, xλ)− 〈γ(xλ, e) , DxΨλ(tλ, xλ, yλ)〉

= (ρ(x0, e)− ρ(x0, e))u(t0, x0) + ρ(x0, e)u(t0, x0)(1− 〈γ(x0, e) , γ(x0, e)〉)

+O(λ−1)− 〈γ(xλ, e) , λ(xλ − yλ)− εDĥ(xλ)H(tλ, xλ)〉

≥ O(λ−1) + εH(t0, x0) .
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Arguing as above, using the inequalities ρ ≥ 0, u(t0, x0) ≥ w(t0, x0) and observing that
〈γ(yλ, e) , γ(x0, e)〉 → 1, we also deduce that, if yλ ∈ ∂O,

ρ(yλ, e)w(tλ, yλ)− 〈γ(yλ, e) , −DyΨλ(tλ, xλ, yλ)〉

≤ ρ(x0, e)(w(t0, x0)− u(t0, x0))− εH(t0, x0) +O(λ−1)

≤ −εH(t0, x0) +O(λ−1) ,

2. We now assume that, up to a subsequence, tλ = T for all λ ∈ N. By 1. and the
fact that H(t0, x0) > 0, we must have u(tλ, xλ) ≤ g(xλ) and g(yλ) ≤ w(tλ, yλ). Since g
is continuous, we deduce from (3.24) that u(t0, x0) ≤ w(t0, w0) which contradicts (3.21),
recall that H > 0.
3. The rest of the proof is standard. We first observe that ũ and w̃ are viscosity super-
and subsolutions of K̃+ϕ = 0 and K̃−ϕ = 0 where K̃+ and K̃− are defined as K+ and K−
with La replaced by L̃a defined by

L̃aϕ = −κϕ+ Laϕ .

In view of 1., 2. and H(t0, x0) > 0, we may find aλ in the compact set A such that, after
possibly passing to a subsequence,

0 ≥ κũ(tλ, xλ)− pλ,1 − 〈µ(tλ, xλ, aλ), DxΨλ(tλ, xλ, yλ)〉

− 1
2
Tr [σσ∗(tλ, xλ, aλ)Xη,λ]− f(tλ, xλ, aλ)

0 ≤ κw̃(tλ, yλ)− pλ,2 − 〈µ(tλ, yλ, aλ),−DyΨλ(tλ, xλ, yλ)〉

− 1
2
Tr [σσ∗(tλ, yλ, aλ)Yη,λ]− f(tλ, yλ, aλ) .

Taking the difference of these two equations, using (3.21) and (3.22), the Lipschitz conti-
nuity of the coefficients and the fact that A and O are bounded, (3.26) and (3.27) leads
to

κη +O(λ−1) ≤ κ (ũ(tλ, xλ)− w̃(tλ, yλ))

≤ O
(
|tλ − t0|+ λ|xλ − yλ|2 + |xλ − x0|2 + Cλα

)
where C > 0 is independent of λ and α and Cλ depends only on λ. Sending α → 0 and
then λ→∞ thus leads to a contradiction, recall (3.24).
4. The case u(t0, x0) < 0 is treated similarly. It suffices to consider the test function

Ψλ(t, x, y) := ε(H(t, x) +H(t, y)) + b̃−1ρ(x0, ē)u(t0, x0)〈γ(x0, ẽ) , x− y〉

+
λ

2
|x− y|2 + |t− t0|2 + |x− x0|4 ,

where ē is defined in (3.17), b̃ > 0 and ẽ ∈ E satisfy

min
e∈E

〈γ(x0, ē) , γ(x0, e)〉 = 〈γ(x0, ē) , γ(x0, ẽ)〉 = b̃

22



recall (3.20). With this modification, the arguments of 1. becomes

ρ(xλ, e)u(tλ, xλ)− 〈γ(xλ, e) , DxΨλ(tλ, xλ, yλ)〉

= (ρ(x0, e)− ρ(x0, ē))u(t0, x0) + ρ(x0, ē)u(t0, x0)(1− b̃−1〈γ(x0, e) , γ(x0, ẽ)〉)

+O(λ−1)− 〈γ(xλ, e) , λ(xλ − yλ)− εDĥ(xλ)H(tλ, xλ)〉

≥ O(λ−1) + εH(t0, x0)

in the case where xλ ∈ ∂O, and

ρ(yλ, ē)w(tλ, yλ)− 〈γ(yλ, ē) , −DyΨλ(tλ, xλ, yλ)〉

≤ ρ(x0, ē)(w(t0, x0)− u(t0, x0))

+ρ(x0, ē)u(t0, x0)(1− b̃−1〈γ(x0, ē) , γ(x0, ẽ)〉)− εH(t0, x0) +O(λ−1)

≤ −εH(t0, x0) +O(λ−1)

in the case where yλ ∈ ∂O. The rest of the proof is similar. 2

Remark 3.5 Observe that the right-hand side part of the condition (3.17) and (3.20) are
only used in step 4. of the above proof to treat the case u(t0, x0) < 0. It is therefore not
required if u ≥ 0 on [0, T ) × ∂O. Similarly, it can be dropped if w ≥ 0 on [0, T ) × ∂O
since, in this case, (3.21) also implies that u(t0, x0) ≥ 0.

Remark 3.6 Assume that

µ(x, a) = diag [x] µ̄(x, a) , σ(x, a) = diag [x] σ̄(x, a) on Rd
+ ×A

and
γ(x, e) = diag [x] γ̄(x, e) on (∂O ∩ (0,∞)d)× E

with µ̄, σ̄ and γ̄ such that µ, σ and γ satisfy the general assumptions of this section. Then,
the process Xα,ε

t,x takes values in (0,∞)d whenever x ∈ (0,∞)d. It is therefore natural to
consider the PDE Kϕ = 0 on [0, T ] × (Ō ∩ (0,∞)d), with a notion of viscosity solution
similar to the one of Definition 3.1 with O, ∂O and Ō replaced by O∗ := O ∩ (0,∞)d,
∂O∗ := ∂O ∩ (0,∞)d and Ō∗ := Ō ∩ (0,∞)d.
The proof of Proposition 3.2 and Proposition 3.3 are easily adapted to this context. We
therefore obtain that v is a viscosity solution of Kϕ = 0 on [0, T ] × Ō∗. Moreover, the
proof of the comparison principle of Proposition 3.4 can also be extended. It suffices to
add an additional penalty function of the form k

∑
i≤d |xi|−1, with k →∞, as in [2].

Remark 3.7 The smoothness assumptions on ρ and γ are only used either to construct
(Xα,ε

t,x , L
α,ε
t,x ) or to prove the dynamic programming principle of Lemma 3.2. We shall see

through an example in Section 4.3 below how they can be relaxed.
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4 Application to the pricing of barrier options under con-

straints

As already stated in the introduction, the main motivation comes from applications in
mathematical finance. More precisely, [2] provides a PDE characterization of the super-
hedging price of barrier options under portfolio constraints which is very similar to the
equation Kϕ = 0 up to an additional term inside the domain O which imposes a constraint
on the gradient of the logarithm of the solution.
The aim of this section is to show that the super-hedging price of barrier options under
portfolio constraints can actually admit a dual formulation in terms of an optimal control
problem for a reflected diffusion in which the direction of reflection is controlled. Due to
the additional term which appears in the PDE of [2], we can not expect this result to be
general and we shall restrict to a Black and Scholes type model, see below.

In order to simplify the presentation, we shall work under quite restrictive conditions,
assuming for instance that the equation Kϕ = 0 admits a sufficiently smooth solution for
a suitable choice of parameters. The general case is left for further research.

4.1 Problem formulation

We briefly present the hedging problem. Details can be found in [2] and the references
contained in this paper.

We consider a financial market which consists of one non-risky asset, whose price process
is normalized to unity, and d risky assets St,x = (Si

t,x)i≤d which solve on [t, T ]

St,x(s) = x+
∫ s

t
diag [St,x(r)] Σ dW (r)

where Σ is a d-dimensionnal invertible matrix. A financial strategy is described by a
d-dimensional predictable process π = (π1,...,πd) (viewed as a line vector) satisfying the
integrability condition ∫ T

0
|π(s)|2ds < ∞ P− a.s. (4.1)

where πi(s) is the proportion of wealth invested at time s in the risky asset Si
t,x. To an

initial capital y ∈ R and a financial strategy π, we associate the induced wealth process
Y π

t,y which solves on [t, T ]

Y (s) = y +
∫ s

t
Y (r)π(r)diag [St,x(r)]−1 dSt,x(r) = y +

∫ s

t
Y (r)π(r)Σ dW (r) .(4.2)

In this paper, we restrict to the case where the proportion invested in the risky asset are
constrained to be bounded from below. Given mi > 0, i ≤ d, we set

K :=
d∏

i=1

[−mi,∞)
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and denote by ΠK the set of financial strategies π and satisfying

π ∈ K dt× dP− a.e. (4.3)

We consider an up-and-out type option. More precisely, we take O such that

O∗ := O ∩ (0,∞)d =

{
x ∈ (0,∞)d :

d∑
i=1

xi < κ

}
, κ > 0 .

The “pay-off” of the barrier option is a continuous map g defined on Rd
+ satisfying

g ≥ 0 on O∗ and g = 0 on ∂O∗ := ∂O ∩ (0,∞)d . (4.4)

In order to apply the general results of [2], we assume that the map ĝ defined by

ĝ(x) = sup
y∈Rd

−

e−δ(y)g(x1ey
1
, . . . , xdey

d
) , x ∈ Ō∗ := Ō ∩ (0,∞)d

is continuous. Here, δ is the support function of K, see Remark 3.2. We also assume that
ĝ is almost everywhere differentiable on Ō∗ and we denote by Dĝ its gradient, when it is
well defined.

Remark 4.1 One easily checks that

ĝ(x) = sup
y∈Rd

−

e−δ(y)ĝ(x1ey
1
, . . . , xdey

d
) , x ∈ Ō∗ ,

see [2], which implies

inf
{
δ(e)ĝ(x)− 〈e , diag [x]Dĝ(x)〉, e ∈ K̃1

}
≥ 0

for all x ∈ Ō∗ where Dĝ is well defined. Here, K̃1 := Rd
− ∩ ∂B(0, 1) is the set of unit

elements of the domain of δ, see Remark 3.2.

The option pays g(St,x(T )) at T if and only if St,x does not exit O∗ before T . Since St,x

has positive components, this corresponds to the situation where

τt,x := inf{s ∈ [t, T ] : St,x(s) /∈ O} > T ,

with the usual convention inf ∅ = ∞.

The super-replication cost of the barrier option is then defined as the minimal initial
dotation y such that Y π

t,y(T ) ≥ g(St,x(T ))1T<τt,x for some suitable strategy π ∈ ΠK . This
leads to the introduction of the value function defined on [0, T ]× Ō∗ by

w(t, x) := inf
{
y ∈ R : Y π

t,y(T ) ≥ g(St,x(T ))1T<τt,x for some π ∈ ΠK

}
. (4.5)
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4.2 PDE characterization

We define L as L0 with A = {0}, µ = 0, σ(x, ·) = diag [x] Σ and f = 0. The next result is
a consequence of [2].

Theorem 4.1 (Bentahar and Bouchard [2]) The value function w is the unique viscosity
solution in the class of bounded functions on [0, T ]× (Ō ∩Rd

+) of Gϕ = 0 where Gϕ equals
min

{
−Lϕ(t, x) , min

e∈K̃1

(δ(e)ϕ(t, x)− 〈e,diag [x]Dϕ(t, x)〉)
}

on [0, T )×O∗

min
{
ϕ , min

e∈K̃1

(δ(e)ϕ(t, x)− 〈e,diag [x]Dϕ(t, x)〉)
}

on [0, T )× ∂O∗

ϕ− ĝ on {T} × Ō∗ .

In the above theorem, the notion of viscosity solution has to be taken in the classical sense.
When the equation (4.6)-(4.7)-(4.8) below admits a sufficiently smooth solution, the above
equation can be simplified as follows.

Proposition 4.1 Assume that there is a bounded non-negative C1,3([0, T )×O∗)∩C0,1([0, T )×
Ō∗) ∩ C([0, T ]× Ō∗) function ψ such that ∂ψ/∂t ∈ C0,1([0, T )× Ō∗) and satisfying

−Lψ(t, x) = 0 on [0, T )×O∗ (4.6)

min
e∈K̃1

(δ(e)ψ(t, x)− 〈e,diag [x]Dψ(t, x)〉) = 0 on [0, T )× ∂O∗ (4.7)

ψ = ĝ on {T} × Ō∗ (4.8)

lim
(t′, x′) → (T, x)

(t′, x′) ∈ [0, T )×O∗

Dψ(t′, x′) = Dĝ(x) almost everywhere on Ō∗ . (4.9)

Then, ψ = w on [0, T ) × O∗ and ψ is the unique bounded solution to (4.6)-(4.7)-(4.8) on
[0, T ]× Ō∗.

Proof. In view of Theorem 4.1, it suffices to show that ψ is a solution of Gϕ = 0.
Clearly, it is a subsolution. Since ψ ≥ 0, the supersolution property holds if, in addition
to (4.6)-(4.7)-(4.8), we have

min
e∈K̃1

(δ(e)ψ(t, x)− 〈e,diag [x]Dψ(t, x)〉) ≥ 0 on [0, T )×O∗ . (4.10)

To see this, observe that (4.6) implies that each component φk := (Dψ)k of Dψ solves on
[0, T )×O∗

− ∂

∂t
φk(t, x)− 1

2
Tr
[
diag [x] ΣΣ′diag [x]D2φk(t, x)

]
− 〈Dφk(t, x)∗diag [x] Σ , Σk〉 = 0

where Σk denotes the k-th line of Σ. Applying Itô’s Lemma to 〈e,diag [St,x]Dψ(·, St,x)〉,
e ∈ K̃1 and (t, x) ∈ [0, T )×O∗, and using (4.9), we deduce that

〈e,diag [x]Dψ(t, x)〉 = E
[
〈e,diag [St,x(τt,x)]Dψ(τt,x, St,x(τt,x))〉1τt,x<T

]
+ E

[
〈e,diag [St,x(T )]Dĝ(St,x(T ))〉1τt,x≥T

]
.

26



Since by (4.6) and (4.8)

ψ(t, x) = E
[
ψ(τt,x, St,x(τt,x))1τt,x<T + ĝ(St,x(T ))1τt,x≥T

]
,

it follows from (4.7) and Remark 4.1 that

δ(e)ψ(t, x)− 〈e,diag [x]Dψ(t, x)〉 ≥ 0

which, by arbitrariness of e, provides the required result. 2

4.3 Dual formulation

The equation (4.6)-(4.7)-(4.8) is very similar to Kϕ = 0 with E = K̃1 and

ρ(x, e) := δ(e)/|diag [x] e| , γ(x, e) = diag [x] e/|diag [x] e| .

However, the gradient of diag [x] e/|diag [x] e| may blow up near ∂(0,∞)d and it is not
possible to consider a smooth extension of γ on R2d (even on Rd

+ × K̃1).
In order to surround this difficulty, we use the following construction. First we define O
as

O := {x ∈ Rd :
d∑

i=1

|xi| < κ}

so that O∗ = {x ∈ (0,∞)d :
∑d

i=1 x
i < κ}. Let r ∈ (0, 1/2) be such that B(0, 2r) ⊂ O.

Then, given a non-increasing C2(R, [0, 1]) function φ such that φ(y) = 1 if y ≤ 1 and
φ(y) = 0 if y ≥ 3/2, we set, for n ≥ 1,

zn(e) :=
(
eiφ(nei + 2)− (1− φ(nei + 2))

)
i≤d

.

Observe that zn(e) = e on En := {e ∈ K̃1 : ei ≤ −n−1 ∀ i ≤ d}, zn(e) ∈ (−∞,−1/(2n)]d

for all e ∈ Rd, and

|diag [x] e| ≥ r/(2n) := ηn for (x, e) ∈ B(0, r)c × (−∞,−1/(2n)]d . (4.11)

We then set (with 1d = (1, . . . , 1) ∈ Rd)

γ̄n(x, e) := diag [x] zn(e)
(

1− φ

(
3
2
|diag [x] e|/ηn

))
− 1dφ

(
3
2
|diag [x] e|/ηn

)
γn(x, e) := γ̄n(x, e)/|γ̄n(x, e)| .

Using (4.11), one easily checks that γn ∈ C2(R2d,Rd). Moreover, γn(x, e) = γ(x, e) =
diag [x] e/|diag [x] e| on B(0, r)c × En and (2.3) holds for (O, γn).

For ε ∈ E0 := ∪n≥1 BVF(En) and (t, x) ∈ [0, T ] × Ō∗, we can then define (Xε
t,x, L

ε
t,x) :=

(X0,ε
t,x , L

0,ε
t,x) as in Section 3 with µ = 0, σ(x, a) = diag [x] Σ and γ defined as above. Clearly,

Xε
t,x takes values in (0,∞)d.

We next define ρ on Rd × K̃1 as

ρ(x, e) = (δ(e)/|diag [x] e|)(1− φ(|x|/r + 1/2))
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so that ρ is continuous on Rd × K̃1, satisfies the assumption of Section 3 as a function on
Rd × En, for all n ≥ 1, and

ρ(x, e) = δ(e)/|diag [x] e| on ∂O∗ × (∪n≥1En) .

With this construction, we can now consider the control problem

v(t, x) := sup
ε∈E0

E
[
e−

R T
t ρ(Xε

t,x(s),ε(s))dLε
t,x(s)ĝ

(
Xε

t,x(T )
)]

, (t, x) ∈ [0, T ]× Ō∗ .

Proposition 4.2 The function v is a bounded viscosity solution on [0, T ] × Ō∗ of (4.6)-
(4.7)-(4.8).

Proof. For n ≥ 1 and (t, x) ∈ [0, T ]× Ō∗, set

vn(t, x) := sup
ε∈En

E
[
e−

R T
t ρ(Xε

t,x(s),ε(s))dLε
t,x(s)ĝ

(
Xε

t,x(T )
)]

where En := BVF(En). It follows from the previous discussion that we can apply Lemma
3.2 to vn. Since, v = supn≥1 vn = limn→∞ ↑ vn, a monotone convergence argument
shows that the dynamic programming principle of Lemma 3.2 holds for v. Following the
arguments used in Proposition 3.2 and Proposition 3.3, and using the continuity of ρ and
γ on (B(0, r)c ∩ (0,∞)d) × K̃1 ⊃ ∂O∗ × K̃1, we deduce that v is a viscosity solution of
Kϕ = 0 on [0, T ]× Ō∗, see Remark 3.6. Since

δ(e)y − 〈e,diag [x] p〉 ≥ 0 ⇔ |diag [x] e|−1 (δ(e)y − 〈e,diag [x] p〉) ≥ 0

for (x, e, y, p) ∈ ∂O∗×K̃1×R×Rd, this implies that v is a viscosity solution on [0, T ]×Ō∗

of (4.6)-(4.7)-(4.8). 2

In view of Proposition 4.1, we finally obtain the main result of this section which provides
a dual formulation for the super-hedging price w.

Theorem 4.2 Let the conditions of Proposition 4.1 holds. Then, for all (t, x) ∈ [0, T ] ×
O∗,

w(t, x) = sup
ε∈E0

E
[
e−

R T
t ρ(Xε

t,x(s),ε(s))dLε
t,x(s)ĝ

(
Xε

t,x(T )
)]

. (4.12)

Remark 4.2 It follows from Theorem 4.1, Proposition 4.2 and Theorem 7.1 in [2] that

w(t, x) ≥ sup
ε∈E0

E
[
e−

R T
t ρ(Xε

t,x(s),ε(s))dLε
t,x(s)ĝ

(
Xε

t,x(T )
)]

even if the conditions of Proposition 4.1 are not satisfied.

Remark 4.3 When d = 1, we retrieve the results of [13], see also [14]. In this case,
E0 = {−1} and the right hand-side quantity in (4.12) can be computed by using Monte-
Carlo methods.
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Remark 4.4 It follows from [2], that w admits the dual formulation

w(t, x) = sup
ϑ∈Θ

Eϑ
[
e−

R T
t δ(ϑ(s))dsĝ (St,x(T ))1τt,x>T

]
where Θ denotes the set of bounded adapted processes with values in Rd

− and Eϑ is the
expectation operator under the equivalent probability measure Qϑ under which the process
W ϑ defined by

W ϑ(t) = W (t)−
∫ t

0
Σ−1ϑ(s)ds t ≤ T ,

is a Brownian motion. Since

St,x(s) = x+
∫ s

t
diag [St,x(r)] ΣdW ϑ(r) +

∫ s

t
diag [St,x(r)]ϑ(r)dr ,

and W ϑ has the same law under Qϑ than W under P, this is, at least formally, equivalent
to:

w(t, x) = sup
ϑ∈Θ

E
[
e−

R T
t δ(ϑ(s))dsĝ

(
Sϑ

t,x(T )
)
1τϑ

t,x>T

]
with Sϑ

t,x now defined as the solution of

Sϑ
t,x(s) = x+

∫ s

t
diag

[
Sϑ

t,x(r)
]
ΣdW (r) +

∫ s

t
diag

[
Sϑ

t,x(r)
]
ϑ(r)dr .

A formal change of variable (ϑ = |ϑ̃|ϑ̃/|diag
[
Sϑ̃

t,x

]
ϑ̃|) then leads to

w(t, x) = sup
ϑ̃∈Θ

E
[
e−

R T
t |ϑ̃(s)|ρ(Sϑ̃

t,x(s),ϑ̃(s))dsĝ
(
Sϑ̃

t,x(T )
)
1

τ ϑ̃
t,x>T

]
(4.13)

where

Sϑ̃
t,x(s) = x+

∫ s

t
diag

[
Sϑ̃

t,x(r)
]
ΣdW (r) +

∫ s

t
|ϑ̃(s)|γ(Sϑ̃

t,x(r), ϑ̃(r))dr ,

ρ(x, e) = δ(e)/|diag [x] e|, γ(x, e) = diag [x] e/|diag [x] e|, τ̃ϑ
t,x is the first exit time of Sϑ̃

t,x

from O∗ and we use the convention 0/0 = 0.

For very large values of |ϑ̃|, the process Sϑ̃ is “essentially” reflected in the direction
γ(Sϑ̃

t,x, ϑ̃).
Moreover, since ĝ ≥ 0, we should seek for a control ϑ̃ such that τ ϑ̃

t,x > T , i.e. which “causes
reflection” of Sϑ̃ at least at the boundary ∂O∗. The “reflection” should also be optimal so
that the right hand-side of (4.13) is maximal. If d = 1 and ĝ is non-decreasing on O∗, the
action of ϑ̃ should then be minimal since it decreases the value of Sϑ̃

t,x(T ) and ρ(x, e) > 0 if
e 6= 0. Thus, at the limit, the process should be reflected only at the boundary ∂O∗. This
phenomenon, which was already observed in [13] in the one dimensional case, naturally
leads to the formulation (4.12).
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