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Abstract

We consider a class of concave law invariant utilities which contains
the Rank Dependent Expected Utility (RDU). For this class, we show
that computation of the demand for a contingent claim, although not as
simple as in the Expected Utility (EU) case, is still tractable. Specific
attention is given to the RDU case. Numerous examples are fully solved.

1 Introduction

The axiomatic aspects of the Rank Dependent Expected Utility model (RDU
from now on) have extensively been discussed and it is well known that the
RDU accounts for a number of violations of Expected Utility as Allais’ para-
dox. Necessary and sufficient conditions for RDU to be second order stochastic
dominance (SSD from now on) preserving are well known and equivalent to its
concavity as functional over random variables. Technical isues as differentia-
bility of RDU as functional over lotteries (see for example Chew et al [7] or
Wang [21] and the bibliographies listed therein) or over random variables (see
Carlier and Dana [2]) are also well understood. However, RDU has not been
used much for analyzing problems of economics of uncertainty, in particular for
infinite state spaces except in the recent mathematical finance literature on risk
measures (see for example [19] and [14]). This is due to the technical difficulty
of solving maximization problems for such utilities. The aim of this paper is to
provide tools to study the demand for state contingent claims of a RDU agent.
We show that computations, although not as simple as for an Expected utility
(EU from now on), are still tractable. The technique we use, applies to a larger
set of utilities that we next introduce.

We consider concave utilities which are additively separable with respect to
the quantile:

U(X) :=
∫ 1

0

L(t, F−1
X (t))dt+ g(F−1

X (0)). (1)

In (1), X is a random variable on a non atomic space with distribution func-
tion FX and F−1

X is a version of the inverse of FX or quantile of X. The term
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g(F−1
X (0)) = g(essinf X) accounts for a specific weight given to the minimal

value of X. Let us remark that U is stochastic dominance preserving if and
only if L is submodular and concave nondecreasing in its second argument.

The class of utilities of type (1) contains the set of SSD preserving RDU.
Indeed, from [7], any SSD preserving RDU is the Choquet integral of u(X),
a concave function of X with respect to a convex distortion f : [0, 1] → [0, 1]
continuous or discontinuous at one. When the distortion is continuous,

Ef (u(X)) =
∫ 1

0

f ′(1− t)u(F−1
X (t))dt (2)

and is obtained from (1) by setting g = 0 and L(t, x) = f ′(1 − t)u(x), while if
f is discontinuous,

Ef (u(X)) = (1− f(1−))u(F−1
X (0)) +

∫ 1

0

f ′(1− t)u(F−1
X (t))dt (3)

defines a utility of the type (1) with L(t, x) = f ′(1 − t)u(x) and V (x) =
(1 − f(1−))u(x) and f(1−)) = limx↑1 f(x). When u(x) = x in formula (3),
one obtains Yaari’s utilities.

In the case g = 0, utility functions of type (1) were first introduced by Green
and Jullien [12]. In Epstein and Chew [6], these utilities are called Rank linear
utilities (RLU from now on). Green and Jullien gave a representation theo-
rem under an axiom over distribution functions weaker than the independence
axiom, the ordinal independence axiom. While providing unifying foundations
for non expected utilities theories, Epstein and Chew [6] discussed representa-
tions of type (1) and provided a representation theorem under an axiom of
rank separability. Axiomatic foundations for (1) were finally given by Chew and
Wakker [8] under a comonotone sure thing principle. Necessary and sufficient
conditions for these utilities to be second order stochastic dominance preserving
were given by Epstein and Chew [6] and Green and Jullien [12]. Ordering of
risk aversions for utilities of type (1) was characterized by Green and Jullien
[12].

In [19], Schied solved the Yaari and the expected shortfall demand problems
and obtained discontinuous solutions. In this paper, we focus on the demand
of RLU agents when L(t, .) is strictly concave. We discuss demand for state
contingent claims under the assumption that the pricing density ψ has a con-
tinuous distribution function Fψ. For SSD preserving utilities, it is shown in [4]
that a demand problem for contingent claims may be brought down to a quan-
tile demand problem. The quantile of a random variable being a nondecreasing
function, the quantile demand problem reduces to a variational problem with a
monotonicity constraint.

Calculus of variations problems with a monotonicity constraint appeared in
one dimensional adverse selection theory (see for example, Mirrlees [16], Mussa-
Rosen [17], Spence [20], Guesnerie-Laffont [13], Rochet [18]). Bank and Riedel
[1] also dealt with such problems to solve intertemporal utility maximization
problems. In particular, Mussa and Rosen [17] developed a method called the
ironing procedure to characterize solutions. They showed that there is a partition
of the type space consisting of:
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• sub-intervals on which the solution is constant: such intervals are called
bunches,

• sub-intervals on which the solution is increasing and coincides with the
maximizer without the monotonicity constraint.

Specific attention is then given to the RDU case, assuming the distortion
either continuous or discontinuous. We first show that the demand of a RDU
agent with a continuous distortion is decreasing in the pricing density ψ if and
only if the rate of growth of the quantile of the pricing density is greater than
the distortion index of the agent f”/f ′. This condition is also equivalent to lnψ
being more disperse in the sense of Bickel-Lehman than ln f ′. Otherwise, there
are ranges of the pricing density on which the demand is constant. We next
show that a RDU agent behaves almost as if she was perceiving a perturbation
of the pricing density and was an EU agent, the perceived pricing density de-
pending only on the distortion and on the pricing density. In the RDU case,
distortion of the probabilities and risk aversion have therefore separate effects
on demand. The distortion determines the perceived pricing density. Risk aver-
sion determines demand in function of the perceived pricing density almost as
for a EU model. In particular if f ′(0) = 0 (f ′(1) = ∞), the perceived pricing
density is constant for high (low) values of the true pricing density and there-
fore the demand function is constant for low (high) values of the pricing density.
The previous analysis extends to the case of discontinuous distortions with the
further property that cautiousness induces the perceived pricing density to be
constant for low values of the pricing density and thus the demand to be con-
stant for high values of the pricing density. We also prove that the RDU demand
function is strangled either if f ′(0) = 0 and the agent is averse to the worse
state or if f ′(0) = 0 and f ′(1) = ∞.

The general techniques of the paper are illustrated by several examples for
which we obtain closed-form solutions for both RDU and RLU cases. The RDU
examples prove that the demand may have an arbitrary number of bunches.
Another example suggests that the RLU model allows richer income effects
than the RDU.

The paper is organized as follows: In section 2, standard definitions and
properties are reviewed. Utilities of type (1) are introduced. Necessary and
sufficient conditions for such utilities to be SSD preserving are provided. Section
3 is devoted to the reformulation of a RLU demand problem as a variational
problem with a monotonicity constraint. Section 4 specializes on the RDU case.
Section 5 is devoted to examples.

2 On rank linear utility functionals

2.1 Definitions

Given as primitive is a probability space (Ω,B, P ). Let X be a random vari-
able and let FX(t) = P (X ≤ t), t ∈ R denote its distribution function. The
generalized inverse of FX is defined by:

F−1
X (0) = essinf X and F−1

X (t) = inf{z ∈ R : FX(z) ≥ t}, for all t ∈ (0, 1]
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Let us recall that the random variable X dominates Y in the sense of second
order stochastic dominance (SSD), which will be denoted X�2Y if E(u(X)) ≥
E(u(Y )), for every utility function u : R → R concave nondecreasing. We also
recall the characterization:

Proposition 1 The random variable X dominates Y in the sense of second
order stochastic dominance if and only if∫ 1

0

g(s)F−1
X (s)ds ≥

∫ 1

0

g(s)F−1
Y (s)ds, ∀g : [0, 1] → R+ nonincreasing. (4)

We also recall that X strictly dominates Y in the sense of SSD (notation
X�2Y ) if E(u(X)) > E(u(Y )) for every strictly concave nondecreasing utility
function u. Equivalently, X strictly dominates Y if and only if the inequality is
strict in (4), for every decreasing function g.

The fact that two random variables X on (Ω,B, P ) and Y on (Ω′,B′, P ′)
have the same probability law will be denoted X d∼ Y . For a map V : L∞(Ω) →
R ∪ {−∞}, the domain of V is defined by
dom V := {X ∈ L∞(Ω) : V (X) > −∞}.

Definition 1 1. A map V : L∞(Ω) → R ∪ {−∞} is (strictly) monotone if
X ≥ Y a.e. implies V (X) ≥ V (Y ) (resp. V (X) > V (Y ) whenever X ≥ Y
a.e. and P (X 6= Y ) > 0 and Y ∈dom V ).

2. A map V : L∞(Ω) → R∪{−∞} is law invariant if V (X) = V (Y ) whenever
X

d∼ Y .

3. A map V : L∞(Ω) → R∪{−∞} (strictly) preserves SSD if X�2 Y implies
V (X) ≥ V (Y ) (resp. V (X) > V (Y ) whenever X�2 Y and Y ∈dom V ).

Since X d∼ Y is equivalent to X�2 Y and Y�2 X, SSD preserving functions
are law invariant. As X + Y�2X for any Y ≥ 0, Y 6= 0, SSD preserving
functions (strictly SSD preserving functions) are monotone (strictly monotone).
The converse is not true. For a counterexample, see Dana [9]. However, we have
the following result proven in Dana [9]:

Proposition 2 Let (Ω,B, P ) be non-atomic and let V : L∞(Ω) → R∪{−∞} be
concave, σ(L∞(Ω), L1(Ω)) upper semi-continuous. Then V is SSD preserving
if and only if V is law invariant and monotone.

In the remainder of the paper, we shall assume that (Ω,B, P ) is non-atomic
that is there exists a random variable U on (Ω,B, P ) uniformly distributed on
[0, 1].

2.2 Stochastic dominance

In the paper, we pay special attention to quantile based-utilities defined by
integrals. These utilities generalize the rank dependent expected utility (see
next subsection) and are of the form:

V (X) := VL(X) + g(F−1
X (0)), (5)
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with

VL(X) :=
∫ 1

0

L(t, F−1
X (t))dt, for all X ∈ L∞(Ω,B, P ). (6)

Necessary and sufficient conditions for a utility VL defined by (6) to be SSD
preserving are next provided (see [5] for a proof). For the sake of simplicity, L
is assumed to be smooth in what follows.

Proposition 3 Let (Ω,B, P ) be non atomic and VL be of type (6). Let L ∈
C2([0, 1]× R). The following are equivalent:

1. VL is SSD preserving,

2. ∂xL ≥ 0, ∂xxL ≤ 0 and ∂txL ≤ 0 on [0, 1]× R

3. VL is concave, monotone and σ(L∞(Ω), L1(Ω)) upper semi-continuous.

If, in addition to the assumptions of the previous proposition, we either
assume that L(t, .) is strictly concave for every t ∈ [0, 1], or that ∂txL < 0 then
VL is strictly SSD preserving. Indeed, assume first that L(t, .) is strictly concave
and let X and Y be in L∞(Ω,B, P ) with X �2 Y . By strict concavity and since
F−1
X 6= F−1

Y , we have:

VL(Y )− VL(X) <
∫ 1

0

∂xL(t, F−1
X (t))(F−1

Y (t)− F−1
X (t))dt

Let g(t) := ∂xL(t, F−1
X (t)). By assumption, g is nonnegative. Since F−1

X can be
approximated by smooth nondecreasing functions in the a.e. convergence, we
may assume that F−1

X := x is a smooth nondecreasing function. Hence

d

dt
[∂xL(t, x(t))] = ∂txL(t, x(t)) + ∂xxL(t, x(t))x′(t) ≤ 0,

and g is nonincreasing. From (4), we deduce that VL(Y ) < VL(X), hence VL is
strictly SSD preserving. Finally, if ∂txL < 0 then g defined above is decreasing,
hence if X �2 Y , then

VL(Y )− VL(X) ≤
∫ 1

0

g(t)(F−1
Y (t)− F−1

X (t))dt < 0.

2.3 Choquet integral with respect to a convex distortion

A convex distortion is a convex increasing map f : [0, 1] → [0, 1] such that
f(0) = 0, f(1) = 1. Since f is convex and f(0) = 0, f is continuous on [0, 1[.
The Choquet integral of X ∈ L∞(Ω) with respect to the capacity f(P ), denoted
Ef (X), is defined by

Ef (X) =
∫ 0

−∞
(f(P ({X > t}))− 1)dt+

∫ ∞

0

f(P ({X > t}))dt

Since f is nondecreasing, convex and finite, it is differentiable a.e. and f ′ ∈
L1

+[0, 1]. When f is continuous, one has

Ef (X) =
∫ 1

0

f ′(1− t)F−1
X (t)dt.
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When f is discontinuous at 1, let f(1−) = limx↑1 f(x) and f̃(x) = f(x)
f(1−) if

x < 1 and f̃(1) = 1 (note that f̃ is continuous). Since Ef is translation invariant
and X + ‖X‖∞ ≥ 0, we may assume that X ≥ 0. We then have:

Ef (X) =
∫ essinf (X)

0

f(P (X > t))dt+
∫ ∞

essinf (X)

f(P (X > t))dt

=essinf (X) + f(1−)

[∫ ∞

0

f̃(P (X > t))dt−
∫ essinf (X)

0

f̃(P (X > t))dt

]
=(1− f(1−))essinf (X) + f(1−)Ef̃ (X)

=(1− f(1−))F−1
X (0) +

∫ 1

0

f ′(1− t)F−1
X (t)dt

.

Hence, Ef (u(X)) = (1− f(1−))u(F−1
X (0)) +

∫ 1

0

f ′(1− t)u(F−1
X (t))dt

and therefore a RDU is a utility of type (5) with L(t, x) = f ′(1 − t)u(x) and
g(x) = (1− f(1−))u(x).

3 Reformulation of the RLU demand problem

Let L∞+ (Ω) be the set of bounded state contingent consumptions. Let ψ ∈
L1

+(Ω) with E(ψ) = 1 be a pricing density. Consider an agent with utility
V : L∞(Ω) → R ∪ {−∞} and income w > 0. The agent’s demand for state
contingent claims is the solution to :

(D) sup{V (X) : E(ψX) ≤ w, X ≥ 0}. (7)

3.1 Quantile-based reformulation

Let us assume that Fψ is continuous (or equivalently that F−1
ψ is strictly in-

creasing). We recall that this implies that Fψ(ψ) is uniformly distributed. We
further assume that V is strictly SSD preserving and concave. Let

A := {x : [0, 1] → R+, x nondecreasing}

Intuition suggests that the demand problem may be restricted to the class of
nonincreasing function of the price. Since F−1

ψ is strictly increasing, any nonin-
creasing function of the price is of the form x(1−Fψ(ψ)) with x ∈ A. Indeed if
X = f(ψ) with f nonincreasing, then F−1

X (t) := x(t) = f(F−1
ψ (1− t)). As F−1

ψ

is strictly increasing, we have f(u) = x(1−Fψ(u)). Hence (7) may be restricted
to claims of the form X = x(1− Fψ(ψ)) with x ∈ A.

Let U be a uniformly distributed random variable on (Ω,B, P ) and let us
define v(x) := V (x ◦ U) for x ∈ A. Since V is law invariant, v does not depend
on the choice of U . The following proposition that is proved in details in [4]
shows that the demand problem may be brought down to a quantile problem.
Defining q(t) := F−1

ψ (1− t), q is decreasing and nonnegative.
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Proposition 4 X is a solution of (D) iff X = x(1−Fψ(ψ)) and x is a solution
of :

(D̃) sup{v(x) : x ∈ A, x bounded and
∫ 1

0

q(t)x(t)dt ≤ w}

Equivalently, there exists λ > 0 such that xλ is a solution of

sup
y∈A

v(y)− λ

∫ 1

0

q(t)y(t)dt (8)

and
∫ 1

0
q(t)xλ(t)dt = w.

In proposition 4, we only required V to be strictly SSD preserving and
concave. From now on, we assume that V (X) :=

∫ 1

0
L(t, F−1

X (t))dt+g(F−1
X (0)).

We then have:

v(x) =
∫ 1

0

L(t, x(t))dt+ g(x(0)) (9)

The demand problem in the RLU case then amounts to

sup{
∫ 1

0

L(t, x(t))dt+ g(x(0)) : x ∈ A ∩ L∞,
∫ 1

0

qx ≤ w} (10)

Equivalently x solves (10) if and only if there exists λ > 0 such that xλ solves:

sup
y∈A∩L∞

vλ(y) :=
∫ 1

0

L(t, y(t))dt+ g(y(0))− λ

∫ 1

0

qy. (11)

and xλ satisfies the budget constraint. For a fixed λ, Program (11) is a varia-
tional problem subject to a monotonicity constraint. Problems with a similar
mathematical structure have been studied in the theory of incentives.

3.2 Characterization of solutions

Throughout this section, we assume the following:

• L ∈ C1([0, 1]× R∗+,R), g ∈ C1(R∗+,R),

• for every t ∈ [0, 1], L(t, .) is strictly concave increasing on R∗+, g is strictly
concave increasing on R∗+, and:

lim
x→+∞

sup
t∈[0,1]

max(L(t, x), 0)
x

= 0 (12)

• there exists q0 > 0 such that q ≥ q0 on [0, 1], q is continuous on [0, 1],

• defining:
x̃λ(t) := argmaxx∈R+

(L(t, x)− λq(t)x).

x̃λ is Lipschitz continuous on [0, 1],

7



• either:
lim
x→0+

g′(x) = +∞, or (13)

lim
(t,x)→(0+,0+)

∂xL(t, x) = lim
ε→0+

∫ δ

0

∂xL(t, ε)dt = +∞, ∀δ ∈ (0, 1). (14)

The first three assumptions ensure the existence and uniqueness of a con-
tinuous solution to (10) and (11) for every λ > 0. Strict concavity of L(t, .) is
necessary to obtain the continuity of the solution: Schied [19] obtains discon-
tinuous solutions in the linear case. Under the fourth assumption, the solutions
are Lipschitz continuous, hence differentiable a.e.. When g = 0, the last as-
sumption simplifies to (14), an Inada condition weaker than the assumption
∂xL(t, 0+) = +∞ for all t that might seem more natural. In subsection 5.3, we
discuss the case L(t, x) := ln(t+x) which satisfies (14) and ∂xL(t, 0+) = t−1 ∈ R,
for every t > 0. In the RDU case, L(t, x) = f ′(1− t)U(x), and (14) simplifies to
the usual Inada condition U ′(0+) = +∞. Conditions (13) or (14) ensure that
solutions to (10), and (11) remain positive.

Existence, uniqueness and characterization results for (10) and (11) for every
λ > 0 are next given.

Proposition 5 Under the previous assumptions, one has:

• (10) admits a unique solution x, and (11) admits a unique solution xλ for
every λ > 0,

• xλ is Lipschitz continuous, hence differentiable a.e., for every λ > 0,

• let λ > 0 and x ∈ A ∩ L∞ and let Λ be defined for every t ∈ [0, 1] by:

Λ′(t) := ∂xL(t, x(t))− λq(t) and Λ(1) = 0 (15)

then x = xλ if and only if x is differentiable a.e. and:

(i) Λ ≥ 0, and Λ(t)x′(t) = 0 a.e.,
(ii) x(0) > 0 and Λ(0) = g′(x(0)).

A detailed proof of proposition 5 may be found in [4]. Condition (i) is the usual
complementary slackness condition associated to the monotonicity constraint :
it means that a.e. either Λ(t) = 0 or xλ′(t) = 0. Let us remark that when
t ∈ (0, 1) and Λ(t) = 0 = minΛ, then Λ′(t) = 0 which implies xλ(t) = x̃λ(t).
The optimality condition (i), then implies the simpler condition:

xλ
′(t) 6= 0 ⇒ xλ(t) = x̃λ(t). (16)

To solve the demand problem (10) in practice, we shall proceed in two steps :
we shall first compute, for a given λ, the solution xλ of (11) by using proposition
5, then we shall find λ such that the budget constraint is satisfied by xλ.

If g = 0, we deduce from proposition 5 that if x̃λ is decreasing, then xλ
coincides with x̃λ at, at most one point, hence optimality condition (i) implies
that xλ is constant. In the polar case where x̃λ is nondecreasing, then xλ = x̃λ.
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When x̃λ is not monotone, finding the solution is more intricate. It first follows
from proposition 5, that either xλ is flat or xλ = x̃λ (the latter case can only
occur on intervals where x̃λ is itself nondecreasing). Furthermore, the function
Λ defined by (15) must remain nonnegative and Λ = 0 on intervals on which
xλ = x̃λ. By concavity of L(t, .), Λ is nondecreasing whenever the graph of xλ
is below that of x̃λ and nonincreasing otherwise.

4 Applications to the RDU demand problem

4.1 The case of a continuous distortion

The RDU demand problem, with a continuous distortion and fixed multiplier
λ > 0, which corresponds to the case L(t, x) = f ′(1− t)U(x) reads as:

sup
x∈A

vλ(x) :=
∫ 1

0

(f ′(1− t)U(x(t))− λq(t)x(t))dt (17)

Assuming U ′ is differentiable, decreasing with U ′(0+) = +∞, U ′(∞) = 0, let
I :]0,∞[→]0,∞[ denote the inverse of U ′. The function x̃λ that maximizes
pointwise the integrand in (17) is given by:

x̃λ(t) = I

(
λq(t)

f ′(1− t)

)
= I

(
λF−1

ψ (1− t)
f ′(1− t)

)
. (18)

Note that x̃λ has the same monotonicity as the ratio f ′(1 − t)/F−1
ψ (1 − t)

(independently of λ). In general, this ratio is not monotone increasing, but
when it is, necessarily xλ = x̃λ. Conversely, since either xλ′(t) = 0 or xλ(t) =
x̃λ(t), xλ is strictly increasing (meaning that the demand function is strictly
decreasing) if and only if F−1

ψ /f ′ is increasing. As a direct consequence we
have:

Proposition 6 The demand of an RDU agent with a continuous distortion is
decreasing in the price if and only if F−1

ψ /f ′ is increasing. Hence, if F−1
ψ /f ′ is

not monotone increasing, there are ranges of values of the pricing density for
which the demand is constant.

The condition F−1
ψ /f ′ increasing means that F−1

ψ grows faster than f ′. This
condition is equivalent to the distortion index f ′′/f ′ being smaller than the
growth rate (F−1

ψ )′/F−1
ψ . Hence if the distortion effect is high, then the demand

function has some flat zones.
In general, F−1

ψ /f ′ is not monotone. We may remark that the following
function

hλ :=
U ′(xλ)
λ

is independent of the multiplier λ. Indeed, the optimality conditions may be
expressed in terms of the (positive nonincreasing) function hλ. They may be
written as:

Λ(t)
λ

=
∫ t

0

(f ′(1− s)hλ(s)− q(s))ds. (19)
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Hence hλ is characterized by the conditions:∫ t

0

(f ′(1− s)hλ − q) ≥ 0, ∀t ∈ [0, 1] , hλ positive nonincreasing, (20)

h′λ(t)
∫ t

0

(f ′(1− s)hλ − q) = 0 a.e. and
∫ 1

0

(f ′(1− s)hλ − q) = 0. (21)

Since these conditions do not depend on λ and define hλ in a unique way by
proposition 5, hλ is independent of λ hence will simply be denoted h. Once h
is determined, xλ is given by xλ = I(λh). The multiplier λ > 0 is determined
by the budget constraint:∫ 1

0

xλ(s)q(s)ds =
∫ 1

0

I(λh(s))q(s)ds = w. (22)

Denoting by λ∗ the root of (22) (existence and uniqueness follows from the
strict monotonicity of I and I(0) = ∞, I(∞) = 0), the optimal x is given by
x = I(λ∗h).

To sum up, the demand X can be computed as follows:

• determine h by the conditions (20) and (21),

• determine λ = λ∗ by solving (22) ,

• the demand (as a function of the price ψ) is then given by

X(ψ) = I(λ∗H(ψ)) with : H(ψ) := h(1− Fψ(ψ)). (23)

In practice, only the determination of h may be complicated. Let us remark
though that there is a partition of (0, 1) consisting of subintervals on which h is
constant and subintervals on which h(t) = F−1

ψ (1− t)/f ′(1− t). We also wish to
emphasize that h does not depend on the utility index U (only λ∗ does). If we
consider the EU case (f(t) = t) as a benchmark, it is easy to interpret formula
(23) as a deformation of the EU demand. Indeed, in the EU case, one has h = q
and the demand is given by X(ψ) = I (λ∗ψ) for some λ∗ > 0. Comparing the
previous EU formula with (23) : X(ψ) = I(λ∗H(ψ)) = I(λ∗h(1 − Fψ(ψ)), we
may view the function H (which typically exhibits flat zones) as a deformation
of the identity map due to uncertainty and dispersion of prices. Interpreting
H(ψ) as perceived price, we see that the demand of an RDU agent is almost
(the value of the multiplier need not be the same) the same as if she was EU
facing the perceived price H(ψ). Let us point out that in general the perceived
price is an atomic random variable.

Let us finally remark that, for fixed utility index, price distribution and
distortion, λ∗ ( which is determined almost as for a EU model) is a decreasing
function of revenue w. Hence the demand depends on w in an increasing way.

If the distortion of small or large probabilities is high, then there is an interval
of prices on which the demand is constant:

Proposition 7 If f ′(0) = 0, the demand is constant for low prices. If f ′(1) =
∞, the demand is constant for high prices.

10



Proof. Let us assume that f ′(0) = 0. Using (19) and (21), one has:

Λ(t)
λ

=
∫ 1

t

(q(s)− f ′(1− s)h(s))ds

hence Λ(t) > 0 and x′(t) = 0 for t close to 1. Thus, the demand is constant for
low prices. If f ′(1) = ∞, one obtains in a similar way Λ(t) > 0 for small t : the
demand is constant for high prices.

Before going further, let us compute the demand as a function of h for
standard utility index:
Example A

Assume that U(x) = ln(x). Then (22) reads as 1
λ∗

∫ 1

0
q
hdt = w, therefore

x(t) =
w

h(t)
∫ 1

0
q
h

hence X(ψ) =

(
w∫ 1

0
q
hdt

)
1

h(1− Fψ(ψ))
.

In the EU case, x = w
q and X = w

ψ .

Example B
Assume that U(x) = x1−γ

1−γ , γ < 1. Then (22) reads as 1
(λ∗)1/γ

∫ 1

0
q

h1/γ dt = w,
therefore

x =
w

h1/γ
∫ 1

0
q

h1/γ

hence X(ψ) =

(
w∫ 1

0
q

h1/γ dt

)
1

h(1− Fψ(ψ))1/γ

while in the EU case, x = w
q1/γ

1R 1
0 q

1−1/γdt
and X = w

E(ψ1−1/γ)
1

ψ1/γ .

4.2 RDU with discontinuous distortion

In this paragraph, we extend the previous analysis to the case of discontinuous
distortions. The RDU demand problem, with a discontinuous distortion and
fixed multiplier λ > 0 reads as:

sup
x∈A

vλ(x) := εU(x(0)) + (1− ε)
∫ 1

0

(f ′(1− t)U(x(t))− λq(t)x(t))dt (24)

with f differentiable and ε > 0. Let us define:

x̃λ(t) = I

(
λq(t)

f ′(1− t)(1− ε)

)
= I

(
λF−1

ψ (1− t)
f ′(1− t)(1− ε)

)
. (25)

To solve the demand problem in the present case, we introduce as in the
previous paragraph

hε,λ :=
U ′(xλ)
λ

.

The optimality conditions may be expressed in terms of the hε,λ. First define:

Λ(t)
λ

= εhε,λ(0) + (1− ε)
∫ t

0

(f ′(1− s)hε,λ − q).

11



Then the optimality conditions read as:

εhε,λ(0) + (1− ε)
∫ t

0

(f ′(1− s)hε,λ − q) ≥ 0, ∀t ∈ [0, 1] , (26)

hε,λ positive nonincreasing and

h′ε,λ(t)
(
εhε,λ(0) + (1− ε)

∫ t

0

(f ′(1− s)hε,λ − q) = 0
)

(27)

εhε,λ(0) + (1− ε)
∫ 1

0

(f ′(1− s)hε,λ − q) = 0. (28)

Since these conditions do not depend on λ and define hε,λ in a unique way as
previously, hε,λ is independent of λ and will simply be denoted hε. As in the
continuous case, the optimal solution x and the associated multiplier λ∗ > 0 are
determined by the budget constraint.

Since Λ(t) > 0 for small t > 0 (and this holds for any f ′ and F−1
ψ ), hε is

constant and so is x for small values of t. In other words, for any distortion,
utility index and distribution of prices when ε > 0, the demand always exhibits
a flat zone for high prices:

Proposition 8 The demand of an RDU agent with a discontinuous distortion
is constant for high values of the pricing density. If furthermore f ′(0) = 0, then
the demand is also constant for low values of the pricing density.

As in the continuous case, the optimal solution x and the associated multi-
plier λ∗ > 0 are determined by the budget constraint. We therefore have the
following expression of the demand:

X(ψ) = I(λ∗Hε(ψ)) with: Hε(ψ) = hε(1− Fψ(ψ)). (29)

and λ = λ∗ is the root of :
∫ 1

0
I(λhε)q = w.

When F−1
ψ /f ′ is nonincreasing as in proposition 6 the demand is totally

flat. In the polar case where F−1
ψ /f ′ is increasing, it is no longer true that the

demand is decreasing in the price:

Proposition 9 If F−1
ψ /f ′ is nonincreasing, the demand is constant. If F−1

ψ /f ′

is increasing, then there exists t1 ∈ (0, 1) such that:

hε(t) = min

{
(1− ε)

F−1
ψ (1− t)
f ′(1− t)

, (1− ε)
F−1
ψ (1− t1)
f ′(1− t1)

}
.

When F−1
ψ /f ′ increasing, by formula (29), let us remark that the demand

X is decreasing for prices smaller than F−1
ψ (1− t1) and then constant for prices

larger than F−1
ψ (1− t1).

12



5 Examples

5.1 RDU with a continuous distortion

Example 1
To illustrate the method discussed in the previous section, let us consider an

RDU example with u(x) = ln(x), f(t) = t2 and q(t) = F−1
ψ (1− t) = 1−2t2 + t3.

Given λ > 0, we then have to solve first

sup
x∈A

∫ 1

0

2(1− t) ln(x(t))dt− λ

∫ 1

0

(1− 2t2 + t3)x(t)dt. (30)

The function x̃λ that maximizes pointwise the integrand in (30) is given by:

x̃λ(t) =
2

λ(1 + t− t2)

is symmetric with respect to 1/2 and attains a minimum at this point. Hence
the solution xλ of (30) cannot equal x̃λ on the whole of [0, 1]. We then know
that xλ has at least one flat zone. In this example, due to the shape of x̃λ, we
look for a solution with a single flat zone of the form [0, t0] with t0 ∈ [1/2, 1].
In other words, we look for xλ of the form xλ = 1/(λh) with:

h(t) =
{

(1 + t0 − t20)/2 if t ∈ [0, t0],
(1 + t− t2)/2 if t ∈ [t0, 1]. (31)

with t0 ∈ [1/2, 1] determined by the optimality condition:

Λ(t0)
λ

:= h(t0)
∫ t0

0

f ′(1− s)ds−
∫ t0

0

q(s)ds = 0.

After elementary computations, this equation simplifies to t20(3t
2
0−10t0 +6) = 0

which admits as unique root in [1/2, 1] t0 = (5 −
√

7)/3. All the sufficient
optimality conditions are satisfied by the function xλ determined above, hence
xλ solves (30). To determine the demand, we finally determine λ such that xλ
satisfies the budget constraint.

It is possible to construct examples where the demand has an arbitrary
number of constant parts. The demand in the next example has exactly two
flat pieces : one for high values of the pricing density and one for low values
of the pricing density. For other choices of the distortion f , we could generate
examples of demands with an arbitrary large number of flat pieces.

Example 2
We now consider a case where the demand has exactly two flat pieces. In

this example, we assume that u(x) = ln(x), F−1
ψ (t) = q(1− t) = et and that the

distortion f is given by:

f(t) =
9
2

+ et(−9
2

+
19
2
t− 9

2
t2 + t3)

Given λ > 0, we first consider the problem

sup
x∈A

∫ 1

0

f ′(1− t) ln(x(t))dt− λ

∫ 1

0

e1−tx(t)dt. (32)
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The function x̃λ that maximizes pointwise the integrand in (32) is given by:

λx̃λ(t) :=
f ′(1− t)
e1−t

= 5− t(t− 1)(t− 1
2
) =: z0(t).

Since z0 is not nondecreasing, x̃λ cannot solve problem (32). However the shape
of z0 together with the optimality conditions of proposition 5 suggests to look
for a solution xλ of (32), with xλ = 1/(λh) where:

1
h(t)

=

 z0(t1) if t ∈ [0, t1],
z0(t) if t ∈ [t1, t2],
z0(t2) if t ∈ [t2, 1].

(33)

Define for all t ∈ [0, 1]:

Λ(t)
λ

=
∫ t

0

(
f ′(1− s)h(s)− e1−s

)
ds.

From (21), Λ(1) = 0. If xλ = 1/(λh) is the solution, we must have Λ(t1) =
Λ(t2) = 0 and Λ = 0 on [t1, t2] for a pair t1 ∈ (0, 1/2) and t2 ∈ (1/2, 1). Hence

1
z0(t1)

[f(1)− f(1− t1)] = e− e1−t1 .

f(1− t2)
z0(t2)

= e1−t2 − 1

We obtain t1 ≈ 0.339, t2 ≈ 0.672. By construction, h defined by (33) is nonin-
creasing and it can be checked (see graph) that Λ ≥ 0 on [0, 1]. The optimality
conditions for (32) are thus satisfied. It finally remains to determine the multi-
plier λ by using the budget constraint. One then gets λ = C/w for C ≈ 8.577.
Hence

x =
w

Ch
equivalently X =

w

Ch(1− lnψ)

The next figure represents the graph of the unconstrained solution z0 and
that of the constrained solution λx.
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Here follows the graph of Λ/λ.
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Finally, the demand function is represented in the next figure
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5.2 RDU with discontinuous distortions

As an example, we study the demand of an ε-contamined RDU with logarithmic
utility index and a power distortion function in the case of uniformly distributed
prices on [1, 2] (i.e. Fψ(t) = t− 1, q(t) = 2− t). We then have to study first for
given λ > 0:

sup
x∈A

vλ(x) :=
∫ 1

0

((1− ε)β(1− t)β−1 ln(x(t))−λ(2− t)x(t))dt+ ε ln(x(0)). (34)

Denoting by xλ the solution of (34), we recall that xλ = 1/(λhε) for some
nonincreasing function hε independent of λ (when ε = 0, we will simply write
h0 = h). Let us also recall that the demand is given by X(ψ) = x(2 − ψ) =
Cw/hε(2− ψ) (see Example A of section 4.1) for some constant C > 0.

Our aim is to discuss the dependence of the demand with respect to the
parameters ε ∈ [0, 1) and β > 1. The interpretation of those two parameters is
the following: β is a measure of distortion and ε a measure of aversion to the
worst case (or extreme cautiousness).
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Let us define for every t ∈ [0, 1] and λ > 0

Λ(t)
λ

= εhε(0) +
∫ t

0

(1− ε)β(1− s)β−1hε(s)ds−
(

2t− t2

2

)
(35)

and

zε(t) := λx̃λ(t) =
(1− ε)β(1− t)β−1

(2− t)
.

An easy computation shows that x̃λ is decreasing for every β ≥ 3/2. Hence
hε and xλ are constant in that case. Since Λ(1) = 0, we obtain from (35) that
1/hε = λxλ = 2/3. Using the budget constraint, we then obtain

x ≡ 2w
3
, λ =

1
w
. (36)

When β ∈ (1, 3/2), we denote by tmax the point where x̃λ attains its maxi-
mum. The shape of x̃ is represented in the next figure
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The next statement, proved in the appendix, characterizes the form of the
demand according to the values of the parameters ε and β:

Proposition 10 Let β ∈ (1, 3/2), the demand is given by X(ψ) = x(2 − ψ)
where:

1. if ε = 0, then either x ≡ 2w
3 or

x(t) :=
{
Cwz0(t) if t ∈ [0, t1],
Cwz0(t1) if t ∈ [t1, 1]

for some t1 ∈ [0, tmax] and some C > 0,

2. if ε = 0, then x ≡ 2w
3 if and only if β ≥ 4/3,

3. if ε ∈ (0, 1), then either x ≡ 2w
3 or

x(t) :=

 Cwzε(t0) if t ∈ [0, t0],
Cwzε(t) if t ∈ [t0, t1]
Cwzε(t1) if t ∈ [t1, 1]

for some pair 0 ≤ t0 ≤ t1 ≤ tmax and some C > 0,
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4. if ε ∈ (0, 1), then x ≡ 2w
3 if and only if:

Φ(ε, β) := max
t∈[0,1]

{
(1− ε)(1− t)β +

4
3
t− t2

3

}
≤ 1. (37)

The three possible shapes of the demand are represented in the next figure.

flat case (epsilon or beta large)
epsilon=0 and beta<4/3
strangled case (small epsilon>0 and beta small)
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When ε = 0 and the distortion is high (β ≥ 4/3 in our example), the demand
is totally flat. For small distortion (β < 4/3), the demand is flat only for low
values of the pricing density.

When ε > 0, there is an additional effect due to aversion to the worst case.
For fixed ε > 0, since Φ is nonincreasing in both arguments, there exists β(ε)
such that the demand is constant if and only if β ≥ β(ε). Note that β(0) = 4/3
and β(ε) is nonincreasing in ε. For the demand to be constant, it is enough that
either ε or β is large. When both aversion to the worst state and ambiguity
aversion are small (in the sense β < β(ε)), then the demand is flat only for
low and for high values of the pricing density, in other words, the demand is
strangled. In that case, it should also be noted that ε and β have quite different
effects: ε forces the demand to be constant for high prices whereas β induces
constant demand for low prices.

5.3 A class of RLU examples

In this example, we consider an RLU example which is not in the class of
RDU’s: the case where L(t, x) = ln(t+x) and as previously, prices are uniformly
distributed on [1, 2], i.e. q(t) = 2− t. Given an income w > 0 we then have to
solve:

sup
x∈A

v(x) :=
∫ 1

0

ln(t+ x(t))dt :
∫ 1

0

qx ≤ w. (38)

As previously this problem admits a unique solution, whose determination
amounts to find a multiplier λ > 0 such that x solves:

sup
x∈A

vλ(x) :=
∫ 1

0

ln(t+ x(t))dt− λ

∫ 1

0

(2− t)x(t)dt (39)
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and such that the budget constraint is satisfied by x. For a given λ the function
that maximizes vλ subject to x ≥ 0 is given by:

x̃λ(t) :=
(

1
λ(2− t)

− t

)
+

. (40)

Contrary to the RDU case, where it is easy to discuss the monotonicity of x̃
independently of the multiplier λ, the situation is more complicated here because
the variations of x̃λ depend on λ. The next proposition, proved in the appendix,
characterizes the form of the solution x to (38) depending on the value of the
income w:

Proposition 11 The demand is given by X(ψ) = x(2− ψ) where the solution
x to (38) is:

• constant equal to 2w/3 when w ≤ 3/(2e3/2 − 2),

• increasing, equal to x̃λ with λ = (w + 2/3)−1 when w ≥ 10/3,

• of the form:

x(t) =
{
x̃λ(t0) if t ∈ [0, t0],
x̃λ(t) if t ∈ [t0, 1],

for some λ = λ(w) ∈ (1/4, 1) and some t0 = t(w) when w ∈ (3/(2e3/2 −
2), 10/3).

We want to emphasize here an important qualitative difference between the
RLU and RDU models. We have seen in the previous proposition that when the
income is low, the demand is constant. As the income increases, the demand
becomes constant only for high prices. Finally, if w is large, the demand is
decreasing. In the RDU model, whether the demand is flat or not does not
depend on the income. The RLU model therefore seems to allow richer income
effects than the RDU one.

The three possible shapes of the demand are represented in the next figure.
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Appendix

Proof of proposition 10

Let us recall that x = xλ∗ for some value of the multiplier of the form λ∗ =
1/(Cw) and define x̃ = x̃λ∗ = Cwzε.

Let us assume ε = 0. If x is given by (36), there is nothing to prove. Let us
then assume that x is not constant. If x(0) < x̃(0), then x is constant on [0, 1],
a contradiction. Because Λ(0) = 0 and Λ′ < 0 whenever x > x̃, necessarily, x
and x̃ have to coincide on some (maximal) interval [0, t1] with t1 ≤ tmax. On
[t1, 1], we have a.e. either x̃ = x or x′(t) = 0. The first case being impossible, x
is constant on [t1, 1] which proves the first claim.

Let us prove now that the solution is constant if and only if β ≥ 4/3. To
prove this, let us first remark that β ≥ 4/3 is equivalent to x̃1/w(0) ≥ 2w/3.
Thus, if β < 4/3, the constant (36) is above the graph of x̃1/w for small values
of t which implies Λ(t) < 0 for small t > 0. Hence (36) is not optimal in this
case. If β ≥ 4/3, then by construction the constant function given by (36)
satisfies the budget constraint and all the optimality conditions of proposition
5 except possibly the nonnegativity of Λ that has to be justified. Since the
constant (36) is less than x̃1/w(0), the equation x̃1/w(t) = 2w/3 has a single
root t∗. By construction one has, Λ(0) = Λ(1) = 0, Λ non decreasing on [0, t∗]
and nonincreasing on [t∗, 0], hence Λ is everywhere nonnegative which proves
the optimality of (36).

In the case ε > 0, we have Λ(0) = ε/x(0) > 0. If x is constant, then it
is necessarily given by (36). Assume that x is not constant, then for small
t > 0, Λ(t) > 0, hence x(t) = x(0) for t in some maximal interval [0, t0] with
t0 < 1. One necessarily has t0 ≤ tmax, since otherwise one would have x 6= x̃
a.e. which would imply that x is constant. From (16), x has to coincide with
x̃ on some maximal interval [t0, t1] with t1 ≤ tmax. On [t1, tmax], x 6= x̃, hence
x is constant. Let t∗ be the upperbound of the interval on which x = x(t1). If
t∗ < 1, then one should have x(t) = x̃(t) for t ≥ t∗ close to t∗ which is impossible
since x̃ is decreasing on [tmax, 1]. This proves that t∗ = 1, hence that x takes
the form:

x(t) :=

 x̃(t0) if t ∈ [0, t0],
x̃(t) if t ∈ [t0, t1]
x̃(t1) if t ∈ [t1, 1].

Since x̃ = Cwzε, this proves assertion 3.
Finally, plugging the expression of the constant candidate solution (36) in

the expression of Λ given by (35), we get

Λ(t) =
3

2w

(
1− (1− ε)(1− t)β − 4

3
t+

t2

3

)
Hence condition (37) exactly means that Λ ≥ 0, which is equivalent to the fact
that the constant given by (36) is optimal.

Proof of proposition 11

For fixed λ, let xλ denote the solution to (39). Elementary computations show
that:
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• first case: if λ ≤ 1/4, then x̃λ is increasing, hence x̃λ = xλ,

• second case: if λ ≥ 1, then x̃λ is nonincreasing, hence xλ ≡ cλ, cλ a
constant. By the optimality conditions, cλ = (e3λ/2 − 1)−1,

• third case: if λ ∈ (1/4, 1), then x̃λ is decreasing on [0, tλ] and increasing
on [tλ, 1] with tλ = 2− (λ)−1/2. In that case:

xλ(t) =
{
x̃λ(t∗λ) if t ∈ [0, t∗λ],
x̃λ(t) if t ∈ [t∗λ, 1],

for some t∗λ ∈ (tλ, 1).

We know that there is λ > 0 such that x = xλ and
∫ 1

0
(2− t)x(t)dt = w.

If λ ≤ 1/4, then the budget constraint
∫ 1

0
(2 − t)x̃λ(t)dt = w yields w =

1/λ − 2/3. Hence, we obtain w ≥ 10/3. Conversely, if w ≥ 10/3, defining
λ = (w+2/3)−1, then x̃λ solves (39) and satisfies the budget constraint so that
x = x̃λ.

If λ ≥ 1, then cλ = 2w/3 so that w = 3/(2e3λ/2 − 2) ≤ 3/(2e3/2 − 2).
Conversely if w ≤ 3/(2e3/2 − 2), then the constant 2w/3 solves (39) for λ =
2 ln(1 + 2w/3)/3, hence x ≡ 2w/3.

The only remaining case is w ∈ (3/(2e3/2−2), 10/3). In that case, λ = λ(w)
necessarily belongs to (1/4, 1), hence x is as in the claim. The values of λ(w)
and t(w) are (in theory) determined by the budget constraint and the optimality
conditions.
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