
Low-complexity global

optimization and its application

to shape optimization:

From CAD to Level Set by

CAD-Free



Minimisation problem

Consider minx J(x), x ∈ Oad ⊂ IRN

Suppose the global minimum Jm is known

Aims :

• global optimization by solution of BVP

• shape parameterization

– CAD

– CAD-Free

– Level Set

– Regularity control



• Low-complexity sensitivity and incomplete

gradients:

– gradient modeling (as for the state)

– J̃ ′(n, h, x) → J ′(∞,0, x) = J ′(x) incom-

plete evaluation

– Projection operator in admissible space

for regularity control, preconditionning,

smoothing

• Incomplete linesearch. Rotation and smooth-

ing operator on the admissible unit sphere



Closure equation for x (deterministic)

Global optimization problem has a solution

if ∀ε > 0, ∀x0 ∈ O, ∃T <∞ s. t. x(T ) ∈ Bε(xm)

where J(xm) = Jm is the infimum and x(t) is

solution of:

ẋ = −M(x(t))d(x(t)), x(0) = x0,

The answer is usually no. Overdetermined ODE.

The answer might be yes if x0 belongs to the

attraction bassin of Jm.



Removing the over-determination

Consider x0 = v as a new variable

to be found minimizing h(v) = J(xv(T ))

where xv(T ) is the solution found at t = T

starting from v.



2nd order continuous model

νẍ+ ẋ = −M(x(t))d(x(t)), (∗)

x(0) = x0, ẋ(0) = v

Global optimization problem has a solution

if ∀ε > 0, ∀x0 ∈ O, ∃(T < ∞ and v ∈ O′) s. t.

xv(T ) ∈ Bε(xm)

where xv(t) is solution of (*) starting from v.

We never require ẋ(T ) = 0.



Analogy with a Stefan problem

Water-ice interface











νxζζ + xζ = −M(x(ζ))d(x(ζ)),

x(0) = x0, J(xm) = Jm
F (u(x)) = 0 state equation

(1)

The interface between ice and water (xm) is

unknown. We only know its temperature

(Jm).



Links with Genetic Algorithms - 1

Population X0 = {xji , i = 1, .., I, j = 1, .., J}

I = individual, J = space dimension

sketch of a GA : 3 steps at each iteration.

Xn known, Xn+1 evaluated by:

1. Selection (remove the weakest element(s))

Xn+1/3 = DXn, D rectangular (I − 1, I).

2. Mutation

Xn+2/3 = EXn+1/3, E = (I − 1, I − 1),

E = I + εnδij, σ(ε
n
i )(n→∞)

→ 0

3. Cross-over

Xn+1 = CXn+2/3, C rectangular (I, I − 1)

s. t.
∑I−1
j=1 Ci,j = 1, ∀i = 1, .., I



GA and dynamic systems

Xn+1 = CEDXn = Xn + (CED − I)Xn

Xn+1 −Xn = (CED − I)Xn = ΛnXn

represents the discretization of I coupled 1st

order stochastic ODEs :

Ẋ = ΛX with X(0) = X0



Links with the level set method

ψζ + V∇ψ = 0

if V = ∇J . n where n = ∇ψ/|∇ψ|

therefore, ψζ = −∇J |∇ψ|

We recover, ν = 0, M(x(ζ)) = I and

d = ∇J |∇ψ|

Coupling two generic state equations reads:

(f(u) + gΓ(u)δΓ)χ(ψ) =

(g(u) + fΓ(u)δΓ))(1 − χ(ψ))

And shape optimization with ψ as design

parameter.



Generalized Rastrigin function

J(x) = N +
∑N
i=1(x

2
i − cos(18xi))

x ∈ [−5,5]N
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Complexity evolution



Shape parameterization

Direct simulation loop (D):

ΓParam → Γh → Ωh → qh → Uh → Jh,

1. Param = CAD (#ΓCAD << #Γh)

2. CAD-Free: param = Γh

- Needs regularity control: suppose

J(x) = (Ax− b)2 ,

x ∈ H1(Ω), A ∈ H−1(Ω), b ∈ L2(Ω).

Therefore δx = −ρJ ′x = −ρ(2(Ax− b)A) ∈ V ,

H−1(Ω) ⊂ V ⊂ L2(Ω). We need to project

into H1(Ω).

3. Level set : param = signed distance

to shape (#ΓLS >> #Γh)



Needs regularity control: use same ingredients

Rmq: Small deformation prescribed by 1, 2 or

3 can be taken into account by equivalent b.c.

Smoothing - projection -

preconditionning:

redefinition of the scalar product for the

Hilbert space where optimization is

performed.

Jn+1 ≤ Jn + (J ′nx , δx)0, δx = Π(−ρJ ′nx ),

Jn+1 ≤ Jn + (J ′nx ,Π(−ρJ ′nx ))0 ≤ Jn,

Jn+1 ≤ Jn + (J ′nx ,Π(−ρJ ′nx ))M

Rotation matrix for sensivitity calculation

from IS on the admissible unit sphere for

CAD-Free and LS param.



Level set method for complex flows

Euler vs. NS

slip vs. non slip b.c.



Level set method for complex flows - J =
Cd
ClV



Level set method

Incomplete gradient comparison : regularity

control as in CAD-Free approach using a 4th

order smoother.



Level set method

Symmetry during optimization.



Incomplete sensitivity and low-complexity models

From:

x→ q(x) → U(q(x)) → J(x, q(x), U(q(x)))

To:

x→ q(x) → Ũ(q(x))(
U

Ũ
)

where Ũ ∼ U is obtained using a simple model.

Incomplete sensitivity can be improved by:

dJ

dx
∼ ∂J(U)

∂x
+
∂J(U)

∂q

∂q

∂x
+
∂J(U)

∂U

∂Ũ

∂q

∂q

∂x

U

Ũ

Ũ never used, only ∂Ũ/∂q.

Free choice for low-complexity models. Wall

functions are natural Ũ(y+) candidates.



Efficiency improvement for a blade

η = q4p
ωTr

constraint on q (inflow rate), ω, ∆p (between

in and outlet).

But ∆p not in the validity domain of IS.

Momentum eq.
∫

Γ u(u.n)dσ+
∫

Γ τndσ = 0,

Suppose ni/o = (±1,0,0), neglecting viscous

terms on in and outlet boundaries and using

periodicity:

∫

Γi
p+ u2

2 − ∫

Γo p+ u2

2 =
∫

Γw −p+ ν∂u∂n = Cd

If outlet far enough s.t. uo > 0, from ∇.u = 0

we have:

4p = Cd

already linearized with wall functions.

reduce torque @ given drag.



Efficiency improvement for a blade η = q4p
ωTr
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Application to active control using

Hadamard b.c.

u.n(t) = −u(t)δn(t) + δx(t)/δt.n(t)

δx(t) = −ρ∇J(t)

OAT15A profile:

Ma = 0.736, Re/m = 4.36106, α = 4o

Buffeting control: location of actuators,

control frequency

Instantaneous pressure coefficients without

and after the control is turned on.
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Optimization of aerodynamic and

acoustic performances of supersonic civil

transports

Near Field

Global CFD Domain

Wave propagation initialization

Ground

Shape

Merging Shocks

Atmospheric Properties:
temp(z), pres(z), wind(z)

Near-field : 3D Euler system,

Far field : waveform propagation method

using CFD predictions.



CAD-Free control space parameterization

Input in CAD

Optimization in CAD-Free

Output in CAD.



Functional definition

J(x) = Cd + (C0
l − Cl)+

+(V0 − V)+ +
∫

shape
|d− d0|dγ

+
∫

ground
|∆pg|dγ



Functional reformulation

( Bow shocks <=> less boom )

=> smooth leading edges

Clocd from LE = {x, ~n.~u∞ < 0} to remain

unchanged or to increase and Cd to decrease.

Clocd =
2

ρ∞|~u∞|2
∫

LE
p.~n.~u∞



New cost function

J(x) = Cd + (C0
l − Cl)+

+(V0 − V)+ +
∫

shape
|d− d0|dγ

+((Clocd )0 − Clocd )+
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Near-field and ground pressure signatures
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reduction) for the initial and optimized

aircraft.



Iso-Mach contours for initial and final shapes

Iso-normal deformation
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Concluding remarks

Low complexity global optimization algorithm

based on solution of a BVP.

Parameterization and regularity control in

design: LS and CAD-Free

Incomplete sensitivity

Other applications: micro-fluidic devices

optimization, pollution control in flames with

complex chemistry, unsteady flow control.


