Low-complexity global optimization and its application to shape optimization: *From CAD to Level Set by CAD-Free*

Minimisation problem

Consider $\min_x J(x)$, $x \in \mathcal{O}_{ad} \subset IR^N$

Suppose the global minimum J_m is known

Aims :

- global optimization by solution of BVP
- shape parameterization
 - CAD
 - CAD-Free
 - Level Set
 - Regularity control

- Low-complexity sensitivity and incomplete gradients:
 - gradient modeling (as for the state)
 - $\tilde{J}'(n,h,x) \rightarrow J'(\infty,0,x) = J'(x)$ incomplete evaluation
 - Projection operator in admissible space for regularity control, preconditionning, smoothing
- Incomplete linesearch. Rotation and smoothing operator on the admissible unit sphere

Closure equation for x (deterministic)

Global optimization problem has a solution

if $\forall \epsilon > 0, \forall x_0 \in \mathcal{O}, \exists T < \infty \text{ s. t. } x(T) \in B_{\epsilon}(x_m)$

where $J(x_m) = J_m$ is the infimum and x(t) is solution of:

 $\dot{x} = -M(x(t))d(x(t)), \quad x(0) = x_0,$

The answer is usually no. Overdetermined ODE.

The answer might be yes if x_0 belongs to the attraction bassin of J_m .

Removing the over-determination

Consider $x_0 = v$ as a new variable

to be found minimizing $h(v) = J(x_v(T))$

where $x_v(T)$ is the solution found at t = T starting from v.

2nd order continuous model

$$\nu \ddot{x} + \dot{x} = -M(x(t))d(x(t)),$$
 (*)

 $x(0) = x_0, \quad \dot{x}(0) = v$

Global optimization problem has a solution

if $\forall \epsilon > 0, \forall x_0 \in \mathcal{O}, \exists (T < \infty \text{ and } v \in \mathcal{O}') \text{ s. t.}$ $x_v(T) \in B_{\epsilon}(x_m)$

where $x_v(t)$ is solution of (*) starting from v.

We never require $\dot{x}(T) = 0$.

Analogy with a Stefan problem

Water-ice interface

$$\begin{cases} \nu x_{\zeta\zeta} + x_{\zeta} = -M(x(\zeta))d(x(\zeta)), \\ x(0) = x_0, \quad J(x_m) = J_m \\ F(u(x)) = 0 \quad \text{state equation} \end{cases}$$
(1)

The interface between ice and water (x_m) is unknown. We only know its temperature (J_m) .

Links with Genetic Algorithms - 1

Population $X^0 = \{x_i^j, i = 1, .., I, j = 1, .., J\}$ I = individual, J = space dimensionsketch of a GA : 3 steps at each iteration. X^n known, X^{n+1} evaluated by: 1. Selection (remove the weakest element(s)) $X^{n+1/3} = \mathcal{D}X^n, \mathcal{D}$ rectangular (I - 1, I).2. Mutation $X^{n+2/3} = \mathcal{E}X^{n+1/3}, \ \mathcal{E} = (I-1, I-1),$ $\mathcal{E} = I + \epsilon^n \delta_{ij}, \ \sigma(\epsilon_i^n)_{(n \to \infty)} \to 0$ 3. Cross-over $X^{n+1} = \mathcal{C}X^{n+2/3}, \mathcal{C}$ rectangular (I, I-1)s. t. $\sum_{i=1}^{I-1} C_{i,j} = 1, \forall i = 1, .., I$

GA and dynamic systems

$$X^{n+1} = \mathcal{CED}X^n = X^n + (\mathcal{CED} - I)X^n$$

$$X^{n+1} - X^n = (\mathcal{CED} - I)X^n = \wedge^n X^n$$

represents the discretization of I coupled 1st order stochastic ODEs :

$$\dot{X} = \Lambda X$$
 with $X(0) = X^0$

Links with the level set method

$$\psi_{\zeta} + V\nabla\psi = 0$$

if $V = \nabla J$. n where $n = \nabla \psi / |\nabla \psi|$

therefore, $\psi_{\zeta} = -\nabla J |\nabla \psi|$

We recover,
$$\nu = 0$$
, $M(x(\zeta)) = I$ and $d = \nabla J |\nabla \psi|$

Coupling two generic state equations reads:

$$(f(u) + g_{\Gamma}(u)\delta_{\Gamma})\chi(\psi) = (g(u) + f_{\Gamma}(u)\delta_{\Gamma})(1 - \chi(\psi))$$

And shape optimization with ψ as design parameter.

Generalized Rastrigin function $J(x) = N + \sum_{i=1}^{N} (x_i^2 - \cos(18x_i))$ $x \in [-5, 5]^N$

Complexity evolution

Shape parameterization

Direct simulation loop (D):

 $\Gamma_{\text{Param}} \to \Gamma_h \to \Omega_h \to q_h \to U_h \to J_h,$

1. Param = CAD $(\#\Gamma_{CAD} << \#\Gamma_h)$

2. CAD-Free: param = Γ_h

- Needs regularity control: suppose

$$J(x) = (Ax - b)^2,$$

$$x \in H^1(\Omega), A \in H^{-1}(\Omega), b \in L^2(\Omega).$$

Therefore $\delta x = -\rho J'_x = -\rho (2(Ax - b)A) \in V$,

 $H^{-1}(\Omega) \subset V \subset L^2(\Omega)$. We need to project into $H^1(\Omega)$.

3. Level set : param = signed distance to shape $(\#\Gamma_{LS} >> \#\Gamma_h)$ Needs regularity control: use same ingredients

Rmq: Small deformation prescribed by 1, 2 or 3 can be taken into account by equivalent b.c.

Smoothing - projection - preconditionning:

redefinition of the scalar product for the Hilbert space where optimization is performed.

 $J^{n+1} \le J^n + (J_x^n, \delta x)_0, \quad \delta x = \Pi(-\rho J_x^n),$

$$J^{n+1} \leq J^n + (J'^n_x, \Pi(-\rho J'^n_x))_0 \leq J^n,$$

$$J^{n+1} \leq J^n + (J'^n_x, \Pi(-\rho J'^n_x))_M$$

Rotation matrix for sensivitity calculation from IS on the admissible unit sphere for CAD-Free and LS param.

Level set method for complex flows

Euler vs. NS

slip vs. non slip b.c.

Level set method for complex flows - $J = \frac{C_d}{C_l V}$

Level set method

Incomplete gradient comparison : regularity control as in CAD-Free approach using a 4th order smoother.

Level set method

Symmetry during optimization.

Incomplete sensitivity and low-complexity models

From:

$$x \to q(x) \to U(q(x)) \to J(x,q(x),U(q(x)))$$

To:

$$x o q(x) o ilde{U}(q(x))(rac{U}{ ilde{U}})$$

where $\tilde{U} \sim U$ is obtained using a simple model.

Incomplete sensitivity can be improved by:

$$\frac{dJ}{dx} \sim \frac{\partial J(U)}{\partial x} + \frac{\partial J(U)}{\partial q} \frac{\partial q}{\partial x} + \frac{\partial J(U)}{\partial U} \frac{\partial \tilde{U}}{\partial q} \frac{\partial q}{\partial x} \frac{U}{\tilde{U}}$$

 \tilde{U} never used, only $\partial \tilde{U} / \partial q$.

Free choice for low-complexity models. Wall functions are natural $\tilde{U}(y^+)$ candidates.

Efficiency improvement for a blade $\eta = \frac{q \triangle p}{\omega T_r}$

constraint on q (inflow rate), ω , Δp (between in and outlet).

But Δp not in the validity domain of IS.

Momentum eq. $\int_{\Gamma} u(u.n) d\sigma + \int_{\Gamma} \tau n d\sigma = 0$,

Suppose $n_{i/o} = (\pm 1, 0, 0)$, neglecting viscous terms on in and outlet boundaries and using periodicity:

$$\int_{\Gamma_i} p + \frac{u^2}{2} - \int_{\Gamma_o} p + \frac{u^2}{2} = \int_{\Gamma_w} -p + \nu \frac{\partial u}{\partial n} = C_d$$

If outlet far enough s.t. $u_o > 0$, from $\nabla . u = 0$ we have:

$$\triangle p = C_d$$

already linearized with wall functions.

reduce torque @ given drag.

Efficiency improvement for a blade $\eta = \frac{q \triangle p}{\omega T_r}$

Application to active control using Hadamard b.c.

 $u.n(t) = -u(t)\delta n(t) + \delta x(t)/\delta t.n(t)$

 $\delta x(t) = -\rho \nabla J(t)$

OAT15A profile:
$$Ma = 0.736, Re/m = 4.3610^6, \alpha = 4^o$$

Buffeting control: location of actuators, control frequency

Instantaneous pressure coefficients without and after the control is turned on.

Optimization of aerodynamic and acoustic performances of supersonic civil transports

Near-field : 3D Euler system,

Far field : waveform propagation method using CFD predictions.

CAD-Free control space parameterization

Input in CAD

Optimization in CAD-Free

Output in CAD.

Functional definition

Functional reformulation

(Bow shocks <=> less boom)
 => smooth leading edges

 C_d^{loc} from $LE = \{x, \vec{n}.\vec{u}_{\infty} < 0\}$ to remain unchanged or to increase and C_d to decrease.

$$C_d^{loc} = \frac{2}{\rho_{\infty} |\vec{u}_{\infty}|^2} \int_{LE} p.\vec{n}.\vec{u}_{\infty}$$

New cost function

 $(\frac{p-p_{\infty}}{p_{\infty}})$ and ground pressure (25 % noise reduction) for the initial and optimized aircraft.

Iso-Mach contours for initial and final shapes

Iso-normal deformation

20% drag reduction

25% noise reduction

10% lift increase

Volume and maximum by-section thickness conserved.

Concluding remarks

Low complexity global optimization algorithm based on solution of a BVP.

Parameterization and regularity control in design: LS and CAD-Free

Incomplete sensitivity

Other applications: micro-fluidic devices optimization, pollution control in flames with complex chemistry, unsteady flow control.