Low-complexity global
optimization and its application
to shape optimization:
From CAD to Level Set by
CAD-Free



Minimisation problem
Consider ming J(z), =€ O,y C IRV
Suppose the global minimum J,, is known

Aims :

e global optimization by solution of BVP

e shape parameterization
— CAD
— CAD-Free
— Level Set

— Regularity control



e Low-complexity sensitivity and incomplete
gradients:

— gradient modeling (as for the state)

— J'(n,h,z) — J'(c0,0,2) = J'(x) incom-
plete evaluation

— Projection operator in admissible space
for regularity control, preconditionning,
smoothing

e Incomplete linesearch. Rotation and smooth-
ing operator on the admissible unit sphere



Closure equation for z (deterministic)

Global optimization problem has a solution
if Ve > 0,Vzg € O, AT < oo s. t. z(T) € Be(xzm)

where J(xm) = Jm is the infimum and z(¢) is
solution of:

r = —M(x(t))d(z(t)), =(0)=zo,
The answer is usually no. Overdetermined ODE.

The answer might be yes if g belongs to the
attraction bassin of J,.



Removing the over-determination

Consider xg = v as a new variable
to be found minimizing h(v) = J(xy(T))

where z,(T) is the solution found at ¢t = T
starting from wv.



2nd order continuous model

vi +x = —M(x(t))d(z(t)), (*)
r(0) =z9, x(0)=v
Global optimization problem has a solution

if Ve > 0,Vzpg € O, (T < oo and v e O) s. t.

where x,(t) is solution of (*) starting from w.

We never require z(T) = 0.



Analogy with a Stefan problem

Water-ice interface

veee +x¢ = —M(2(C))d(z(C)),
x(0) =xg9, J(zm) = JIm (1)
F(u(x)) =0 state equation

The interface between ice and water (zy,) iS
unknown. We only know its temperature

(Jm)-



Links with Genetic Algorithms - 1
Population X0 = {a, i=1,..I, j=1,.,J}
I = individual, J = space dimension
sketch of a GA : 3 steps at each iteration.
X" known, X" 11 evaluated by:

1. Selection (remove the weakest element(s))
xn+1/3 = px" D rectangular (I — 1,1).

2. Mutation

Xnt2/3 = gxntl/3 e=(1-1,1-1),

E =1+ €"d;, a(e?)(n_)oo) — 0

3. Cross-over

xnt+l = cxnt2/3 ¢ rectangular (1,1 —1)

s. t. 2;11 Cii=1,Yi=1,.,1



GA and dynamic systems

X+l =cepxn = X"+ (CED — X"
xntl _xn — (CceD — 1) X" = APX"

represents the discretization of I coupled 1st
order stochastic ODEs :

X = AX with X(0) = x9©



Links with the level set method
Y+ VVY =0
if V=VJ.n where n=Vy/|Vy]
therefore, ¢ = —VJ|V1)|

We recover, v =0, M(xz(¢)) = I and
d = VJ|V|

Coupling two generic state equations reads:

(f (u) + gr(w)dr)x () =
(g(w) + fr(w)or)) (1 —x(¥))

And shape optimization with ) as design
parameter.



Generalized Rastrigin function
J(x) =N + 27];\;1(%2 — cos(18x;))
r € [-5,5]Y
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Complexity evolution
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Shape parameterization

Direct simulation loop (D):
Mparam — Th — 2 — g — Up — Jp,

1. Param = CAD (#lcap << #I})
2. CAD-Free: param = [
- Needs regularity control: suppose
J(z) = (Az — b)? ,

re HY(Q), Aec H1(Q), be L2(Q).

Therefore dx = —pJ,. = —p(2(Ax — b)A) € V,

H Q) cV ¢ L?(2). We need to project
into H1().

3. Level set : param = signhed distance
to shape (#I| g >> #TI})



Needs regularity control: use same ingredients

Rmq: Small deformation prescribed by 1, 2 or
3 can be taken into account by equivalent b.c.

Smoothing - projection -
preconditionning:

redefinition of the scalar product for the
Hilbert space where optimization is
performed.

JrtL < gt (I, 6x)g,  Sx = N(—pJ),
Jtl < g (T N(=pd))o < I,
Jrtl < Jgn 4 (I N (=p i) m
Rotation matrix for sensivitity calculation

from IS on the admissible unit sphere for
CAD-Free and LS param.



Level set method for complex flows

Euler vs. NS

slip vs. non slip b.c.



Level set method for complex flows -
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Level set method

Incomplete gradient comparison : regularity
control as in CAD-Free approach using a 4th
order smoother.
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Incomplete sensitivity and low-complexity models

From:

z — q(z) — U(q(x)) — J(x,q(x),U(q(z)))
To:

r = q(2) — U(a(@)()

where U ~ U is obtained using a simple model.

Incomplete sensitivity can be improved by:

dJ 0J(U) n 0J(U) Oq n 0J(U)dU dqU
dx ox dq Ox oU 0Oq oxU
U never used, only 80U /dq.

Free choice for low-complexity models. Wall
functions are natural U(y+) candidates.



Efficiency improvement for a blade

_ qgAp
= Wy

constraint on ¢ (inflow rate), w, Ap (between
in and outlet).

But Ap not in the validity domain of IS.
Momentum eq. [ru(u.n)do + [ Tndo = 0O,
Suppose n;,, = (£1,0,0), neglecting viscous
terms on in and outlet boundaries and using

periodicity:

2 2
Jrip+% = Irp+% = Jr, —p+vgE=Cy

If outlet far enough s.t. upo > 0O, from V.u =0
we have:

Ap = Cy
already linearized with wall functions.

reduce torque @ given drag.



Efficiency improvement for a blade n
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Application to active control using
Hadamard b.cC.

u.n(t) = —u(t)on(t) + 6x(t)/dt.n(t)
dx(t) = —pVJ(t)

OAT 15A profile:
Ma = 0.736, Re/m = 4.3610°, o = 4°

Buffeting control: location of actuators,
control frequency

Instantaneous pressure coefficients without
and after the control is turned on.
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Optimization of aerodynamic and
acoustic performances of supersonic civil
transports

Global CFD Domain

Near Field

Shape

Wave propng? |n/t|a|¥oj / \
Atmospheric Properties:
Merging Shocks temp(2), pres(z), Wlnd(z)

Ground

Near-field : 3D Euler system,

Far field : waveform propagation method
using CFD predictions.



CAD-Free control space parameterization

Input in CAD

Optimization in CAD-Free

Output in CAD.
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Functional reformulation

( Bow shocks <=> less boom )
=> smooth leading edges

Cle from LE = {z,.i0 < 0} to remain
unchanged or to increase and C; to decrease.
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New cost function

J(x)=Cy + (CP-C)y

+(V°-V)y + shape 4 doldy

+ ( (CCZZOC) 0O CcliOC) n




Near-field and ground pressure signatures
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(%) and ground pressure (25 % noise
reduction) for the initial and optimized
aircraft.



Iso-Mach contours for initial and final shapes

@l m

Iso-normal deformation
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20% drag reduction

25% noise reduction

10% lift increase

Volume and maximum by-section thickness
conserved.



Concluding remarks

Low complexity global optimization algorithm
based on solution of a BVP.

Parameterization and regularity control in
design: LS and CAD-Free

Incomplete sensitivity

Other applications: micro-fluidic devices
optimization, pollution control in flames with
complex chemistry, unsteady flow control.



