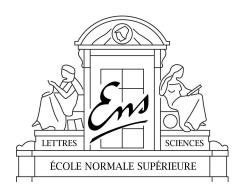
Moyennes et statistiques de formes

Guillaume Charpiat

28 juin 2005

Équipe Odyssée



Pourquoi des moyennes et des statistiques de formes?

 → pour trouver plus facilement un objet dans une image : segmentation a priori

→ pour classifier des ensembles de formes.

Segmentation avec a priori

- \hookrightarrow donnée : une image A
- \hookrightarrow moyen : faire évoluer un contour C de manière à minimiser une certaine énergie E(C)
- \hookrightarrow énergie E(C): basée sur des descripteurs de l'image (gradient de l'intensité, cohérence de la structure à l'intérieur du contour)
- → on voudrait en plus : avoir des indications sur la forme à rechercher
- \hookrightarrow nouveau but : exprimer la probabilité qu'une courbe quelconque C appartienne à l'ensemble de courbes données en apprentissage.

Exemple de résultat

On dispose de n exemples d'images d'un même objet, ou d'une même catégorie d'objets, déjà segmentées.

Nouvelle image à segmenter :

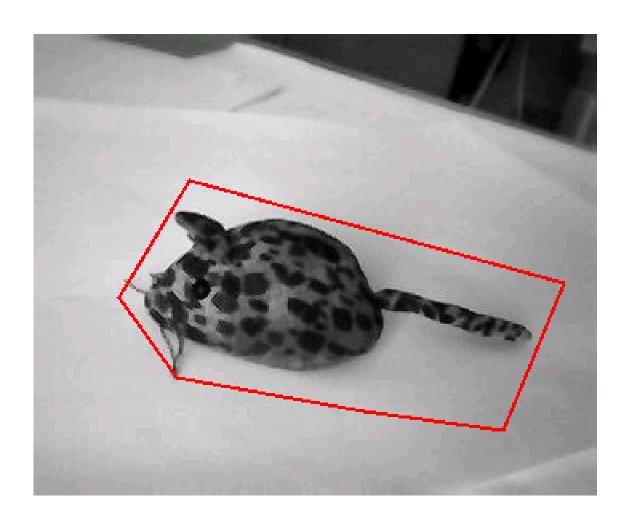


Image segmentée sans a priori avec un algorithme ne considérant que des histogrammes de région :

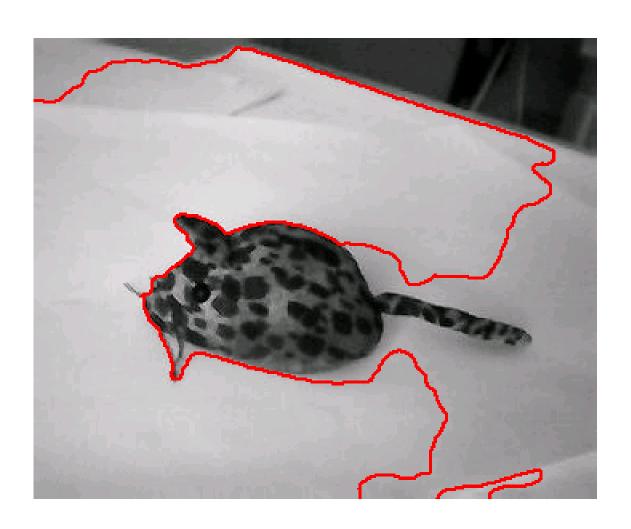


Image segmentée avec le même algorithme, mais avec un a priori sur la forme :

Exemple bruité

Image à segmenter :

Image segmentée sans a priori :

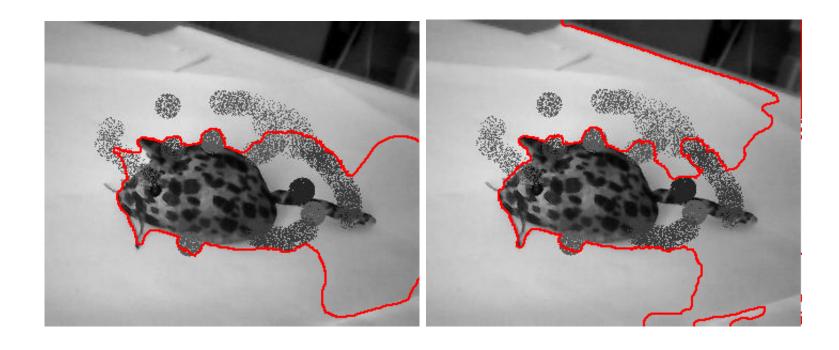
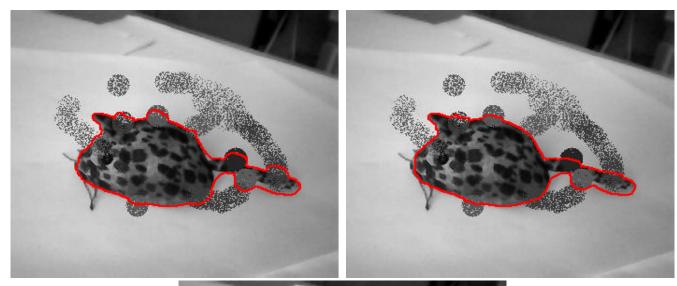
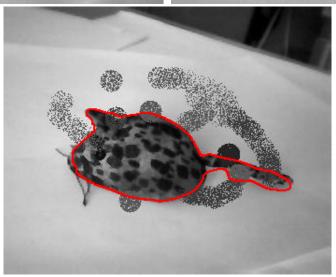


Image segmentée avec a priori (avec une importance croissante du terme sur la forme) :





Retour à la théorie

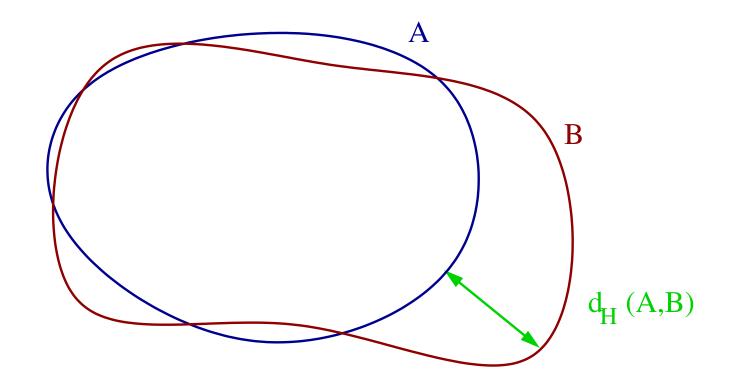
Quel terme choisir pour exprimer une contrainte sur la forme?

- \hookrightarrow données $\mathcal{D}=\{C_i\}$: ensemble de courbes C_i déjà segmentées dans d'autres images
- \hookrightarrow variable à ajuster : la forme courante C, qui évolue
- \hookrightarrow critère : probabilité d'appartenance de C à \mathcal{D} , degré de ressemblance de C aux échantillons C_i .
- \hookrightarrow statistiques sur les courbes C_i , forme moyenne, formes caractéristiques?

Moyenne de courbes planes

Nous disposons d'un ensemble de n courbes, dont on voudrait calculer la moyenne.

- → Qu'est-ce que la moyenne de plusieurs courbes ?
 C'est la courbe qui ressemble le plus à toutes les autres à la fois.
- → Comment exprimer la ressemblance entre deux courbes ?
 Par un critère qui à deux courbes quelconques associe leur distance mutuelle, par exemple la distance de Hausdorff.

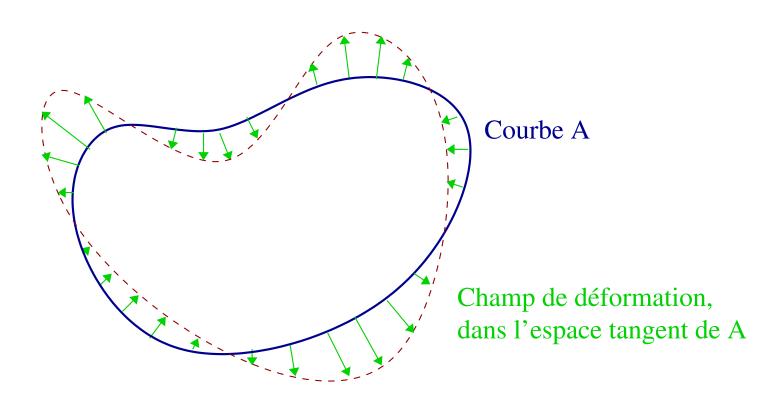


$$d_H(A,B) = \sup_{x \in A} \inf_{y \in B} d(x,y) + \sup_{x \in B} \inf_{y \in A} d(x,y)$$

Mettre 2 courbes en correspondance

Si l'on minimise $d_H(A, B)$ (par rapport à la courbe A), A va se déformer progressivement jusqu'à devenir B.

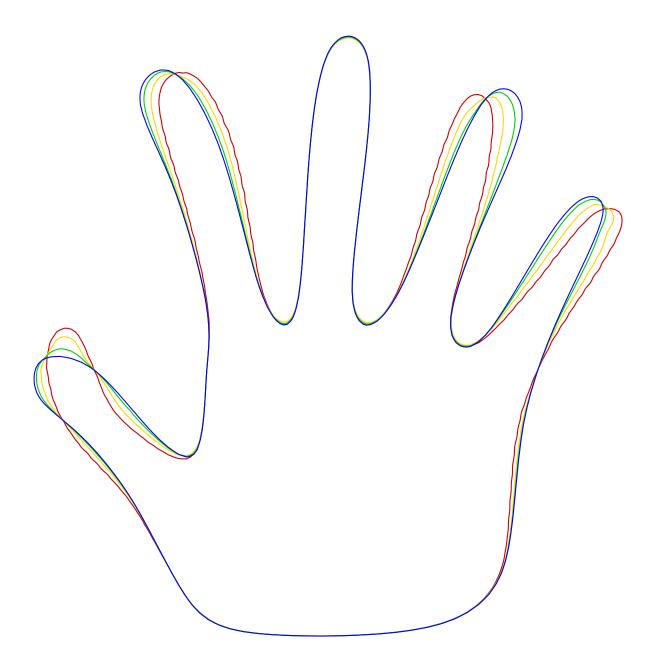
 \hookrightarrow descente de gradient : on applique à la courbe A à chaque pas de temps de l'évolution le champ $-\partial_A \ d_H(A,B)$



Problèmes!

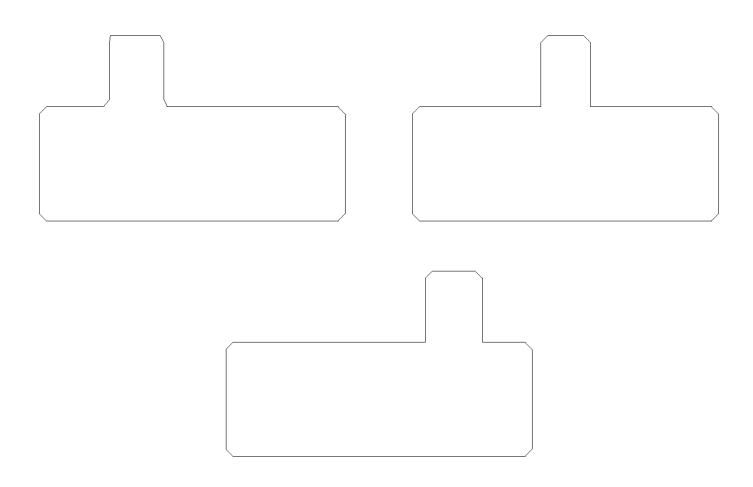
- → la distance de Hausdorff n'est vraiment pas dérivable.

 On utilise une approximation lisse de la distance de Hausdorff à la place.
- \hookrightarrow l'approximation lisse n'est vraiment plus une distance. La précision de l'approximation est réglable : l'écart avec la vraie distance est inférieure à un ε arbitrairement petit en fonction des paramètres de l'approximation.



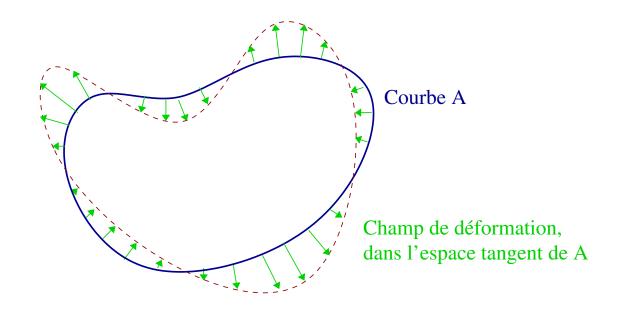
Exemple d'évolution

Comportement qualitatif



Interlude

Descente de gradient, espace tangent, produit scalaire



Minimiser E(C), fonctionnelle d'une courbe.

$$DE(C)(\delta C) = \lim_{\varepsilon \to 0} \frac{E(C + \varepsilon \, \delta C) - E(C)}{\varepsilon}$$

Produit scalaire canonique:

$$\langle \delta_1 | \delta_2 \rangle_{L^2} = \int_C \delta_1(x) \delta_2(x) dx$$

 \hookrightarrow produit scalaire H^1 :

$$\langle \delta_1 | \delta_2 \rangle_{H^1} = \int_C \delta_1(x) \delta_2(x) dx + \int_C \partial_x \delta_1(x) \partial_x \delta_2(x) dx$$

Gradient : défini pour un produit scalaire donné

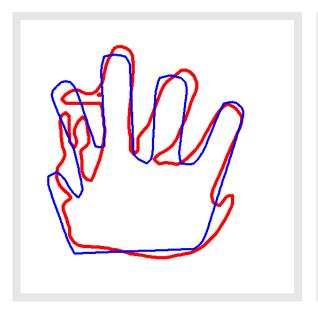
$$\hookrightarrow DE(C)(\delta C) = \langle \nabla E(C) | \delta C \rangle$$

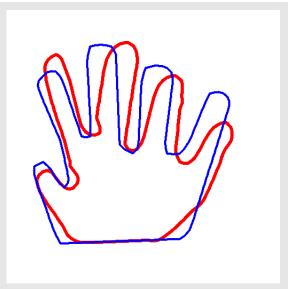
Le choix du produit scalaire détermine le type de chemin suivi.

Rigidifier le mouvement

Grâce à un changement de produit scalaire, on peut favoriser les similitudes (translations, rotations, homothéties).

- → permet d'éviter certains minima locaux



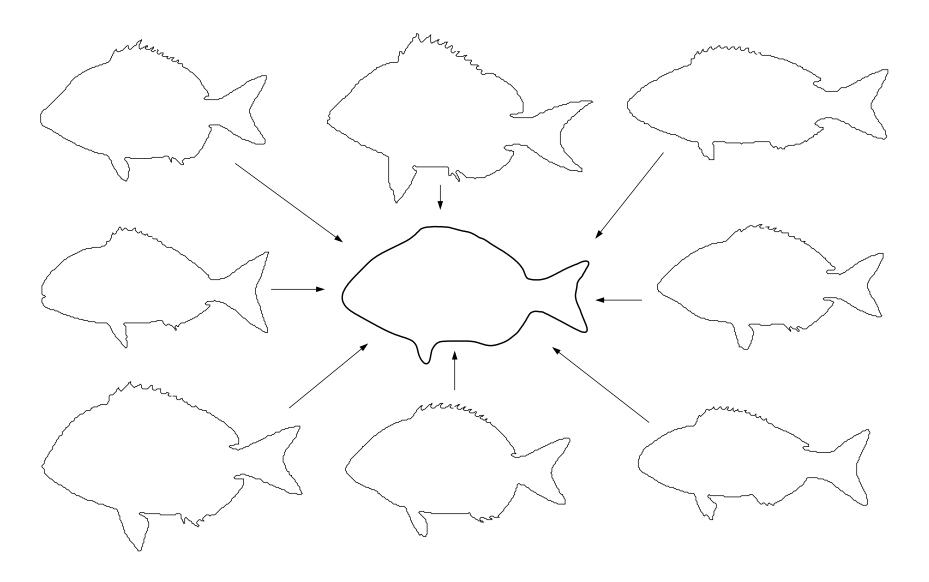


Moyenne M de n courbes A_i

La moyenne M est la courbe qui minimise $\sum_i d(M, A_i)^2$.

 \hookrightarrow barycentre de n points

Exemple de moyenne



Statistiques

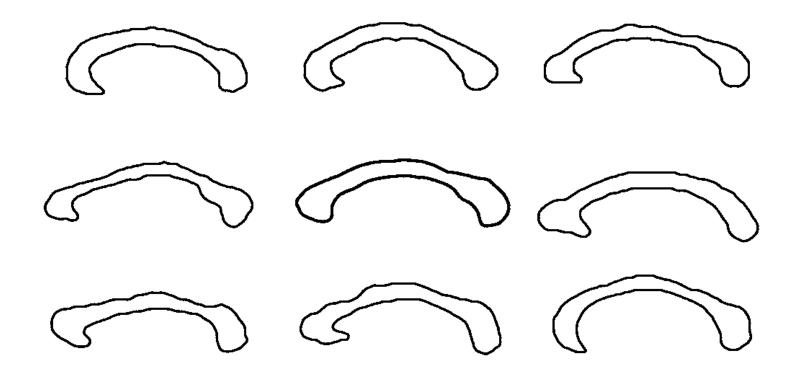
Nous disposons:

- \hookrightarrow des n courbes A_i
- \hookrightarrow de leur moyenne M
- \hookrightarrow de n champs de déformations $c_i = -\partial_M E^2(M, A_i)$ à appliquer à M pour que celle-ci se rapproche de la courbe A_i .

On calcule les statistiques de ces champs de déformation c_i :

- \hookrightarrow matrice P définie par $P_{i,j} = \left\langle c_i \left| c_j \right\rangle_2 = \int_M c_i(x) c_j(x) dx \right\rangle$
- \hookrightarrow on diagonalise M
- → on en extrait les vecteurs propres qui sont les modes de déformation caractéristiques

Exemple : les corpi callosi



modes: 1 2 3 4

Probabilité d'une courbe

Données:

 $\hookrightarrow C$: courbe que l'on fait évoluer pour segmenter l'image

 $\hookrightarrow \mathcal{D} = \{C_i\}$: ensemble de courbes donné en apprentissage

On cherche:

 $\hookrightarrow E(C)$? : mesure de la dissimilarité entre C et \mathcal{D}

Méthode simpliste

On dispose d'une distance d entre les courbes :

$$\hookrightarrow E(C) = \sum_i d^2(C, C_i)$$

- \hookrightarrow le minimum étant atteint en M, moyenne des courbes C_i , autant utiliser E(C) = d(C, M)
- \hookrightarrow ne tient pas compte des variations de formes dans l'ensemble ${\mathcal D}$

Méthode Parzen

On dispose d'une distance d entre les courbes :

$$\hookrightarrow E(C) = \sum_{i} \exp^{-\frac{d^2(C,C_i)}{2\sigma^2}}$$

- \hookrightarrow cas d'un échantillon clairsemé pour l'échelle σ : attraction de C vers un puits de potentiel autour de la courbe la plus proche
- \hookrightarrow cas d'un échantillon plus dense : attraction de C vers une moyenne locale des formes les plus proches

Méthode par modes propres (ACP sur le gradient)

On dispose des statistiques sur \mathcal{D} , du champ $c = -\nabla d^2(M, C)$ et on suppose une répartition gaussienne autour des modes propres m_k :

$$\hookrightarrow E(C) = \sum_{k} \frac{1}{\sigma_{k}^{2}} \langle c | m_{k} \rangle^{2} + \frac{1}{\sigma_{\text{bruit}}^{2}} \| \text{Reste}(c) \|_{2}^{2}$$

Méthode Parzen sur le gradient

On dispose du champ $c = -\nabla d^2(M, C)$, des champs $c_i = -\nabla d^2(M, C_i)$, et d'une distance $\|\cdot\|_2$ dans cet espace des champs de déformation :

$$\hookrightarrow E(C) = \sum_{i} \exp^{-\frac{\|c - c_i\|_2^2}{2\sigma^2}}$$

 $\hookrightarrow \nabla_C E(C)$ nécessite le calcul de la dérivée seconde $D_C D_M d^2(M,C)$

Statistiques d'images

Problème similaire, approche similaire.

Moyenne d'images

On dispose de n images I_i de même taille.

 \hookrightarrow définition d'un critère de ressemblance E(A,B) entre deux images A et B on choisit la corrélation croisée locale avec une approche multi-échelle (cf Gérardo Hermosillo)

- \hookrightarrow définition de la moyenne M de n images I_i comme étant l'image minimisant $\sum_i E(M,I_i)$ problèmes de minima locaux très importants
- \hookrightarrow on introduit n difféomorphismes h_i tels que chaque image déformée $A_i \circ h_i$ est censée ressembler à M
- \hookrightarrow on minimise en les h_i : $\sum_{i,j} E(I_i \circ h_i, I_j \circ h_j) \ + \ \sum_i R(h_i)$
- \hookrightarrow la moyenne est $M=\frac{1}{n}\sum_{i}I_{i}\circ h_{i}$.

Exemple : moyenne de photos de visages

Quelques unes des images I_i

Les images déformées $I_i \circ h_i$

La moyenne

Les modes de déformations

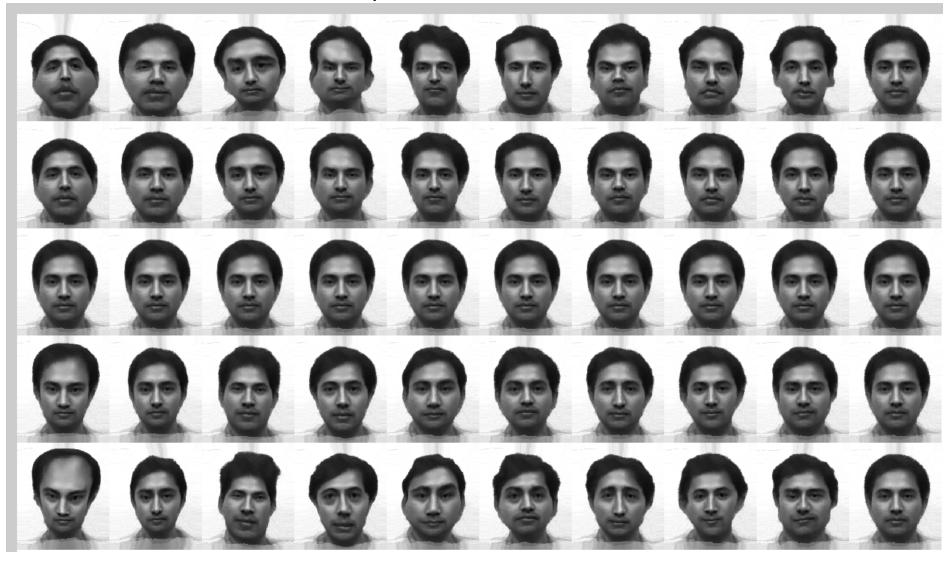
Pour passer de la moyenne M des images à une image particulière I_i , il y a deux chose à faire :

- \hookrightarrow déformer l'image M (en lui appliquant le difféomorphisme h_i^{-1})
- \hookrightarrow changer l'intensité de l'image M (en lui ajoutant $I_i \circ h_i M$)

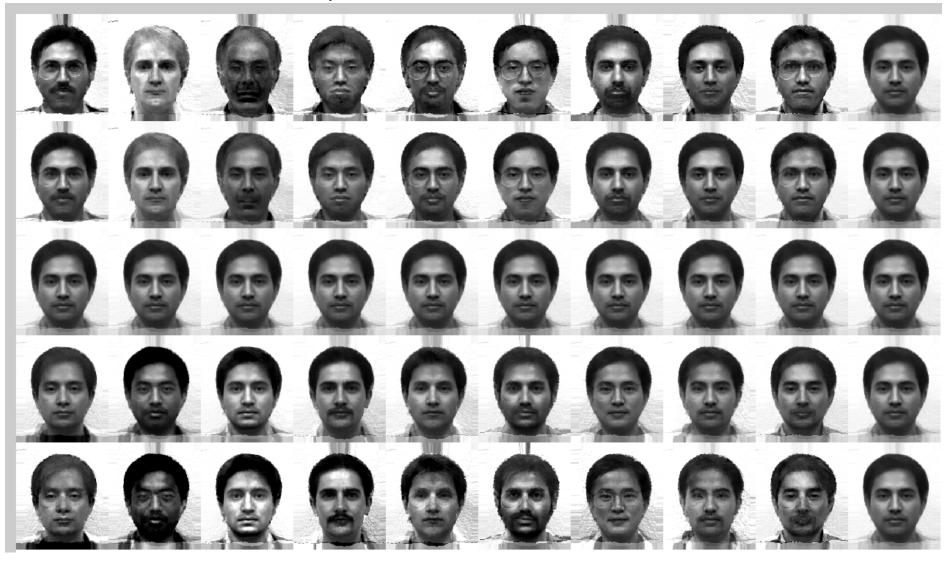
Il y a donc deux types de statistiques à faire à partir de la moyenne M:

- \hookrightarrow 1- statistiques sur les déformations h_i^{-1}
- \hookrightarrow 2- statistiques sur les variations d'intensité $I_i \circ h_i M$
- → 3- statistiques couplées déformations/intensités.

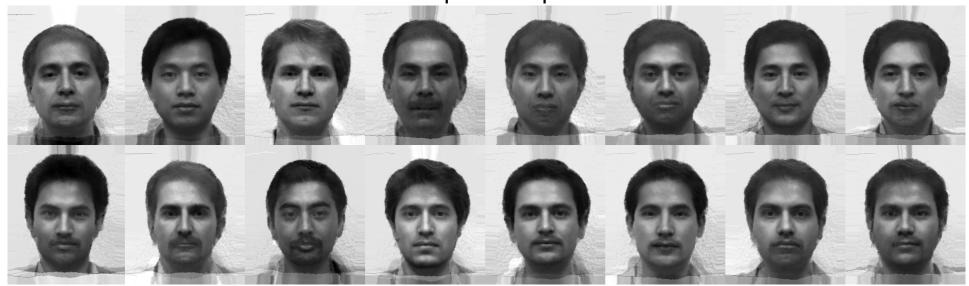
Statistiques sur les déformations



Statistiques sur les variations d'intensité



Statistiques couplées



modes 1 2 3 4 5 6 7 8

Utilisation des statistiques : reconnaissance d'expressions

On dispose d'une base de données de visages, de n personnes avec chacun m attitudes différentes (étiquetées).

On nous donne deux nouvelles photos d'une même personne, l'une dans son état "normal", l'autre avec une expression particulière à déterminer.

Comment faire?

- → pour chaque personne de la base, mettre en correspondance sa photo "normale" avec chacune des photos expressives
- ~ ramener ces déformations/variations d'intensité à la moyenne (afin de pouvoir les comparer)
- ← faire des statistiques sur ces déformations/variations d'intensité pour chacune des expressions sur la base de données

Conclusion

Diverses méthodes pour un a priori sur la forme.