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General Mumford-Shah like

functionals
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We consider the problem of determining an unknown

function v : D → RN with might be singular (discon-

tinuous) across an unknown singularity set Γ ⊂ D

from given data yd ∈ Y .

index.html


3/26

P �
i ?



22
33
3M
L2
3
2

We consider the problem of determining an unknown

function v : D → RN with might be singular (discon-

tinuous) across an unknown singularity set Γ ⊂ D

from given data yd ∈ Y .

Suppose for the moment that the singularity set Γ is

known. Then the function v|D\Γ is an element in a

Hilbert space X(Γ) which might be dependent on Γ.
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We consider the problem of determining an unknown

function v : D → RN with might be singular (discon-

tinuous) across an unknown singularity set Γ ⊂ D

from given data yd ∈ Y .

Suppose for the moment that the singularity set Γ is

known. Then the function v|D\Γ is an element in a

Hilbert space X(Γ) which might be dependent on Γ.

Note: X(Γ) is a space of functions with domain of

definition given by D \ Γ. The norm on X(Γ) does

not measure what happens on/across Γ.
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The relation between v and the given (exact) data

is supposed to be of the form

yd = Kv (1)

where K = K(Γ) with K : X(Γ) → Y is a continuous

(possibly nonlinear) operator.
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Simultaneous determination of

functional and geometric data

The singularity set Γ and the function v ∈ X(Γ) are

to be simultaneously determined as solution to

min
Γ∈G

v∈X(Γ)

JMS(v, Γ)

JMS(v, Γ) =
1

2
‖Kv − yd‖2

Y +
ν

2
‖v‖2

X(Γ) + µ

∫
Γ

1 dS
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Simultaneous determination of

functional and geometric data

The singularity set Γ and the function v ∈ X(Γ) are

to be simultaneously determined as solution to

min
Γ∈G

v∈X(Γ)

JMS(v, Γ)

JMS(v, Γ) =
1

2
‖Kv − yd‖2

Y +
ν

2
‖v‖2

X(Γ) + µ

∫
Γ

1 dS

• Data fit

• Regularization without penalization on/across Γ

• Control of Γ
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Elimination of the functional variable — Shape optimiza-

tion approach
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Elimination of the functional variable — Shape optimiza-

tion approach

Step 1: For fixed Γ ∈ G solve

min
v∈X(Γ)

JMS(v, Γ).

Denote the solution v(Γ).
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Elimination of the functional variable — Shape optimiza-

tion approach

Step 1: For fixed Γ ∈ G solve

min
v∈X(Γ)

JMS(v, Γ).

Denote the solution v(Γ).

Step 2: Consider the shape optimization problem

min
Γ∈G

JMS(v(Γ), Γ).

Calculate a descent direction F using techniques from

shape sensitivity analysis.
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Step 3: Update the geometric variable Γ in the chosen descent

direction using a level-set formulation for the propagation

of the geometric variable. Solve

ut + F |∇u| = 0

for an appropriate time-step. Here Γ = {u = 0}.
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Step 1: Solution of the optimality system w.r.t. v
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Step 1: Solution of the optimality system w.r.t. v

The optimal v(Γ) is found by solving the optimality

system

∂vJMS(v(Γ), Γ) = 0.
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Step 1: Solution of the optimality system w.r.t. v

The optimal v(Γ) is found by solving the optimality

system

∂vJMS(v(Γ), Γ) = 0.

For linear K:

K∗(Kv(Γ)− yd) + νv(Γ) = 0

with v(Γ) ∈ X(Γ).
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Shape sensitivity analysis for
reduced functionals
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Shape sensitivity analysis for
reduced functionals
We consider the reduced functional

Ĵ(Γ) = JMS(v(Γ), Γ)

where v(Γ) = argminvJMS(v, Γ).
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Shape sensitivity analysis for
reduced functionals
We consider the reduced functional

Ĵ(Γ) = JMS(v(Γ), Γ)

where v(Γ) = argminvJMS(v, Γ).

We get

dĴ(Γ; F ) = ∂vJ
(
v(Γ), Γ

)
· v′(Γ; F ) + ∂ΓJ(v(Γ), Γ; F ) (2)
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Shape sensitivity analysis for
reduced functionals
We consider the reduced functional

Ĵ(Γ) = JMS(v(Γ), Γ)

where v(Γ) = argminvJMS(v, Γ).

We get

dĴ(Γ; F ) = ∂vJ
(
v(Γ), Γ

)
· v′(Γ; F ) + ∂ΓJ(v(Γ), Γ; F ) (2)

Since v(Γ) satisfies the Euler-Lagrange equations for

JMS w.r.t. v, the first term in (2) vanishes.
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Descent directions and the choice

of an appropriate metric
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Shape differential and steepest descent
direction
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Shape differential and steepest descent
direction
Suppose F ∈ Z, (Z ... space of perturbations). The

shape differential δJ(Γ) ∈ Z ′ of J at Ω is an element

in Z ′ satisfying

dJ(Γ; F ) = 〈δJ(Γ), F 〉Z ′,Z.

(δJ ... covariant repr. of the shape derivative)

index.html


11/26

P �
i ?



22
33
3M
L2
3
2

Shape differential and steepest descent
direction
Suppose F ∈ Z, (Z ... space of perturbations). The

shape differential δJ(Γ) ∈ Z ′ of J at Ω is an element

in Z ′ satisfying

dJ(Γ; F ) = 〈δJ(Γ), F 〉Z ′,Z.

(δJ ... covariant repr. of the shape derivative)

A steepest descent direction Fsd is an element in Z

satisfying

dJ(Γ; Fsd) = min
F∈Z

‖F‖Z≤1

dJ(Γ; F ).

(Fsd ... contravariant repr. of the shape derivative)
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Choice of the Metric

For the update of the geometry, the descent direc-

tion must be determined.
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Choice of the Metric

For the update of the geometry, the descent direc-

tion must be determined.

The descent direction depends on the choice of the

space Z and on the respective norm.
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Choice of the Metric

For the update of the geometry, the descent direc-

tion must be determined.

The descent direction depends on the choice of the

space Z and on the respective norm.

Different norms lead to different behaviors of the

algorithm.
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Choice of the Metric

For the update of the geometry, the descent direc-

tion must be determined.

The descent direction depends on the choice of the

space Z and on the respective norm.

Different norms lead to different behaviors of the

algorithm.

Restrictive condition on the choice of Z: δ ∈ Z ′.
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A preconditioned gradient method
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A preconditioned gradient method

Suppose that there exists a G = G(Γ) ∈ H−1(Γ) such

that

dJMS(Γ; F ) = 〈G, F |Γ〉H−1(Γ),H1
0 (Γ).
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A preconditioned gradient method

Suppose that there exists a G = G(Γ) ∈ H−1(Γ) such

that

dJMS(Γ; F ) = 〈G, F |Γ〉H−1(Γ),H1
0 (Γ).

To find the steepest descent direction w.r.t. the H1
0-

norm, we have to solve the constrained optimization

problem

min
F∈H1

0 (Γ)
‖F‖H1

0(Γ)≤1

〈G, F |Γ〉H−1(Γ),H1
0 (Γ)

index.html


14/26

P �
i ?



22
33
3M
L2
3
2

Introducing the Lagrange functional

L(F, λ) = 〈G, FΓ〉+ λ
( ∫

Γ

(
|∇ΓF |2 + |F |2

)
dS − 1

)
we get the optimality condition

F = −
1

2λ
(−∆Γ + id)−1G (3)
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Introducing the Lagrange functional

L(F, λ) = 〈G, FΓ〉+ λ
( ∫

Γ

(
|∇ΓF |2 + |F |2

)
dS − 1

)
we get the optimality condition

F = −
1

2λ
(−∆Γ + id)−1G (3)

The ’gradient direction’ −G is preconditioned by an

inverse elliptic operator. The multiplier λ is chosen

such that the H1
0-norm of F is one.
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A piecewise constant

Mumford-Shah approach for

x-ray tomography

(with Ronny Ramlau)
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Objectives:
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Objectives:

Simultaneously reconstruct the

density distribution and the bound-

aries of regions with approximately

homogeneous densities from

Radon-transform data.

• Segment directly from the

data, estimate objects

• Reduce ill-posedness by re-

ducing the dimension of the

unknown — inversion of noisy

data

• Comparable in quality and

speed to established methods
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Objectives:
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Simultaneously reconstruct the

density distribution and the bound-

aries of regions with approximately

homogeneous densities from

Radon-transform data.

• Segment directly from the

data, estimate objects

• Reduce ill-posedness by re-

ducing the dimension of the

unknown — inversion of noisy

data

• Comparable in quality and

speed to established methods
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The functional and the resulting

geometric flow

We fix the space of admissible densities as:

X(Γ) = PC(D \ Γ) =
{ n(Γ)∑

i=1

fi χΩΓ
i

: fi ∈ R
}
⊂ L2(D)

(4)

ΩΓ
i ... connected component of D \ Γ.
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The functional and the resulting

geometric flow

We fix the space of admissible densities as:

X(Γ) = PC(D \ Γ) =
{ n(Γ)∑

i=1

fi χΩΓ
i

: fi ∈ R
}
⊂ L2(D)

(4)

ΩΓ
i ... connected component of D \ Γ.

The ”Radon Mumford-Shah” functional is given as

J(f, Γ) = ‖Rf − gd‖2
L2(R×S1) + α|Γ|. (5)
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Solving the Euler-Lagrange System (Step
1):

∂fJ(f(Γ), Γ) h = 〈Rf(Γ)− gd, Rh〉L2(R×S1) = 0 ∀h. (6)
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Solving the Euler-Lagrange System (Step
1):

∂fJ(f(Γ), Γ) h = 〈Rf(Γ)− gd, Rh〉L2(R×S1) = 0 ∀h. (6)

This is equivalent to

Af(Γ) = g (7)

where A = (aij) and g = (gi)t.

aij = −2

∫
x∈∂ΩΓ

i

∫
y∈∂ΩΓ

j

|y − x|
〈
ni(x), nj(x)〉 dS(y) dS(x). (8)

gi =

∫
ΩΓ

i

R∗gd dx =

∫
x∈ΩΓ

i

∫
ω∈S1

g(ω · x, ω) dω dx. (9)
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The shape derivative (Step 2):

dJ(Γ; F ) =

4
∑

k

∫
x∈Γk

∑
p∈d(k)

spfp

∑
l

∑
q∈d(l)

sqfq

∫
y∈Γl

〈 y − x

|y − x|
, nk(y)

〉
dS(y)


· F (x) dS(x)

− 2
∑

k

∫
x∈Γk

 ∑
p∈d(k)

spfp

∫
ω∈S1

gd(ω · x, ω) dω

 F (x) dS(x)

+
∑

k

∫
x∈Γk

κ(x) F (x) dS(x).

fp...densitiy values, sp = ±1, κ...curvature.
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Numerical observations
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Numerical observations

reconstruction of the densitiy: alpha = 0, nu = 1000
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• Mild degree of ill-

posedness

• Benefit of H1-

preconditioning:

Reduction of

iteration numbers

• Works for real data

simulations
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Numerical observations
• Mild degree of ill-

posedness

• Benefit of H1-

preconditioning:

Reduction of

iteration numbers

• Works for real data

simulations

ν = 102 ν = 101 ν = 100 ν = 10−1 ν = 10−2 ν = 10−3 ν = 0

α = 101 74 52 50 – 62 68 –

α = 102 105 79 134 526 1077 – 1243
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Numerical observations
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• Mild degree of ill-

posedness

• Benefit of H1-

preconditioning:

Reduction of

iteration numbers

• Works for real data

simulations
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A Mumford-Shah like

approach for simultaneous

registration and segmenta-

tion of multimodal data sets.

(with Marc Droske)

index.html


22/26

P �
i ?



22
33
3M
L2
3
2

Objectives:
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Objectives:
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Simultaneously segment

two images and match

similar structures onto

each other.

• Work with noisy

multimodal images

• Transfer features

which are strong in

one image onto the

other, where the

feature is weak

• Work with real data-

sets
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Objectives:

Simultaneously segment

two images and match

similar structures onto

each other.

• Work with noisy

multimodal images

• Transfer features

which are strong in

one image onto the

other, where the

feature is weak

• Work with real data-

sets
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Objectives:

Simultaneously segment

two images and match

similar structures onto

each other.

• Work with noisy

multimodal images

• Transfer features

which are strong in

one image onto the

other, where the

feature is weak

• Work with real data-

sets
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The functional:

EMS(Γ, Φ, R, T ) =
1

2

∫
D

|R −R0|2 dx +
µ

2

∫
D\Γ

|∇R|2 dx

+
1

2

∫
D

|T − T0|2 dx+
µ

2

∫
D\ΓΦ

|∇T |2 dx+αHN−1(Γ)+νEreg(Φ)

R, T ... reference and template images,

Φ... transformation between the images,

Γ... edge-set in the reference image,

ΓΦ = Φ(Γ)... edge-set in the template image,

Ereg... regularization term penalizing deviation from

a rigid body motion.
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Algorithm:

• Minimize w.r.t. T and R for fixed Γ, Φ. Consider

the reduced functional

Ê(Γ, Φ) = E(Γ, Φ, R(Γ), T (Γ, Φ)).

• Calculate descent directions with respect to Γ

and Φ. Use composite finite elements and multi-

grid solvers.

• Update Γ and φ. Use the level-set equation for

the update of Γ.

index.html


25/26

P �
i ?



22
33
3M
L2
3
2

An application from dentistry:
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An application from dentistry:
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An application from dentistry:
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Further applications

• Optical flow estimation

• Inversion of SPECT data

• Occlusions

• etc.
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