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General Mumford-Shah like
functionals
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We consider the problem of determining an unknown
function v : D — RY with might be singular (discon-
tinuous) across an unknown singularity set I' C D
from given data y; €Y.
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Suppose for the moment that the singularity set I' is
known. Then the function v|p\r is an element in a
Hilbert space X (I') which might be dependent on T.
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We consider the problem of determining an unknown
function v : D — RY with might be singular (discon-
tinuous) across an unknown singularity set I' C D
from given data y; € Y.

Suppose for the moment that the singularity set I' is
known. Then the function v|p\r is an element in a
Hilbert space X (I') which might be dependent on T.

Note: X(I') is a space of functions with domain of
definition given by D\ I'. The norm on X(I') does
not measure what happens on/across I.
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The relation between v and the given (exact) data
IS supposed to be of the form

yq = Kv (1)

where K = K(I') with K : X(I') — Y is a continuous
(possibly nonlinear) operator.
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Simultaneous determination of
functional and geometric data

The singularity set I' and the function v € X(I') are
to be simultaneously determined as solution to

min Jyg(v, )
reg
veX (I

1
Tus(0,T) = 1Ko — yall? + +u / 1dS
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Simultaneous determination of
functional and geometric data

The singularity set I' and the function v € X(I') are
to be simultaneously determined as solution to

min Jyg(v, )
reg
veX (I

1
Tus(0,T) = 1Ko — yall? + +u / 1dS

e Data fit
® I

e Control of I'



index.html

Elimination of the functional variable — Shape optimiza-
tion approach
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Elimination of the functional variable — Shape optimiza-
tion approach

Step 1: For fixed I' € G solve

min Jys(v, ).
veX(T)

Denote the solution v(I).
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Elimination of the functional variable — Shape optimiza-
tion approach

Step 1: For fixed I' € G solve

min Jys(v, ).
veX(T)

Denote the solution v(I).

Step 2: Consider the shape optimization problem

tin Jus(v(T), ).

Calculate a descent direction F' using techniques from
shape sensitivity analysis.
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Step 3: Update the geometric variable I' in the chosen descent
direction using a level-set formulation for the propagation
of the geometric variable. Solve

for an appropriate time-step. Here I' = {u = 0}.
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Step 1: Solution of the optimality system w.r.t. U
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Step 1: Solution of the optimality system w.r.t. U

The optimal v(I') is found by solving the optimality
system

Oy Juvs(v(IM), ') = 0.
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Step 1: Solution of the optimality system w.r.t. U

The optimal v(I') is found by solving the optimality
system

avJMs(”U(F), F) = 0.
For linear K:
K*(Kv(l') —yq) +vv(l') =0

with v(T) € X(T).
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Shape sensitivity analysis for
reduced functionals
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Shape sensitivity analysis for
reduced functionals

We consider the reduced functional

J(T) = Jus(v(T),T)

where v(I') = argmin, Jys(v, ).
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Shape sensitivity analysis for

reduced functionals
We consider the reduced functional

J(T) = Jus(v(T),T)

where v(I') = argmin, Jys(v, ).

We get

dJ(T; F) = 8,J (v(T'),T) - v'(T; F) + orJ (v(T),T; F) (2)
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Shape sensitivity analysis for

reduced functionals
We consider the reduced functional

J(T) = Jus(v(T),T)

where v(I') = argmin, Jys(v, ).

We get

dJ(T; F) = 8,J (v(T'),T) - v'(T; F) + orJ (v(T),T; F) (2)

Since v(I") satisfies the Euler-Lagrange equations for
Jvs W.r.t. v, the first term in (2) vanishes.
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Descent directions and the choice
of an appropriate metric
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Shape differential and steepest descent
direction
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Shape differential and steepest descent

direction
Suppose F' € Z, (Z ... space of perturbations). The

shape differential 6J(I') € Z’ of J at 2 is an element
in Z' satisfying

dJ(T; F) = (6.J(T), F)z 2.

(6J ... covariant repr. of the shape derivative)
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Shape differential and steepest descent

direction
Suppose F' € Z, (Z ... space of perturbations). The

shape differential 6J(I') € Z" of J at ) is an element
in 7' satisfying

dJ(I; F) = (6J(I'), FYz 7.

(6J ... covariant repr. of the shape derivative)

A steepest descent direction F.4 IS an element in Z
satisfying
dJ(I'; Fyq) = min dJ(['; F).

FeZz
[Fllz<1

(Fy ... contravariant repr. of the shape derivative)
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Choice of the Metric

For the update of the geometry, the descent direc-
tion must be determined.
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For the update of the geometry, the descent direc-
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T he descent direction depends on the choice of the
space Z and on the respective norm.
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Choice of the Metric

For the update of the geometry, the descent direc-
tion must be determined.

T he descent direction depends on the choice of the
space Z and on the respective norm.

Different norms lead to different behaviors of the
algorithm.
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Choice of the Metric

For the update of the geometry, the descent direc-
tion must be determined.

T he descent direction depends on the choice of the
space Z and on the respective norm.

Different norms lead to different behaviors of the
algorithm.

Restrictive condition on the choice of Z: § € Z'.
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A preconditioned gradient method
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A preconditioned gradient method

Suppose that there exists a G = G(I") € H (T") such
that

dJus(I'; F') = <G>F|F>H—1(F)7H6(F)'
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A preconditioned gradient method

Suppose that there exists a G = G(I") € H (T") such
that

dJus(I'; F') = <G>F|F>H—1(F)7H6(F)'

To find the steepest descent direction w.r.t. the Hg—
norm, we have to solve the constrained optimization
problem

' G, F 1 |
Féﬂljéf(lr) ( Ir) (T),HL(I")

F <1
| HH(%(F)_
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Introducing the Lagrange functional

L(F,)\) = (G, Fr) +/\(/ (IVeF? + |FJ?) dS — 1)

r

we get the optimality condition

1
F——— (—Ar+id) G
o —Ar+id)
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Introducing the Lagrange functional

L(F,)\) = (G, Fr) + /\(/

r

(IVrF)? + |F|?) dS — 1)
we get the optimality condition

1
F=——(-Ar+id)'G 3
2)\( r + id) (3)

The 'gradient direction’ —G is preconditioned by an
inverse elliptic operator. The multiplier A is chosen
such that the H}-norm of F' is one.
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A piecewise constant
Mumford-Shah approach for
X-ray tomography

(with Ronny Ramlau)
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Objectives:
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Objectives:

Simultaneously reconstruct the
density distribution and the bound-
aries of regions with approximately
homogeneous densities from
Radon-transform data.

e Segment directly from the
data, estimate objects

e Reduce ill-posedness by re-
ducing the dimension of the
unknown — inversion of noisy
data

e Comparable in quality and
speed to established methods
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Objectives:

Simultaneously reconstruct the
density distribution and the bound-
aries of regions with approximately
homogeneous densities from
Radon-transform data.

e Segment directly from the
data, estimate objects

e Reduce ill-posedness by re-
ducing the dimension of the
unknown — inversion of noisy
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e Comparable in quality and
speed to established methods
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T he functional and the resulting
geometric flow

We fix the space of admissible densities as:

n(T")

X(I) = PC(D\T) = { > fixar : fi€ R} C L¥(D)
. (4)

Q) ... connected component of D\ T.
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T he functional and the resulting
geometric flow

We fix the space of admissible densities as:

n(T")

X(I) = PC(D\T) = { > fixar : fi€ R} C L¥(D)

Q) ... connected component of D\ T.

The "Radon Mumford-Shah' functional is given as

J(f,T) = IRf — galli2@xsry + aIT- (5)
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Solving the Euler-Lagrange System (Ster
1):

OrJ(f(I),T')h = (Rf(T') — ga, Rh) 2rx51) = 0  Vh. (6)
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Solving the Euler-Lagrange System (Ster
1):

OrJ(f(I'),T') h = (Rf(L') — g4, Rh)r2rxs1) =0 Vh. (6)
This is equivalent to

Af(I) =g (7)

where A = (a;;) and g = (g:)".

oy =2 [ / YA () ) dSG0. (@

gi = R*g.dx = / / g(w - x,w) dw dx. (9)
Qb xeQl Jwes!
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The shape derivative (Step 2):

dJ(I'; F) =

D3 /| > oy (Z > wif | (1= ,nk<y>>ds<y>)

x€l ped(k yel |y — X|

- F(x) dS(x)

2y ( ol | oo x.w) dw) F(x) dS (x)
#32[ w00 PEx)ds().

k

fp...densitiy values, s, = =1, w...curvature.
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Numerical observations
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Numerical observations
e Mild degree of ill-
posedness

e Benefit of H!-
preconditioning:
Reduction of
iteration numbers

e \Works for real data
simulations
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Numerical observations

Mild degree of ill-

posedness

Benefit of H1-
preconditioning:
Reduction of

iteration numbers

Works for real data
simulations

v=10%2 | v=10' | v=100 | v=10"1 | v=10"2 | v=10"3 | v =0
a =101 74 52 50 — 62 63 -
a = 102 105 79 134 526 1077 — 1243
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Numerical observations

e Mild degree of ill-
posedness

e Benefit of H!-
preconditioning:
Reduction of
iteration numbers

e \Works for real data
simulations
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A Mumford-Shah like
approach for simultaneous
registration and segmenta-
tion of multimodal data sets.
(with Marc Droske)
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Objectives:
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Objectives:

Simultaneously segment
two images and match
similar structures onto
each other.

e Work with noisy
multimodal images

| | % B e Transfer features
wp  EEEEEEE L which are strong in
L one image onto the
| e 7 other, where the
ol ":wv‘#%ﬁ * feature is weak

: sk RS e \Work with real data-
= _— sets

-20 0 20 40 60 80 100 120 140
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Objectives:

Simultaneously segment
two images and match
similar structures onto
each other.

e Work with noisy
multimodal images

5 e e, e e Transfer  features
"B - which are strong in
| one image onto the
A other, where the
T Hameea sl feature is weak

I, S e Work with real data-
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Objectives:

Simultaneously segment
two images and match
similar structures onto
each other.

e Work with noisy
multimodal images

e Transfer features
which are strong in
one image onto the
other, where the
feature is weak

e \Work with real data-
sets
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T he functional:

1
Eys(T, &, R, T) = —/ |R—RO|2dx+ﬁ/ VRP dx
2 Jp 2 D\T’
1
+—/ |T—T0\2dx+ﬁ/ IVT|? dx+aH" " (T)+v Ereg (P
2Jp 2 Jp\re
R,T... reference and template images,
d... transformation between the images,
['... edge-set in the reference image,
I'* = &(I")... edge-set in the template image,

Eies... regularization term penalizing deviation from
a rigid body motion.
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Algorithm:

e Minimize w.r.t. T" and R for fixed I', . Consider
the reduced functional

E(,®) = E,®, R(I"), T(T, ®)).

e (Calculate descent directions with respect to I'
and ®. Use composite finite elements and multi-

grid solvers.

e Update I' and ¢. Use the level-set equation for
the update of I'.
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An application from dentistry:
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An application from dentistry:
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Further applications
e Optical flow estimation
e Inversion of SPECT data
e Occlusions

e ctcC.
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