Exact Optimization for Markov Random Fields: Total Variation, Levelable and Convex cases

Jérôme Darbon ${ }^{1,2}$ and Marc Sigelle ${ }^{2}$

${ }^{1}$ EPITA Research and Development Laboratory (LRDE)
14-16, rue Voltaire F-94276 Le Kremlin Bicêtre, France
${ }^{2}$ Ecole Nationale Supérieure des Télécommunications (ENST), Départment TSI
46, rue Barrault F-75643 Cedex 13 Paris, France

> jerome.darbon@\{Irde.epita.fr,enst.fr\} marc.sigelle@enst.fr

- Many computer vision/image proccessing problem can be expressed as an energy minimization problem
- restoration
- segmentation

$$
E(u \mid v)=\underbrace{\int_{\Omega} D(u, v)}_{\text {Data fidelity }}+\beta \underbrace{\int_{\Omega} R(u)}_{\text {Régularisation }}
$$

- High dimensional problem
- Generally non-convex
- Fast algorithms
- Exact solution

Context

- Optimization: continuous approaches
- Gradient descent, Euler-Lagrange, [Rudin, Osher, Fatemi Phisica D. 199
- Duality [Chambolle 2004 JMIV]
- "Graduated Non Convexity" (GNC) [Blake et Zisserman 1987]
- Optimization: Discrete approaches, Markov Random Fields (MRFs)
- Dynamic programming (global minimizer) [Amini et al PAMI 1990]
- Simulated Annealing (global optimizer) [Geman et Geman PAMI 1984]
- Iterated Conditional Mode (local minimizer) [Besag JRSC 1986]
- Graph cuts:
- global optimum for some binary MRFs binaires [Greig et al. JRSC 1989]
- Approximate solution [Boykov et al. PAMI 2001]
- Exact solution [lshikiwa PAMI 2003]
- Exact solution for Convex MRFs[Kolmogorov TR 2005]
- Our approach:
- Reformulate energies as one (or many) binary MRF(s)
- Get global minimizer

Outline

a) Notations
A) Total Variation minimization with convex fidelity
B) Levelable energies
C) Markov Random Fields with Convex Priors
D) $L^{1}+T V$ on the FLST-tree

Notations

- Discretization

s	$\in S$	finite discrete grid
u_{s}	$\in[0, L-1]$	finite number of gray-levels
$s \sim t \rightarrow$	$\rightarrow(s, t)$	neighbors \rightarrow cliques (C-connectivity)

- Level sets

$$
u^{\lambda}=\left\{s \in S \mid \mathbb{1}_{u_{s} \leq \lambda}\right\}
$$

- We consider level sets as variables
A) Total Variation minimisation with convex fidelity
- Convex problem
- Image restoration
- Reformulation through level sets
- Polynomial algorithm
- Results

TV: Reformulation through level sets

- Total Variation

$$
\underbrace{\int_{\Omega}|\nabla u|=\int_{\mathbb{R}} P\left(u^{\lambda}\right)}_{\text {Co-area formula }}=\sum_{\lambda=0}^{L-2} P\left(u^{\lambda}\right)=\sum_{\lambda=0}^{L-2} \underbrace{\sum_{(s, t)} w_{s t}\left|u_{s}^{\lambda}-u_{t}^{\lambda}\right|}_{R_{s t}\left(u_{s}^{\lambda}, u_{t}^{\lambda}\right)}
$$

- Data fidelity

$$
\begin{aligned}
& D\left(u_{s}, v_{s}\right)=\sum_{\lambda=0}^{L-2} \underbrace{\left(D\left(\lambda+1, v_{s}\right)-D\left(\lambda, v_{s}\right)\right)\left(1-u_{s}^{\lambda}\right)}_{D^{\lambda}\left(u_{s}^{\lambda}, v_{s}\right)}+D\left(0, v_{s}\right) \\
\rightarrow & E(u \mid v)=\sum_{\lambda=0}^{L-2} \underbrace{\left(R_{s t}\left(u_{s}^{\lambda}, u_{t}^{\lambda}\right)+D^{\lambda}\left(u_{s}^{\lambda}, v_{s}\right)\right)}_{\text {binary MRF }}+C=\sum_{\lambda=0}^{L-2} E^{\lambda}\left(u^{\lambda}, v\right)
\end{aligned}
$$

TV: Independent minimization and reconstruction

- Minimize (MAP) independently each binary MRF
- $E(u \mid v) \rightarrow E\left(\{u\}^{\lambda}, v\right)$
- Family of minimizers: $\left\{\hat{u}^{\lambda}\right\}_{\lambda=0 \ldots(L-2)}$
- Reconstruction: $\hat{u}_{s}=\inf \left\{\lambda \mid \mathbb{1}_{\hat{u}_{s}^{\lambda}}=1\right\}$ provided that

$$
u_{s}^{\lambda} \leq u_{s}^{\mu} \quad \forall \lambda<\mu \quad \forall s \quad \text { (monotony) }
$$

monotone lemma

If $E\left(u_{s} \mid\left\{u_{t}\right\}_{t \sim s}, v_{s}\right)=\sum_{\lambda=0}^{L-2}\left(\Delta \phi_{s}(\lambda) u_{s}^{\lambda}+\chi_{s}(\lambda)\right)$ where
$\Delta \phi_{s}(\lambda) \nearrow$ of λ and $\chi_{s}(\lambda)$ is independent of u_{s}^{λ},
\Rightarrow Then monotony is preserved.
"convex+TV" models satisfies lemma's conditions

TV : MAP of a binary MRF

- How to minimize a binary Markovian energy
- Build a graph such that its minimum cost cut yields an optimal labelling

- construction of the graph: [Kolmogorov and Zabih, PAMI 2004]
- minimum cost cut algorithm: [Boykov and Kolmogorov, PAMI 2004]
- in practice quasi-linear (w.r.t number of pixels)

TV: Graph construction conditions

- Regularity conditions described in [Kolmogorov and Zabih, PAMI 2004]
- Binary Markovian energy with pairwise interaction

$$
E\left(x_{1}, \ldots, x_{n}\right)=\sum_{i} E^{i}\left(x_{i}\right)+\sum_{i<j} E^{i, j}\left(x_{i}, x_{j}\right)
$$

- $E^{i}\left(x_{i}\right)$: always regular
- $E^{i, j}\left(x_{i}, x_{j}\right)$: regular iff submodular, i.e.

$$
E^{i, j}(0,0)+E^{i, j}(1,1) \leq E^{i, j}(1,0)+E^{i, j}(0,1)
$$

- TV case: $\sum_{s t} w_{s t}\left|u_{s}-u_{t}\right|$

$$
0 \leq w_{s t} \quad \text { ok }
$$

- Decomposition through level sets (recall)

$$
E(u \mid v)=\sum_{\lambda=0}^{L-2} E^{\lambda}\left(u^{\lambda} \mid v\right)
$$

- Direct approach $\Longrightarrow(L-1)$ minimum cost cuts per pixel
- A divide-and-conquer algorithm with dichotomy
- decompose into independent subproblems
- solve each subproblem
- recompose the solution

TV: Minimization algorithm

- Decomposition: Solve for a level λ; connected components

- Solving sub-problems and recomposition

- Thresholding : dichotomy on $[0, L-1] \Longrightarrow \log _{2}(L)$ minimum cost cuts per pixel

TV: Results

TV: Results, additive Gaussian noise

$\mu=0, \sigma=12$

restored image ($\beta=23,5$)

TV: Results, additive Gaussian noise

$\mu=0, \sigma=20$

restored image $(\beta=44,5)$

TV: Results, time

- size $(512 \times 512) ; L^{2}$; time in seconds

Image	$\beta=2$	$\beta=5$	$\beta=10$	$\beta=20$	$\beta=30$	$\beta=40$
Lena	2,07	2,24	2,53	3,04	3,40	3,75
Aerien	2.13	2.24	2.45	2.75	3.06	3.28
Barbara	2.07	2.26	2.51	2.87	3.22	3.50

- size $(256 \times 256) ; L^{2}$; time in seconds

Image	$\beta=2$	$\beta=5$	$\beta=10$	$\beta=20$	$\beta=30$	$\beta=40$
Lena	0,51	0,54	0,60	0,72	0,8	0,87
Aerien	0,55	0,57	0,61	0,67	0,74	0,78
Barbara	0,53	0,55	0,60	0,69	0,75	0,80
Girl	0,52	0,55	0,64	0,75	0,85	0,92

Experiments performed on a Pentium 43 GHz

- Exact solution for "convex+TV" models
- Reformulation through level sets
- Polynomial algorithm
- Complexity $\log _{2}(L) \cdot T(n,(C+2) n)$
- Similar algorithm proposed by
- Chambolle [Chambolle CMAP 2005]
- Hochbaum [Hochbaum ACM 2001]
where $T(n, m)$ is the time required to performed a minimum cost cut on a graph of n nodes and m edges.

Energies nivelées

A) Total Variation minimization with convex fidelity
$B)$ Generalization to levelable energies (includes "convex+TV")

- Definition and caracterization
- Results
- Links with mathematical morphology

Levelable energies: Definition and caracterization

- Idea: Generalization of the decomposition on levels ets
- Goal: caracterize the class of energies such that

$$
E(u \mid v)=\sum_{\lambda=0}^{L-2} E^{\lambda}\left(u^{\lambda} \mid v\right)+C
$$

Définition

A function is levelable iff

$$
f(x, y \ldots)=\sum_{\lambda=0}^{L-1} \psi\left(\lambda, \mathbb{1}_{\lambda<x}, \mathbb{1}_{\lambda<y} \ldots\right)
$$

Levelable energies: Definition et caracterization

- every function of a single variable is levelable.
- global criteria / local criteria

Proposition

The total energy is levelable

$$
\Leftrightarrow
$$

Every energy associated to a clique is a levelable function

Proposition

$U(x, y)=U(y, x)$, is levelable iff

$$
\begin{aligned}
U(x, y) & =S(\max (x, y))-S(\min (x, y))+D(x)+D(y) \\
& =f(\max (x, y))-g(\min (x, y))
\end{aligned}
$$

Levelable energies: Definition et caracterization

Proposition

Assumptions:

(1) $U(x, y)=U(y, x)$ levelable
(2) $\forall y \in[0, L-1], U(x, y)$ reaches its minimum for $x=y$.

Then $U(x, y)=|S(x)-S(y)|+D(x)+D(y)$
with $S, S+D, S-D$

- Goal reached

$$
E(u \mid v)=\sum_{\lambda=0}^{L-2}\{\underbrace{\sum_{(s, t)} \overbrace{R_{s t}(\lambda)}^{\geq 0}\left|u_{s}^{\lambda}-u_{t}^{\lambda}\right|+\sum_{s} \delta\left(\lambda, v_{s}\right)\left(1-u_{s}^{\lambda}\right)}_{E^{\lambda}\left(u^{\lambda}, v\right)}\}+C
$$

Levelable energies: Exact minimisation

- New equivalent energy (i.e, same solutions)

$$
E\left(\{u\}^{\lambda} \mid v\right)=\sum_{\lambda=0}^{L-2} E^{\lambda}\left(u^{\lambda} \mid v\right)+\sum_{s} \underbrace{\alpha H\left(u_{s}^{\lambda}-u_{s}^{\lambda+1}\right)}_{\text {monotony }}
$$

where $H(\cdot)$ is the Heaviside function

- Graph representation (submodularity)

$$
\begin{gathered}
H(0,0)-H(1,1) \leq H(1,0)+H(0,1) \\
0 \leq 1 \text { ok }
\end{gathered}
$$

Levelable energies: impulsive noise restoration, TV

20\%
 corrupted pixels

Levelable energies: impulsive noise restoration, TV

$\beta=0,20$

70%
corrupted
pixels

$$
\beta=0,40
$$

levelable energies: Time complexity

- Complexity is pseudo-polynomial
$T(n L, n C L)$
- To be polynomial $L \rightarrow \log _{2}(L)$
- Other available minimization algorithm [/shikawa, PAMI 2003]
- size of images 256×256; time in seconds (Pentium 4 3GHz)

Image	p	Levelable	Ishikawa	ratio
Lena	0,20	114,78	425,14	3,70
Lena	0,40	159,14	633,09	3.98
Lena	0,70	252,67	1203.22	4.76
Girl	0,20	114,09	469,44	4.11
Girl	0,40	171,68	648,72	3.78
Girl	0,70	272,72	1553,66	5.70

$L^{1}+T V$ is invariant with change of contrast

Definition and lemma

- A continuous and non-decreasing function $h: \mathbb{R} \mapsto \mathbb{R}$, is called a continuous change of contrast.
- A filter \mathcal{T} is invariant w.r.t. a change of contrast iff it satisfies:

$$
h(\mathcal{T}(u))=\mathcal{T}(h(u))
$$

where u is an image and h a change of contrast.

$$
\text { IF } \hat{u} \text { minimizer for } E^{L^{1}+T V}(\cdot \mid v)
$$

then $h(\hat{u})$ minimizer for $E^{L^{1}+T V}(\cdot \mid h(v))$

Levelable energies: Mathematical morphology

original
$\beta=1,5$

Levelable energies: Mathematical morphology

$$
\beta=2,5
$$

$$
\beta=3,0
$$

- Exact minimization for "any + levelable"
- Includes non-convex energies
- Pseudo-polynomial complexity : T(nL, CnL)
- However $U(x, y)=(x-y)^{2}$ is not levelable

MRFs: Convex priors

A) Total Variation minimization with convex fidelity
B) Generalization to levelable energies
C) Generalization to Markovian energies with convex priors

- Convex priors
- Convex MRFs

MRF with convex priors

- Convex priors

$$
E(u \mid v)=\sum_{s} f_{s}\left(u_{s}, v_{s}\right)+\sum_{t \sim s} g_{s t}\left(\left|u_{s}-u_{t}\right|\right)
$$

- Reformulation

$$
g(k, I)=\sum_{\mu=0}^{L-2} \sum_{\lambda=0}^{L-2} \underbrace{G(\lambda, \mu)}_{\leq 0}\left(1-k^{\lambda}\right)\left(1-l^{\mu}\right)+\ldots
$$

- Regularity

$$
G(\lambda, \mu)=2 g(\lambda-\mu)-g(\lambda-\mu+1)-g(\lambda-\mu-1) \leq 0 \quad \text { ok }
$$

Convex MRFs: Proximity theorem

- Fidelity and priors are convex
- Norm L^{∞} on images

Proposition

Let u be an image such that

$$
E(u \mid v)>\min _{u} E(u \mid v) .
$$

There exists \hat{u} a global minimizer for $E(\cdot \mid v)$ and $\delta \in\{-1,0,1\}^{|S|}$ such that

$$
E(u \mid v)>E(u+\delta \mid v)
$$

Besides we have

$$
\|(u+\delta)-\hat{u}\|_{\infty}=\|u-\hat{u}\|_{\infty}-1
$$

Convex MRFs: Discrete steepest descent

- $\forall s \rightarrow u_{s}=u_{s}+b_{s} d$
b_{s} binary variable
$d=$ moving direction

$$
\left.E\left(\left\{b_{s}\right\} \mid v\right)=\sum_{s} f_{s}\left(u_{s}+b_{s} d\right), v_{s}\right)+\sum_{t \sim s} g_{s t}\left(u_{s}-u_{t}+b_{s} d-b_{t} d\right)
$$

\rightarrow submodular

- How computing a discrete steepest descent with only one direction?

Convex MRFs: Discrete steepest descent

- Use two minimum cost cuts

1

3

2

4

Convex MRFs: Discrete steepest descent

- Requires $\frac{L}{2}$ steepest descents
- Pseudo polynomial complexity: $L \cdot T(n,(C+2) n)$
- Similar to the approach of
- Bioucas Dias et al. [Bioucas 05 ibpria]
- Murota [Murota SIAM book 2003]
- This is Primal algorithm of Kolmogorov [Kolmogorov 05 TR]

Only proofs are different

- How to speedup?

Convex MRFs: Discrete steepest descent (Scaling)

- Scaling of a function (with a non negative integer)

$$
f^{n}(x)=f(n x)
$$

- Scaled convex MRFs remains convex

$$
E^{n}\left(u^{n} \mid v\right)=\sum_{s} f_{s}^{n}\left(u_{s}^{n}, v_{s}\right)+g_{s t}^{n}\left(u_{s}^{n}-u_{t}^{n}\right)
$$

- Heuristics:
- Minimize once with geometrically decreasing steps: $d=2^{k}, 2^{k-1}$, $\ldots, 2^{0}$
- Then minimize with step 1 until convergence
- In practice quasi $\log _{2} L$ steepest descents for image restoration models

Convex MRFs: Results

$\mu=0, \sigma=12$

$$
\beta=15,|\nabla \cdot|^{1,2}
$$

Convex MRFs: Results

$$
\mu=0, \sigma=20
$$

$$
\beta=30,|\nabla \cdot|^{1,2}
$$

Convex MRFs: Results

TV

$|\nabla \cdot|^{1,2}$

Convex MRFs: Time results

Experiments performed on a Pentium 43 GHz

Image (256 ${ }^{2}$)	$\beta=5$	$\beta=10$	$\beta=20$	$\beta=30$	$\beta=40$	$\beta=50$
girl (h)	1,61	1,86	2,26	2,57	2,82	2,98
lena (h)	1,62	1,88	2,24	2,49	2,71	2,90
barbara (h)	1,58	1,80	2,12	2,38	2,58	2,75

Image (512 ${ }^{2}$)	$\beta=5$	$\beta=10$	$\beta=20$	$\beta=30$	$\beta=40$	$\beta=50$
lena (h)	6,22	7,34	8,94	10,14	11,21	12,19
aérien (h)	5,93	6,84	8,10	9,02	9,77	10,46
barbara (h)	6,05	7,01	8,54	9,62	10,63	11,43

Image (512 ${ }^{2}$)	$\beta=5$	$\beta=10$	$\beta=20$	$\beta=30$	$\beta=40$	$\beta=50$
lena (h)	6,22	7,34	8,94	10,14	11,21	12,19
lena (1)	101,59	121,00	145,21	163,01	177,0	189,67

(1) \rightarrow algorithm with a step of 1
(h) \rightarrow algorithm with heuristic

For $L=256 \rightarrow$ ratio $\simeq 15$

- "any+ convex" models
- Includes non-convex energies
- Exact minimization
- Pseudo polynomial complexity : $T\left(n L, C n L^{2}\right)$
- "convex + convex" models
- Exact minimization
- Pseudo polynomial complexity : $L \cdot T(n,(C+2) n)$
- With scaling heuristic: tends to be quasi $2 \log _{2} L \cdot T(n,(C+2) n)$ in practice for image restoration models
A) Total Variation minimization with convex fidelity
B) Levelable energies
C) Markov Random Fields with Convex Priors
D) $L^{1}+T V$ on the FLST-tree

- Loss of contrast \rightarrow use L^{1}
- How to preserve contours ?

Fast Level Set Transform tree

- Level Sets

$$
L^{\lambda}(u)=\{x \in \Omega \mid u(x) \leq \lambda\}, U^{\lambda}(u)=\{x \in \Omega \mid u(x)>\lambda\}
$$

- Inclusion property

$$
\begin{aligned}
& U^{\lambda}(u) \subset U^{\mu}(u) \forall \lambda \geq \mu \\
& L^{\lambda}(u) \subset L^{\mu}(u) \forall \lambda \leq \mu
\end{aligned}
$$

- Induce a tree [Salembier et al. ITIP 98] :
- conected components of lower sets
- $L^{\lambda} \rightarrow$ "Min-Tree" \rightarrow dark objects on light background
- $U^{\lambda} \rightarrow$ "Max-Tree" \rightarrow light object on dark background
- "Fast Level Set Transform" (FLST) [Monasse et al ITIP 2000]
- Merge the 2 trees into a single one
- Need of a criteria : Holes

Fast Level Set Transform Tree

- Shapes = connected components of level sets whose holes have been filed.
- Definition of the tree
- 1 node $=1$ shape
- Parent = smallest form which contains it
- children = included forms
- Decomposition of the image into forms S_{1}... S_{n}

Fast Level Set Transform Tree

- $L^{1}+T V$ on the FLST tree equivalent to
$L^{1}+T V+$ edge preservation
- Attributes associated to each node
- gray level u_{i}
- area for data fidelity $\rightarrow\left|D_{i}\right|$
- perimeter for TV (co-aire formula) $\rightarrow P_{i}$
- Data fidelity:

$$
\sum_{i=1}^{N}\left|D_{i}\right|\left|u_{i}-v_{i}\right|
$$

- Total Variation:

$$
\sum_{i=1}^{N-1} P_{i}\left|u_{i}-u_{i}^{p}\right|
$$

- Finally

$$
E^{L^{1}+T V}(u \mid v)=\sum_{i=1}^{N}\left|D_{i}\right|\left|u_{i}-v_{i}\right|+\beta \sum_{i=1}^{N-1} P_{i}\left|u_{i}-u_{i}^{p}\right|
$$

- Sites: nodes the tree
- Neighborhoods \rightarrow parents et children
- pairwise interactions
- MAP of the Markovian energy $L^{1}+T V$
$\rightarrow L^{1}+T V$ algorithm of the first part

Résultats

Original image

$\beta=3$

Résultats

Résultats

Original image
Pertinent contours ?

$$
\beta=1
$$

Résultats

$$
\beta=2
$$

Résultats

borders of the result $(\beta=10)$ superimposed on the original image
2 regions

Image	FLST	Minimization
Lena (256×256)	0.18	0.11
Lena (512×512)	1.09	1.04
Woman (522×232)	0.39	0.06
Squirrel (209×288)	0.24	0.19

FLST tree computed with the implementation available in Megawave (ENS de Cachan)

- Contrast preservation (since it is morphological)
- Edge preservation
- Fast
- Good simplification for future segmentaion

Conclusion

- Exact optimization for
- Convex + TV (polynomial)
- Convex + Convex (pseudo-polynomial)
- Any + Levelable (pseudo-polynomial)
- Any + Convex (pseudo-polynomial)
- $L^{1}+T V$ is invariant with respect to changes of contrast

