Exact Optimization for Markov Random Fields: Total Variation, Levelable and Convex cases

Jérôme Darbon^{1,2} and Marc Sigelle²

¹EPITA Research and Development Laboratory (LRDE) 14-16, rue Voltaire F-94276 Le Kremlin Bicêtre, France

²Ecole Nationale Supérieure des Télécommunications (ENST), Départment TSI 46, rue Barrault F-75643 Cedex 13 Paris, France

> jerome.darbon@{Irde.epita.fr,enst.fr} marc.sigelle@enst.fr

Context

- Many computer vision/image processing problem can be expressed as an energy minimization problem
 - restoration
 - segmentation

- High dimensional problem
- Generally non-convex
- Fast algorithms
- Exact solution

Context

- Optimization: continuous approaches
 - Gradient descent, Euler-Lagrange, [Rudin, Osher, Fatemi Phisica D. 1993
 - Duality [Chambolle 2004 JMIV]
 - "Graduated Non Convexity" (GNC) [Blake et Zisserman 1987]
- Optimization: Discrete approaches, Markov Random Fields (MRFs)
 - Dynamic programming (global minimizer) [Amini et al PAMI 1990]
 - Simulated Annealing (global optimizer) [Geman et Geman PAMI 1984]
 - Iterated Conditional Mode (local minimizer) [Besag JRSC 1986]
 - Graph cuts:
 - global optimum for some binary MRFs binaires [Greig et al. JRSC 1989]
 - Approximate solution [Boykov et al. PAMI 2001]
 - Exact solution [Ishikiwa PAMI 2003]
 - Exact solution for Convex MRFs[Kolmogorov TR 2005]
- Our approach:
 - Reformulate energies as one (or many) binary MRF(s)
 - Get global minimizer

- α) Notations
- A) Total Variation minimization with convex fidelity
- B) Levelable energies
- C) Markov Random Fields with Convex Priors
- D) $L^1 + TV$ on the FLST-tree

Discretization

S	\in	S	finite discrete grid
Us	\in	[0, <i>L</i> - 1]	finite number of gray-levels
$s \sim t$	\rightarrow	(s, t)	neighbors \rightarrow cliques (C-connectivity)

Level sets

$$u^{\lambda} = \{ s \in S | 1_{u_s \leq \lambda} \}$$

• We consider level sets as variables

A) Total Variation minimisation with convex fidelity

- Convex problem
- Image restoration
- Reformulation through level sets
- Polynomial algorithm
- Results

TV: Reformulation through level sets

Total Variation

$$\underbrace{\int_{\Omega} |\nabla u| = \int_{\mathbb{R}} P(u^{\lambda})}_{\text{Co-area formula}} = \sum_{\lambda=0}^{L-2} P(u^{\lambda}) = \sum_{\lambda=0}^{L-2} \underbrace{\sum_{\lambda=0} W_{st} |u_{s}^{\lambda} - u_{t}^{\lambda}|}_{R_{st}(u_{s}^{\lambda}, u_{t}^{\lambda})}$$

Data fidelity •

$$D(u_s, v_s) = \sum_{\lambda=0}^{L-2} \underbrace{\left(D(\lambda+1, v_s) - D(\lambda, v_s)\right)\left(1 - u_s^{\lambda}\right)}_{D^{\lambda}(u_s^{\lambda}, v_s)} + D(0, v_s)$$

$$\bullet E(u|v) = \sum_{\lambda=0}^{L-2} \underbrace{\left(R_{st}(u_s^{\lambda}, u_t^{\lambda}) + D^{\lambda}(u_s^{\lambda}, v_s)\right)}_{V_s} + C = \sum_{\lambda=0}^{L-2} E^{\lambda}(u^{\lambda}, v)$$

binary MRF

 $\lambda = 0$

TV: Independent minimization and reconstruction

- Minimize (MAP) independently each binary MRF
 - $E(u|v) \rightarrow E(\{u\}^{\lambda}, v)$
 - Family of minimizers: $\{\hat{u}^{\lambda}\}_{\lambda=0...(L-2)}$
- Reconstruction: $\hat{u}_s = \inf\{\lambda | 1_{\hat{u}_s^{\lambda}} = 1\}$ provided that

 $u_{s}^{\lambda} \leq u_{s}^{\mu} \quad \forall \lambda < \mu \quad \forall s \quad (\textit{monotony})$

monotone lemma

If
$$E(u_s \mid \{u_t\}_{t \sim s}, v_s) = \sum_{\lambda=0}^{L-2} (\Delta \phi_s(\lambda) u_s^{\lambda} + \chi_s(\lambda))$$
 where $\Delta \phi_s(\lambda) \nearrow of \lambda$ and $\chi_s(\lambda)$ is independent of u_s^{λ} ,
 \Rightarrow Then monotony is preserved.

"convex+TV" models satisfies lemma's conditions

TV : MAP of a binary MRF

- How to minimize a binary Markovian energy
- Build a graph such that its minimum cost cut yields an optimal labelling

- construction of the graph: [Kolmogorov and Zabih, PAMI 2004]
- minimum cost cut algorithm: [Boykov and Kolmogorov, PAMI 2004]
- in practice quasi-linear (w.r.t number of pixels)

TV: Graph construction conditions

- Regularity conditions described in [Kolmogorov and Zabih, PAMI 2004]
- Binary Markovian energy with pairwise interaction

$$\boldsymbol{E}(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n) = \sum_i \boldsymbol{E}^i(\boldsymbol{x}_i) + \sum_{i < j} \boldsymbol{E}^{i,j}(\boldsymbol{x}_i,\boldsymbol{x}_j)$$

- $E^{i}(x_{i})$: always regular
- $E^{i,j}(x_i, x_j)$: regular iff submodular, i.e.

$$E^{i,j}(0,0)+E^{i,j}(1,1)\leq E^{i,j}(1,0)+E^{i,j}(0,1)$$

• TV case: $\sum_{st} w_{st} |u_s - u_t|$

$$0 \le w_{st}$$
 ok

Decomposition through level sets (recall)

$$E(u|v) = \sum_{\lambda=0}^{L-2} E^{\lambda}(u^{\lambda}|v)$$

- Direct approach \implies (L-1) minimum cost cuts per pixel
- A divide-and-conquer algorithm with dichotomy
 - decompose into independent subproblems
 - solve each subproblem
 - recompose the solution

TV: Minimization algorithm

Decomposition: Solve for a level λ; connected components

• Solving sub-problems and recomposition

 Thresholding : dichotomy on [0, L − 1] ⇒ log₂(L) minimum cost cuts per pixel

TV: Results, additive Gaussian noise

 $\mu = 0, \sigma = 12$

restored image ($\beta = 23, 5$)

TV: Results, additive Gaussian noise

 $\mu = 0, \sigma = 20$

restored image ($\beta = 44, 5$)

TV: Results, time

• size (512×512) ; L^2 ; time in seconds

Image	$\beta = 2$	$\beta = 5$	$\beta = 10$	$\beta = 20$	$\beta = 30$	$\beta = 40$
Lena	2,07	2,24	2,53	3,04	3,40	3,75
Aerien	2.13	2.24	2.45	2.75	3.06	3.28
Barbara	2.07	2.26	2.51	2.87	3.22	3.50

• size (256 \times 256) ; L^2 ; time in seconds

Image	$\beta = 2$	$\beta = 5$	$\beta = 10$	$\beta = 20$	$\beta = 30$	$\beta = 40$
Lena	0,51	0,54	0,60	0,72	0,8	0,87
Aerien	0,55	0,57	0,61	0,67	0,74	0,78
Barbara	0,53	0,55	0,60	0,69	0,75	0,80
Girl	0,52	0,55	0,64	0,75	0,85	0,92

Experiments performed on a Pentium 4 3 GHz

TV: Partial conclusion

- Exact solution for "convex+TV" models
- Reformulation through level sets
- Polynomial algorithm
- Complexity $\log_2(L) \cdot T(n, (C+2)n)$
- Similar algorithm proposed by
 - Chambolle [Chambolle CMAP 2005]
 - Hochbaum [Hochbaum ACM 2001]

where T(n, m) is the time required to performed a minimum cost cut on a graph of *n* nodes and *m* edges.

- A) Total Variation minimization with convex fidelity
- B) Generalization to levelable energies (includes "convex+TV")
 - Definition and caracterization
 - Results
 - Links with mathematical morphology

Levelable energies: Definition and caracterization

- Idea: Generalization of the decomposition on levels ets
- Goal: caracterize the class of energies such that

$$E(u|v) = \sum_{\lambda=0}^{L-2} E^{\lambda}(u^{\lambda} | v) + C$$

Définition

A function is levelable iff

$$f(\mathbf{x}, \mathbf{y} \ldots) = \sum_{\lambda=0}^{L-1} \psi(\lambda, \mathbf{1}_{\lambda < \mathbf{x}}, \mathbf{1}_{\lambda < \mathbf{y}} \ldots)$$

Levelable energies: Definition et caracterization

- every function of a single variable is levelable.
- global criteria / local criteria

Proposition

The total energy is levelable

\Leftrightarrow

Every energy associated to a clique is a levelable function

Proposition

U(x, y) = U(y, x), is levelable iff

$$U(x, y) = S(\max(x, y)) - S(\min(x, y)) + D(x) + D(y)$$

= $f(\max(x, y)) - g(\min(x, y))$,

Levelable energies: Definition et caracterization

Proposition

Assumptions:

• U(x, y) = U(y, x) levelable • $\forall y \in [0, L - 1], U(x, y)$ reaches its minimum for x = y. Then U(x, y) = |S(x) - S(y)| + D(x) + D(y)with S, S + D, S - D \nearrow

• Goal reached

$$E(u|v) = \sum_{\lambda=0}^{L-2} \left\{ \underbrace{\sum_{(s,t)} \stackrel{\geq 0}{R_{st}(\lambda)} \mid u_s^{\lambda} - u_t^{\lambda} \mid + \sum_s \delta(\lambda, v_s) (1 - u_s^{\lambda})}_{E^{\lambda}(u^{\lambda}, v)} \right\} + C$$

Levelable energies: Exact minimisation

New equivalent energy (i.e, same solutions)

$$E(\{u\}^{\lambda}|v) = \sum_{\lambda=0}^{L-2} E^{\lambda}(u^{\lambda}|v) + \sum_{s} \underbrace{\alpha H(u_{s}^{\lambda} - u_{s}^{\lambda+1})}_{monotony}$$

where $H(\cdot)$ is the Heaviside function

Graph representation (submodularity)

$$H(0,0) - H(1,1) \le H(1,0) + H(0,1)$$

 $0 \le 1 \ ok$

Levelable energies: impulsive noise restoration, TV

20% corrupted pixels

GDR MSPC Exact optimization for MRFs: TV, levelable and convex cases

 $\beta = 0.20$

Levelable energies: impulsive noise restoration, TV

40% corrupted pixels

GDR MSPC Exact optimization for MRFs: TV, levelable and convex cases

 $\beta = 0.20$

Levelable energies: impulsive noise restoration, TV

70% corrupted pixels

GDR MSPC Exact optimization for MRFs: TV, levelable and convex cases

 $\beta \equiv 0,40$

levelable energies: Time complexity

Complexity is pseudo-polynomial

T(nL, nCL)

• To be polynomial $L \rightarrow \log_2(L)$

Levelable energies: time computation and comparison

- Other available minimization algorithm [Ishikawa, PAMI 2003]
- size of images 256×256 ; time in seconds (Pentium 4 3GHz)

Image	р	Levelable	Ishikawa	ratio
Lena	0,20	114,78	425,14	3,70
Lena	0,40	159,14	633,09	3.98
Lena	0,70	252,67	1203.22	4.76
Girl	0,20	114,09	469,44	4.11
Girl	0,40	171,68	648,72	3.78
Girl	0,70	272,72	1553,66	5.70

Links with mathematical morphology

$L^1 + TV$ is invariant with change of contrast

Definition and lemma

• A continuous and non-decreasing function $h: \mathbb{R} \mapsto \mathbb{R}$, is called a continuous change of contrast.

•A filter T is invariant w.r.t. a change of contrast iff it satisfies:

 $h(\mathcal{T}(u)) = \mathcal{T}(h(u)) \ ,$

where u is an image and h a change of contrast.

IF
$$\hat{u}$$
 minimizer for $E^{L^1+TV}(\cdot|\mathbf{v})$

then
$$h(\hat{u})$$
 minimizer for $E^{L^1+TV}(\cdot|h(v))$

Levelable energies: Mathematical morphology

original

 $\beta = 1, 5$

Levelable energies: Mathematical morphology

$$\beta = 2,5$$

 $\beta = 3, 0$

Levelable energies: Partial conclusion

- Exact minimization for "any + levelable"
- Includes non-convex energies
- Pseudo-polynomial complexity : T(nL, CnL)
- However $U(x, y) = (x y)^2$ is not levelable

- A) Total Variation minimization with convex fidelity
- B) Generalization to levelable energies
- C) Generalization to Markovian energies with convex priors
 - Convex priors
 - Convex MRFs

MRF with convex priors

Convex priors

$$E(u|v) = \sum_{s} f_s(u_s, v_s) + \sum_{t \sim s} g_{st}(|u_s - u_t|)$$

Reformulation

$$g(k, l) = \sum_{\mu=0}^{L-2} \sum_{\lambda=0}^{L-2} \underbrace{G(\lambda, \mu)}_{\leq 0 \text{ since } g \text{ convex}} (1 - k^{\lambda})(1 - l^{\mu}) + \dots$$

Regularity

$${f G}(\lambda,\mu)=2{f g}(\lambda-\mu)-{f g}(\lambda-\mu+1)-{f g}(\lambda-\mu-1)\leq 0$$
 ok

Convex MRFs: Proximity theorem

- Fidelity and priors are convex
- Norm L^{∞} on images

Proposition

Let u be an image such that

$$E(u|v) > \min_{u} E(u|v)$$
.

There exists \hat{u} a global minimizer for $E(\cdot|v)$ and $\delta \in \{-1, 0, 1\}^{|S|}$ such that

$$E(u|v) > E(u+\delta|v)$$
.

Besides we have

$$\|(u+\delta)-\hat{u}\|_{\infty}=\|u-\hat{u}\|_{\infty}-1$$
.

Convex MRFs: Discrete steepest descent

•
$$\forall s \rightarrow u_s = u_s + \frac{b_s d}{b_s}$$
 binary variable
 $d = moving direction$

$$E(\{b_s\}|v) = \sum_s f_s(u_s + b_s d), v_s) + \sum_{t \sim s} g_{st}(u_s - u_t + b_s d - b_t d)$$

 \rightarrow submodular

How computing a discrete steepest descent with only one direction ?

Convex MRFs: Discrete steepest descent

Use two minimum cost cuts

Convex MRFs: Discrete steepest descent

- Requires $\frac{L}{2}$ steepest descents
- Pseudo polynomial complexity: $L \cdot T(n, (C+2)n)$
- Similar to the approach of
 - Bioucas Dias et al. [Bioucas 05 ibpria]
 - Murota [Murota SIAM book 2003]
- This is Primal algorithm of Kolmogorov [Kolmogorov 05 TR]

Only proofs are different

• How to speedup ?

Convex MRFs: Discrete steepest descent (Scaling)

• Scaling of a function (with a non negative integer)

 $f^n(x) = f(nx)$.

Scaled convex MRFs remains convex

$$E^n(u^n|v) = \sum_s f^n_s(u^n_s,v_s) + g^n_{st}(u^n_s-u^n_t) ,$$

- Heuristics:
 - Minimize once with geometrically decreasing steps: d = 2^k, 2^{k-1}, ..., 2⁰
 - Then minimize with step 1 until convergence
 - In practice quasi log₂L steepest descents for image restoration models

Convex MRFs: Results

$$\mu = 0, \sigma = 12$$

$$\beta = 15, |\nabla \cdot|^{1,2}$$

Convex MRFs: Results

$$\mu = 0, \sigma = 20$$

eta= 30 , $|
abla\cdot|^{1,2}$

Convex MRFs: Results

 $|\nabla \cdot |^{1,2}$

Convex MRFs: Time results

Experiments performed on a Pentium 4 3 GHz

Image (256 ²)	$\beta = 5$	$\beta = 10$	$\beta = 20$	$\beta = 30$	$\beta = 40$	$\beta = 50$
girl (h)	1,61	1,86	2,26	2,57	2,82	2,98
lena (h)	1,62	1,88	2,24	2,49	2,71	2,90
barbara (h)	1,58	1,80	2,12	2,38	2,58	2,75
Image (512 ²)	$\beta = 5$	$\beta = 10$	$\beta = 20$	$\beta =$ 30	$\beta =$ 40	$\beta = 50$
lena (h)	6,22	7,34	8,94	10,14	11,21	12,19
aérien (h)	5,93	6,84	8,10	9,02	9,77	10,46
barbara (h)	6,05	7,01	8,54	9,62	10,63	11,43
Image (512 ²)	$\beta = 5$	$\beta = 10$	$\beta = 20$	$\beta =$ 30	$\beta =$ 40	$\beta = 50$
lena (h)	6,22	7,34	8,94	10,14	11,21	12,19
lena (1)	101,59	121,00	145,21	163,01	177,0	189,67

- (1) \rightarrow algorithm with a step of 1
- (h) \rightarrow algorithm with heuristic
- For $L = 256 \rightarrow ratio \simeq 15$

GDR MSPC Exact optimization for MRFs: TV, levelable and convex cases

Convex MRFs: Partial conclusion

- "any+ convex" models
 - Includes non-convex energies
 - Exact minimization
 - Pseudo polynomial complexity : T(nL, CnL²)
- "convex + convex" models
 - Exact minimization
 - Pseudo polynomial complexity : $L \cdot T(n, (C+2)n)$
 - With scaling heuristic: tends to be quasi
 2 log₂ L · T(n, (C + 2)n) in practice for image restoration models

- A) Total Variation minimization with convex fidelity
- B) Levelable energies
- C) Markov Random Fields with Convex Priors
- D) $L^1 + TV$ on the FLST-tree

L^2 + TV, contrast and contours

- Loss of contrast \rightarrow use L^1
- How to preserve contours ?

Fast Level Set Transform tree

- Level Sets $L^{\lambda}(u) = \{x \in \Omega | u(x) \le \lambda\}$, $U^{\lambda}(u) = \{x \in \Omega | u(x) > \lambda\}$
- Inclusion property

$$U^{\lambda}(u) \subset U^{\mu}(u) \ \forall \lambda \geq \mu$$

$$L^{\lambda}(u) \subset L^{\mu}(u) \ \forall \lambda \leq \mu$$

- Induce a tree [Salembier et al. ITIP 98] :
 - conected components of lower sets
 - $L^{\lambda} \rightarrow$ "Min-Tree" \rightarrow dark objects on light background
 - $U^{\lambda} \rightarrow$ "Max-Tree" \rightarrow light object on dark background
- "Fast Level Set Transform" (FLST) [Monasse et al ITIP 2000]
 - Merge the 2 trees into a single one
 - Need of a criteria : Holes

Fast Level Set Transform Tree

- Shapes = connected components of level sets whose holes have been filed.
- Definition of the tree
 - 1 node = 1 shape
 - Parent = smallest form which contains it
 - children = included forms
- Decomposition of the image into forms S₁ ...
 S_n

Fast Level Set Transform Tree

- $L^1 + TV$ on the FLST tree equivalent to
 - $L^1 + TV$ + edge preservation
- Attributes associated to each node
 - gray level u_i
 - area for data fidelity $\rightarrow |D_i|$
 - perimeter for TV (co-aire formula) $\rightarrow P_i$
- Data fidelity:

$$\sum_{i=1}^N |D_i||u_i - v_i|$$

Total Variation:

$$\sum_{i=1}^{N-1} P_i |u_i - u_i^{p}|$$

$L^1 + TV$ sur l'arbre de la FLST

Finally

$$E^{L^{1}+TV}(u|v) = \sum_{i=1}^{N} |D_{i}||u_{i} - v_{i}| + \beta \sum_{i=1}^{N-1} P_{i}|u_{i} - u_{i}^{p}|$$

- Sites: nodes the tree
- Neighborhoods → parents et children
- pairwise interactions
- MAP of the Markovian energy $L^1 + TV$ $\rightarrow L^1 + TV$ algorithm of the first part

Original image

 $\beta = 3$

 $\beta = 15$

borders of the resul

5 regions

Original image

Pertinent contours ?

GDR MSPC Exact optimization for MRFs: TV, levelable and convex cases

 $\beta = 1$

 $\beta = 2$

borders of the result ($\beta = 10$) superimposed on the original image

2 regions

Résultats, temps de calcul

Image	FLST	Minimization
Lena (256x256)	0.18	0.11
Lena (512x512)	1.09	1.04
Woman (522x232)	0.39	0.06
Squirrel (209x288)	0.24	0.19

FLST tree computed with the implementation available in Megawave (ENS de Cachan)

- Contrast preservation (since it is morphological)
- Edge preservation
- Fast
- Good simplification for future segmentaion

- Exact optimization for
 - Convex + TV (polynomial)
 - Convex + Convex (pseudo-polynomial)
 - Any + Levelable (pseudo-polynomial)
 - Any + Convex (pseudo-polynomial)

• $L^1 + TV$ is invariant with respect to changes of contrast