
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 10, NO. 4, OCTOBER 2006 677

Medical Image Segmentation Using Minimal Path
Deformable Models With Implicit Shape Priors
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Abstract—This paper presents a new method for segmentation of
medical images by extracting organ contours, using minimal path
deformable models incorporated with statistical shape priors. In
our approach, boundaries of structures are considered as minimal
paths, i.e., paths associated with the minimal energy, on weighted
graphs. Starting from the theory of minimal path deformable mod-
els, an intelligent “worm” algorithm is proposed for segmentation,
which is used to evaluate the paths and finally find the minimal
path. Prior shape knowledge is incorporated into the segmentation
process to achieve more robust segmentation. The shape priors are
implicitly represented and the estimated shapes of the structures
can be conveniently obtained. The worm evolves under the joint
influence of the image features, its internal energy, and the shape
priors. The contour of the structure is then extracted as the worm
trail. The proposed segmentation framework overcomes the short-
comings of existing deformable models and has been successfully
applied to segmenting various medical images.

Index Terms—Deformable models, energy minimization, medi-
cal image segmentation, minimal path, shape prior modeling.

I. INTRODUCTION

S EGMENTATION of anatomical structures is a fundamen-
tal operation in medical image analysis. In recent years,

computer-vision-based segmentation techniques that combine
deformable models with local edge or feature extraction have
achieved considerable success in medical image segmenta-
tion [1], [2]. With given initial contours, deformable models
are able to evolve to obtain the organ boundaries. The starting
contours are usually manually initialized as polygons near the
actual organ contours.

Deformable models were first introduced into computer vi-
sion by Kass et al. [3] as “snakes” or active contours, which are
now more well known as parametric deformable models as they
are explicitly represented as parameterized contours in a La-
grangian framework. Although they have been used extensively
in medical image segmentation, one of their main difficulties
is the inability to adapt to complex topologies. Geometric de-
formable models [4]–[6], or level set methods [7], [8], on the
other hand, are represented implicitly as level sets of Lipchitz
functions and evolve in an Eulerian fashion. Compared with
parametric deformable models, geometric deformable models
are superior in many respects, especially in handling topolog-
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ical changes. During the past decade, various medical image
segmentation methods based on level set methods have been
proposed [9].

Although these methods are very powerful in solving object
segmentation problems, they have some drawbacks. Deliberate
initialization is required by most segmentation methods. Cur-
rently, manual initialization is the most commonly used method
for deformable models. This becomes impractical when dealing
with large numbers of medical images. In addition, initializa-
tion may be tedious when dealing with several adjacent objects.
Another main drawback is that the current deformable models
are computationally complex, requiring a large number of it-
erations. To deal with these problems, we propose a minimal
path deformable model based segmentation framework, which
is inspired by following work. Cohen et al. [10] introduced the
minimal path deformable model, which requires only two end-
points and the final contour obtained will be between these two
points. This work was further extended in [11] by incorporating
the fast marching method [8]. On the basis of these works, Han
et al. [12] developed a minimal path finding algorithm, which
eliminates the “metrication errors” by using a “wriggling” pro-
cess. However, the algorithm easily gets into a local minima
during the wriggling process. Hence, a more robust minimal
path finding algorithm is needed.

When segmenting or localizing an anatomical structure, prior
knowledge is usually very helpful. The incorporation of specific
prior information into the deformable models has received great
attention. Several methods of incorporating prior shape informa-
tion into boundary determination have been developed. Cootes
et al. [13] propose an active shape model to construct a statistical
shape model from a set of training images for image segmen-
tation. The model is built by outlining the contours and finding
point correspondences across shapes. Staib and Duncan [14] in-
corporate global shape information into the segmentation pro-
cess by using an elliptic Fourier decomposition of the boundary
and placing a Gaussian prior on the Fourier coefficients. In [15],
Leventon et al. incorporate statistical shape influence into the
evolution process of geodesic active contours [6] by attracting
the evolving contour toward the shape priors. The correspon-
dence problem is solved in their approach by embedding the
prior shape as the zero-level set of a level set function map.
Chen et al. [16] propose a variational method that minimizes an
energy functional defined by the image gradients and the shapes
of interest. However, incorporating a priori shape knowledge
into these approaches is difficult.

In this paper, we present a new minimal path deformable
model, which incorporates shape prior knowledge for medical
image segmentation. A minimal path deformable model [17]
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is used to extract organ boundaries under the influence of shape
priors. In our algorithm, the minimal path is evaluated jointly
over two weighted graphs. One of the weighted graphs is com-
puted from the image to be segmented and the other is obtained
as a signed distance map by implicitly representing the shape
prior as its zero-level set. Since the implicit representation is
in a very similar form as the weighted graph of the image, the
prior shape knowledge is naturally incorporated into the seg-
mentation process. To avoid being trapped by a local minima,
our algorithm uses an intelligent “worm” to look for the mini-
mal path. In general, existing minimal path finding algorithms
need two or more initialization points, whereas our algorithm re-
quires only a single starting point to obtain a contour. Our work
is different from the traditional graph-searching-based contour
detection methods (such as [18] and [19]) as it takes into account
the properties of the contours and the a priori shape knowledge
in addition to image features.

This paper is organized as follows. Section II explores the
relationship between the original deformable models and the
proposed work and then provides and discusses the method for
obtaining a priori shape knowledge. In Section III, we describe
the proposed minimal path deformable model and shape-prior-
based segmentation method. Experimental results are presented
and discussed in Section IV. Finally, conclusions are summa-
rized in Section V.

II. MINIMAL PATHS AND SHAPE PRIORS

A. Minimal Path Deformable Model

Since the introduction of the parametric deformable model
(i.e., “snake”) by Kass et al. [3], deformable models have been
often used to integrate boundaries and extract features from
images. In the original parametric deformable models [3], the
energy functional E(C) is defined as

E(C) =
∫ 1

0

(
α

∣∣∣∣∂C∂s

∣∣∣∣
2

+ β

∣∣∣∣∂2C
∂s2

∣∣∣∣
2

− γf(C(s))

)
ds (1)

where C(s) is a curve parameterized by s ∈ [0, 1], α, β, and γ
are real positive constants, and f is an edge map of the image.
The first two terms on the right side of (1) represent the internal
energy, which controls the smoothness of the contours to be
detected. The third term is the external energy, which is respon-
sible for attracting the contour toward the object boundaries in
an image. Solving (1) for a given set of α, β, and γ amounts to
finding the curve C that minimizes the energy functional E(C).
A problem with the original deformable models is the need to
select parameters that control the tradeoff between smoothness
and proximity to the object. Inappropriate parameters can make
the minimization process difficult or even impossible. Caselles
et al. [6] proved that curve smoothing is obtained by setting
β = 0, which reduces (1) to

E(C) = α

∫ 1

0

∣∣∣∣∂C∂s

∣∣∣∣
2

ds − γ

∫ 1

0

f(C(s)) ds. (2)

If g : [0,+∞[→ R
+ denotes a strictly decreasing function such

that g(r) → 0 as r → +∞, (2) can be changed into a general

Fig. 1. Illustration of metrication errors.

energy functional by replacing the edge map f with g(|∇I|)2

E(C) = α

∫ 1

0

∣∣∣∣∂C∂s

∣∣∣∣
2

ds + γ

∫ 1

0

g(|∇I(C)|)2ds (3)

where ∇I is the gradient of the image I : [0, a] × [0, b] → R
+.

Minimizing (3) is equivalent to a problem of geodesic compu-
tation in a Riemannian space [6]

E(C) =
∫ 1

0

g(|∇I(C)|)
∣∣∣∣∂C∂s

∣∣∣∣ ds. (4)

Noting that the Euclidean length of the contour C is given by

L(C) =
∫ 1

0

|Cs | ds (5)

and the object contour is approached by curve C so the energy
functional E(C) is minimized. Therefore, the problem of image
segmentation is transformed into a search for the global minimal
path weighted by g(|∇I(C(s))|). Thus, object contours can be
delineated by evaluating the minimal paths instead of minimiz-
ing the energy E(C) in (1). Methods based on this approach are
known as minimal path deformable models, which have lower
computational complexity in high-order gradients and do not in-
volve minimizing the corresponding Euler–Lagrange equation.

B. Weighted Graph From Image

The problem of finding the shortest path has been well stud-
ied and many excellent algorithms, like Dijkstra’s method and
dynamic programming [20], have been proposed. These graph
searching algorithms can be used for image segmentation, but
suffer from metrication errors (see Fig. 1) for several rea-
sons [10]. If pixels are thought of as nodes, a raster image
can be considered as a regular graph with unit weights on every
link. In addition, the distance between two points is restricted
to be a city block distance in graph searching algorithms. Un-
der such an assumption, both P1 and P2 are shortest paths in
Fig. 1. However, by refining the graph grids, only P1 can ap-
proach the ideal shortest path P3 based on Euclidean distances.
In two dimensions (2D), the Euclidean distance between points
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Fig. 2. (a) Sample of CT cardiac image, (b) edge map of the image (result
of edge detection), and (c) weighted graph map produced by applying distance
transform on the edge map.

(x1, y1) and (x2, y2) is

D =
√

(x1 − x2)2 + (y1 − y2)2.

If the graph in Fig. 1 is weighted as the Euclidean distance map
to the starting point, longer paths like P2 will be excluded by a
shortest path finding algorithm.

Thus, the Euclidean distance transform [21] can be used to
obtain the weighted graphs for the raster images. Since our ob-
jective is to extract organ contours, which are normally defined
by edges, we expect that the graph nodes have lower weights
when they are near the edges and higher weights when far away.
Thus, the Euclidean distance transform is applied on the edge
map of the image to assign weights to the graphs. For each
pixel in the transformed map, the Euclidean distance transform
assigns a number that is the distance between that pixel and the
nearest nonzero pixel of the edge map. Fig. 2 shows the steps of
getting the weighted graph of an image.

C. Prior Shape Modeling

Prior shape knowledge is very useful when segmenting or-
gans from medical images. To incorporate this prior information
into the segmentation process, we consider a probabilistic ap-
proach and compute a prior on shape variation with a set of
given training instances. To build the shape model, we choose
a representation of shapes and then define a probability density
function over the parameters of the representation.

Suppose that we have a training set C = {Ci | i =
1, 2, . . . , n} of n registered shapes. To avoid the point corre-
spondence problem in [13], an implicit representation of shapes
is desired. Given the selected graph weighting method in our al-
gorithm, it will be convenient to add this prior shape information
into the segmentation process if the shapes can be represented
as some form of Euclidean distance map. One way is to rep-
resent a curve C by its Euclidean distance transform map Φ :
[0, a] × [0, b] → R

+, where C = {(x, y) |Φ(x, y) = 0}. How-
ever, the shape prior model is difficult to derive under this repre-
sentation due to the discontinuity of function Φ on the curves. To
overcome this problem, a curveC is represented by its signed Eu-
clidean distance transform map Ψ : [0, a] × [0, b] → R, where
C = {(x, y) |Ψ(x, y) = 0} and Ψ has negative values inside C
and positive values outside C, as shown in Fig. 3. With this oper-
ation, the shape priors are actually represented by a kind of level
set function and own numerous advantages of level sets [9].

Fig. 3. Object shape is represented implicitly as the zero-level set of its signed
distance transform map Ψ.

When building the prior shape model, each curve Ci in the
training set is represented implicitly by the zero-level set of its
signed distance map Ψi . The mean and variance of the train-
ing data can be computed using principal component analysis
(PCA) [15]. Subtracting the mean shape Ψ̄ = (1/n)

∑n
i=1 Ψi

from each Ψi and reshaping the differences results column
vectors in a (a · b) × n dimensional matrix P. Using singu-
lar value decomposition (SVD), the matrix is decomposed as
P = UΣVT . Matrix U is the model with orthogonal column
vectors that consist of the modes of shape variation and diago-
nal matrix Σ is composed of corresponding singular values, i.e.,
mode amplitudes. An estimate of the object shape can be rep-
resented by k principal components and a k-dimensional vector
of shape parameters b (where k<n) [15] as

Ψ̂ = Ukb + Ψ̄. (6)

Under the assumption of a Gaussian distribution of the shape
represented by b, we can compute the probability of a certain
curve as

p(b) =
1√

(2π)k |Σk |
exp

(
−1

2
bT Σ−1

k b
)

(7)

where Σk contains the first k rows and k columns of Σ.
Fig. 4 shows a sequence of computed tomography (CT) car-

diac images over a cardiac cycle [22]. These 15 images are used
as the training set. The corresponding manual segmentation re-
sults are shown in Fig. 5, based on which the prior shape model
is built. The generated shapes with varying modes are shown in
Fig. 6 by extracting the zero-level sets from the generated maps.
The mean shape and primary modes appear to be reasonable
representations of the samples being learned. In Fig. 6, varying
the first mode significantly changes the size of the generated
shape, while the second and third modes have a rather small
influence on the shapes.
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Fig. 4. Samples of CT cardiac image over a cardiac cycle [22].

Fig. 5. Manual segmentation results of images shown in Fig. 4.

III. MINIMAL PATH FINDING

Our goal is to find a single contour that best fits the boundary
of a given object of interest. Given that the weighted graph
map of the image has lower values near the edges or features,
segmentation can be done by looking for a minimal path on it,
as discussed in Section II-A. Our algorithm finds the minimal
path from a single starting point, using an extended version of
our earlier worm algorithm [17].

A. Worm Algorithm

The worm for minimal path detection is composed of a se-
quence of points and has a length Lw and energy Ew. The edges
obtained along an object contour may not be continuous. So,
the worm needs to be long enough to skip disjointed parts. As
the worm needs to avoid the local minima, its energy consists of
both the external energy, which is based on the influence of im-
age features and the prior shape model, and the internal energy
generated by its own topology. In this paper, only edges are used
as the image features for simplicity although more complicated
features can be used to further improve the performance. At
each step, the worm compares all the possible ways ahead and
moves itself along the one with minimal energy.

Fig. 6. Extracted zero-level set of the largest three modes of variation.

Let Fshape, Fimage, and Fint denote the prior shape attraction
force, the image feature attraction force, and the internal force
acting on the worm, respectively. The force Fshape represents
the influence from the organ shape estimate produced by the
maximum a posteriori (MAP) prior shape estimator, which is
described in Section III-B. Fimage describes the force charac-
terized by the weighted graph of the image, while Fint tries to
stretch the worm body and to keep it from twisting. The overall
energy Ew of the worm is then defined as

Ew =
∫

Ω

(αFshape(ω) + βFimage(ω) + Fint(ω)) dω (8)

where dω is a small part of the worm body, Ω denotes the extent
of the worm body, and α and β are positive real numbers that
balance the forces.

In our proposed algorithm, Fimage is the force that attracts the
worm to the edges of the image. It is stronger when the worm is
further away from the edges. The edges are detected by Canny
edge detector [23] and the distance transform [21] is applied on
the edge map, which is used to represent Fimage, as shown in
Fig. 2.

Fshape is defined in a similar way as Fimage. It becomes
progressively weaker when the worm is nearer the prior shape, so
that this force attracts the worm to the prior shape estimate of the
organ according to (8). Since the estimated shape is embedded
as the zero-level set in its signed distance map Ψ as shown
in Fig. 3, Fshape is represented using |Ψ|, i.e., the Euclidean
distance transform of the shape estimate.

The internal force Fint is used to constrain the bending of
the worm. This makes the worm robust to noise and prevents it
from twisting. It is defined as

Fint(ω) = γ(ω)
∣∣∣∣∂2C(ω)

∂s2

∣∣∣∣
2

(9)
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where C(ω) is the body of the worm. In addition

γ(ω) =
{

γ1 if Fimage(ω) ≤ 0.5,
γ2 if Fimage(ω) > 0.5,

where γ1 � γ2.

(10)

In (10), Fimage ≤ 0.5 when the worm is at or very near to an
edge. To help the worm fit itself into a complex object shape,
Fint should be insignificant at edges corresponding to the object
contour. In almost all of our numerical calculations, we generally
select γ1 = 0.1 and γ2 = 1.0.

Since raster images can be considered as graphs with rect-
angular grids, the problem is transformed to graph searching,
and dynamic programming [20] is employed to select the min-
imal path. Dynamic programming was introduced to iteratively
optimize deformable models by Amini et al. [24]. It requires a
large amount of memory and has high computational complex-
ity. The complexity of the algorithm is O(n·m2), where n and
m are the numbers of states and stages, respectively. In Amini
et al.’s model, the number of states n = 4 if the 4-neighbor sys-
tem is used and the number of stages m equals to the length L
of the longest possible contour. So the complexity of the model
is O(L2). In our algorithm, the worm goes forward step by
step. At each step, it searches for the best path and moves itself
along the path. We record the worm trail as the organ contour.
The dynamic programming technique is used when the worm
searches its path. Since going back is not allowed for the worm,
the number of states n = 3. The number of stages m is fixed
as the length Lw of the worm body. The total number of steps
is the length L′ of the contour. Thus, the overall computational
complexity of our algorithm is O(L′ · L2

w). Since L′ ≤ L and
Lw is a fixed number, which is no more than 10 in most cases,
the complexity of our algorithm is O(L′·L2

w) ∼ O(L). Thus,
our algorithm has a much lower computational complexity. The
reduction is more significant when dealing with bigger objects,
since L becomes larger.

B. MAP Shape Estimation

To incorporate the influence of prior shape model to the con-
tour detection process, the shape of each organ must be correctly
estimated. Let Ψ denote the weighted graph that contains the es-
timated curve of the object. At each step of the curve evolution,
the graph Ψ is estimated by

ΨMAP = argmax
Ψ

p(Ψ | C, G(I)) (11)

where C is the current curve and G(I) denotes the weighted
graph of the image I . To compute the MAP shape representation,
we expand (11) using Bayes’ Rule

p(Ψ | C, G(I)) =
p(C |Ψ)p(G(I) | C,Ψ)p(Ψ)

p(C, G(I))
. (12)

The normalization term in the denominator of (12) can be ig-
nored since it does not depend on the estimated shape of the
object. Other terms are defined separately as follows. The first
term p(C |Ψ) of (12) represents the probability of existence of a

Fig. 7. (a) Use of the worm algorithm for the synthetic image with sharp
corners and two breaks. The dot indicates the starting point. (b) The worm stops
at the intersection point. (c) Final contour detection result.

curve C, given the estimated shape representation Ψ. Note that
this term does not include any image information whatsoever.
This term is modeled as a Laplacian density function over the
energy of the evolving curve with |Ψ| as its weight map

p(C |Ψ) = exp
(
−λ1

∫
C
|Ψ(C(s))| ds

)
. (13)

The second term in the numerator of (12) computes the prob-
ability of seeing certain weighted graph G(I), given a curve
C and an estimated curve representation Ψ. Since object con-
tours usually exist in detected edges, we would expect that the
estimated shapes also lie on those edges. Thus, this term can
be modeled as a Laplacian density function of the degree of
matching the shape estimate to the edges in the image

p(G(I)|C,Ψ) = exp
(
−λ2

∫
Ψ=0

G(x, y) dx dy

)
. (14)

The last term in the numerator of (12) represents the proba-
bility of the estimated shape Ψ, which is described earlier in
Section II-C. The prior shape estimator is a Gaussian model
over the shape parameters α with shape variance Σk

p(Ψ) = p(b) =
1√

(2π)k |Σk |
exp

(
−1

2
bT Σ−1

k b
)

. (15)

Putting these into (12) and taking the negative log, we have

ΨMAP = argmin
Ψ

{
λ1

∫
C
|Ψ(C(s))| ds

+ λ2

∫
Ψ=0

G(x, y) dx dy +
1
2
bT Σ−1

k b
}

. (16)

Using the MAP shape estimator in (16), the prior shape of the
object can be obtained. The MAP shape estimate is reestimated
after a number of evolution steps.

IV. RESULTS AND DISCUSSION

When our algorithm is applied on the synthetic image as
shown in Fig. 7, it is clearly able to delineate sharp corners and
connect disjointed parts to obtain a closed contour. At each step,
the worm searches all the possible paths within a range defined
by its body length and chooses the shortest one (the worm
is not shown in the figure). In addition, the worm has much
lower internal energy when it is on or near the edges. These
characteristics help the worm fit into sharp corners. Starting
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from the red point at the left side of the room in Fig. 7(a),
the worm stops when the curve is closed (i.e., self-intersection
is detected), as shown in Fig. 7(b). However, the worm trail is
not naturally the desired object contour as the starting point is
not initialized on the contour. We need to detect the point from
which the path begins to be the actual object contour. The closed
object contour is obtained as shown in Fig. 7(c).

In the proposed object contour detection scheme, shape priors
are first represented implicitly as the zero-level set of their signed
distance transform maps and then a statistical shape model is
built by computing U and Σ, as discussed in Section II-C. A
worm starts from an initial point, moves along the minimal
path under the influence of image force, its internal force, and
shape prior force, and finally stops when the curve is closed.
Shape estimates are generated according to image information
and the worm trail using the MAP framework as demonstrated
in (16). The final segmentation results are obtained by finding
the intersection point and removing the worm trail before this
point.

To reduce the complexity of our algorithm, of the four param-
eters α, β, λ1, and λ2, we fix β = 1.0 in (8), which implies that
the image force has equal influence as the internal force on the
evolution of the worm. We further set λ1 = 0.1 and λ2 = 0.5
in (16). With this setting, the shape priors have a major impact
on the shape estimate, while the evolving worm trail contributes
the least since it is only a part of the object contour. Then, in
our experiments, we just need to adjust parameter α in (8) to
control the influence of shape prior.

Experiments on more than ten sets of medical images are
carried to demonstrate the performance of the proposed seg-
mentation method. The evolution of the worm algorithm on
a typical 512× 512 image takes no more than 0.1 s on a P4
1.8-GHz computer. Fig. 8 shows the segmentation process of
a CT cardiac image [22]. Segmentation results without using
shape priors are first presented in Fig. 8(c), where the endo-
cardium wall is extracted successfully while only part of the
epicardium wall is obtained because no obvious edge infor-
mation can be found. The situation is improved when shape
estimates are considered. Fig. 8(d)–(i) shows the segmentation
process of our segmentation method in six steps. In our exper-
imental results, thin curves indicate shape estimates and thick
curves represent segmentation results. When the edge informa-
tion is weak, the shape estimate will guide the worm. In Fig. 8(h),
we can see that the shape estimate of the endocardium wall is
not very accurate since this image is quite different from the
images in our training set. But the worm can still get the correct
contour because the edge information is strong there. Thus, the
worm does not totally rely on either the image information or
the shape information. It balances the influence of image fea-
tures and prior shape and manages to obtain a better solution.
The manual segmentation result [see Fig. 8(j)] is included for
comparison.

In another experiment, the magnetic resonance (MR) T1 brain
images [25] are segmented. Two sets of segmentation results are
shown in Fig. 9. From the second column of Fig. 9, we can see
that the edges of the object of interest are disconnected and are
sometimes connected with other edges. Although the worm has

Fig. 8. (a) Segmentation process for CT cardiac image with two initial points,
where α = 0.6 for the epicardium wall and α = 0.2 for the endocardium wall.
(b) Detected edges. (c) Segmentation results without prior shape influence.
(d) Initial shape estimates. (e)–(h) Intermediate segmentation results. (i) Final
segmentation results. (j) Manual segmentation results.

the ability to skip breaks and join the disconnected parts, it is a
very challenging task in that the worm can be easily “misled” by
other salient edges. But with the aid of prior shape knowledge,
the contours are successfully obtained, as shown in the fourth
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Fig. 9. Segmentation results on MR brain images. In both experiments, we
set α = 0.8. The first and the second rows show the segmentation processes
for data set one and data set two, respectively. (First column) Original images.
(Second column) Edge maps. (Third column) Starting points and initial shape
estimates. (Fourth column) Final segmentation results. (Fifth column) Manual
segmentation results.

column of Fig. 9. Manual segmentation results are provided in
the fifth column of Fig. 9 for comparison.

To validate the results, the mean distance error is adopted as
a metric to measure the difference between our segmentation
results and the ground truth, i.e., manual segmentation results
obtained by radiologists. By using this metric, the effect of vary-
ing parameter α is shown in Fig. 10. It can be seen that for both
data sets the largest error occurs when α = 0, which means no
shape prior is used. By increasing the value of α, which means
by involving the shape prior more and more in the segmenta-
tion, the mean distance error gradually decreases and reaches
a minimum point. Thus, the best balance between shape prior,
image force, and internal force is achieved. It is noted that when
we continue to increase the weight of the shape priors, however,
the segmentation performance begins to degrade because the
shape of the structure is not accurately estimated, which causes
errors when the shape prior becomes dominant with large α.

Fig. 10. Effect of varying parameter α on the segmentation errors.

V. CONCLUSION

In this paper, we propose a segmentation scheme that extracts
object boundaries by finding a path associated with minimal
energy. Segmenting organs from an image is then solved by
finding the minimal path. An intelligent worm algorithm is used
to search the minimal path from a single starting point on a
weighted graph. The worm can track complex topologies and
link discontinued parts of object contour. To make it less sen-
sitive to the detected edges, an implicit prior shape model is
incorporated as a weighted graph and a more robust segmenta-
tion scheme is achieved. The corresponding MAP prior shape
estimator is also proposed. Our approach requires a much sim-
pler initialization and has a lower computational complexity
than the other popular methods.
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