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Abstract we call theextrema mosaicThe pseudo-metrics considered

in this part are based on the study of energy minimizing paths
We address the issue of low-level segmentation for vectand their use is often appropriated for a local level of analy-
valued images, focusing on color images. The proposed gig-of the image. Specifically, we introduce a pseudo-metric,
proach relies on the formulation of the problem as a gee path variation that is a generalization of the one dimen-
eralized Voronoi tessellation of the image domain. In thigonal total variation for vector-valued functions of multiple
context, the issue is transferred to the definition of an appt@riables. Its application provides a natural reconstruction of
priated pseudo-metric and the selection of a set of souragg.image that offers a balance between content conservation
Two types of pseudo-metrics are considered; the first onesd simplification.
based on energy minimizing paths and the second is assqn the second part, the type of pseudo-metrics considered
ciated to the families of nested partitions of the image dgre the ultrametrics. These pseudo-metrics are useful for
main. We discuss specific applications of our approachgqyiopal level of analysis, since their definition amounts to
pre-segmentation, edge detection and hierarchical segmgjistructing a stratified hierarchy of partitions of the image
tation on color images. domain. Starting from the pre-segmented image, we define

a ultrametric that expresses a notion of global contrast in the
1 Introduction image. Then, using this measure of cont.rast, we propose a

new model of edges for color images, which we call ¢ixe
trema edges Our approach guarantees that a threshold in
is edge map supplies a set of closed contours where se-
antically important characteristics of edges are preserved.

. int o the cl " Sj it v introd Finally, we use the contrast measure as the base for the defi-
Ing every pointio the closestsource. SIince 1S early INroCU, ot ney ultrametrics, where the internal characteristics
tion, the Voronoi tessellation has found application in a wi & the regions are also taken into consideration

range of disciplines [2, 29]. In this paper, we consider an ex_The rest of the paper is organized as follows. In Section 2,

tension of this notion to pseudo-metric spaces and we stl,tl g . . . .
. - . . mathematical framework is described. Section 3 presents
its application to the segmentation of vector-valued image e path metrics. Section 4 introduces our pre—segmrzantation

Image segmentation is a fundamental issue in computer . . . .
vision. Its great complexity lies in the fact that Structurinmethod. In Section 5, we first recall the basics of ultrametric

visual information intomeaningful regionsequires a layer 8eometry and then we construct a measure of global contrast.

of semantic understanding of the image content. Howevlé]r,Secnon 6, the new model of edges of color images is pro-

a first task is the extraction of the image structure provid sed. I_n Section 7, we defln_e uItrametrl_cs for the purpose of
by the interaction between low-level cues. The present pégrarch_lcal segmentation. Finally, Section 8 contains some
per addresses the segmentation issue at this pre—cognﬁ%@cmdmg remarks.
stage of perception for vector-valued images, emphasizing
the case of color images. For this purpose, the problem is . . .
formulated as a generalized Voronoi tessellation of the id- Generalized Voronoi Tessellations
age domain.

In this framework, the segmentation issue is transferr@dl  Definitions
to the definition of a relevant pseudo-metric from the image
data and the selection of a set of sources. We consider twdhis section, we present the mathematical framework for
main types of pseudo-metrics and we study their applicatitie rest of the paper and we introduce the notations.
to address the segmentation issue at two different levels ofet Q2 ¢ IR? be a compact connected domain in the plane.
analysis of the image. A pseudo-metricon € is an application) : Q x Q — IR™

The first application is a pre-segmentation method, whishtisfying, for anyz, y, z € €2, the conditions:

Spatial tessellations were first studied by Dirichlet [12] a
Voronoi [32], who formalized the idea of partitioning tht?n
space by considering a setsfurce pointand then assign-



1. Reflexivity:y(xz,z) = 0.
2. Symmetryz)(z,y) = (y, z).
3. Triangle Inequality:(x,y) < ¥(z, z) + (2, y).

Note that the only difference with the definition of a me
ric is that the usuaBeparationaxiom was replaced by th
weaker condition 1. Hence, we consider the equivale
classesi(v) = {y € Q| ¢(z,y) = 0} and we work di-
rectly on the quotient spade(y) = {2(¢)| = € Q}. Thus,
the projection ofy) on Q(v)), is, by definition, a metric for
the quotient space. Note that,jfis already a metric, then
Q(v) coincides with the domain. Additionally, the existence

of geodesics for) is assumed. In the sequel, the value of Ty main differences of our approach with the standard
¥ (x,y) will be referred as thelistancebetween andy. framework of Voronoi tessellations [2, 29] should neverthe-
The energyinduced by a pseudo-metrig, with respect |ess pe noted. First, by considering pseudo-metrics we have
to a source poink € {2, is defined as the single variablgccess to a larger class of spaces. Last, but not least, since
applicationy; : @ — R" that measures the distancesto e are interested in the application of these notions to image
Ua(z) = (s, 2), ¥ € Q. analysis, we discuss the definition of pseudo-metrics that de-

pend on the image.
The energywith respect to a set of sourcés= {s;};c; is

Figure 1: Euclideaenergyandtessellation

given by the minimal individua¢nergy 2.2 Segmentation of Digital Images
Ys(x) = inf s, (z),Va € Q. Thus, in this context, the image segmentation problem can
s; €S

be expressed in terms of the definition of a relevant pseudo-

In the presence of multiple sources, a valuable informatiietric and the selection of a set of sources. Nonetheless,
is provided by thenfluence zoneof a sources; € S, or the in practice, digital images are subsampled on the discrete
set of points that are closer o than to any other source, indrid. Consequently, important parts of the medial set may

the sense of: fall in the intergrid space. For the purpose of region based
segmentation, an alternative to surround this problem is to
Zi = {x € Q|1bs, (x) < s, (x),Vs; €S, j #i}. consider aessellationcomposed only by the zones. Thus,

the elements of the medial set that would fall in the grid are
assigned to one of their neighboring influence zones.

Then, an approximation of the image can be constructed
Z(0,5) = U 7. by the assignatio_n of mod_elto represe_nt _eac_h influenqe

’ ! zone. The model is determined by the distribution of the im-

age values in the zone and, when it is constant, the valuation
The complementary set df(1), S) is called themedial set of each zone produces a piecewise constant approximation
and is denoted by (¢, S). of the image, referred in the sequel amasaic image

Hence, a pseudo-metri¢ and a set of sourceS deter-  In order to address the segmentation of color images in
mine a partition of the domaifl. In the sequel, this partitionthis framework, another practical problem is the definition of
will be referred as th&/oronoi tessellation or briefly the a metric on the color space. For this point, the CIE standards

Thus, the influence zone, or thenefor short, is a connected
subset of the domain. Their union is noted by:

icJ

tessellationand will be denoted by : L*ab and L*uv [33] were adopted in this paper. These color
representations ought to approximate a perceptually uniform
(¢, 8) = {Zi}ies | {M (¢, 9)}. color space. Though not perfect, their use provides two main

. ) advantages with respect to the basic RGB system: first, a
Note that every element of @ssellationis a union of ele- genaration of the color information into one lightness and

ments of the quotient spacky)). two chromatic channels and, second, an approximation of

Figure 1 illustrates these definitions with the canonicgle metric in the Riemannian color space by the Euclidean
Euclidean space and a set of four source poitts,= atric.

{s0, $1, 82, $3}. On the left, the Euclideaanergyis shown

and, on the right, théessellationand the sources. In this

case, since) is a metric, the quotient spade(y) coin- 3 Path Metrics

cides with the domain. Additionally, the medial $€t(v), S)

(shown in black) corresponds to the well know Voronoi diA first approach for the definition of a pseudo-metric on
agram. Finally, the influence zones are in this case conaximage domain is the study of paths between couples of
sets. points.



A path between two pointg, y € €2 is an injective con- Note that, ifX = IR, thenv(f) corresponds to thietal vari-
tinuous functiomy : [a,b] — © such thaty(a) = z and ation of f, the well known functional introduced by Jordan
~v(b) = y. The image ofy is then a simple curve if2. The [17].
set of paths fronx to y is noted byI',,, and the set of paths In the case of two variable functions, we consider the path

in  is noted byl'q. metric induced by the variation, i.e., the minimal variation of
A length structure for Q [16]isamape : T — IR that the function on all the paths between two points:
satisfies the following conditions: The path variation of a functionu : 2 — X, is defined
1. If v is constant, then(v) = 0. as:
. : iy Vi (z,y) = inf v(uoy), Va,y € Q. )
2. If ~ is the juxtaposition ofy; and s, thene(y) = Y€ oy
e(71) + e(72)- Note that, in contrast to the usual notion of total variation for

3. eis invariant under changes of parameterization.  functions of multiple variables [30], the path variation is de-

A lenath structure can be used to define a seudo-metriﬁned pointwise. For further details about the path variation
9 P for real-valued functions, the reader is referred to [1]

which we call thepath metricassociated te, by considering - : .
the minimal value ot along all the paths joining two points: The componentof u contglmngx, designates the maxi-
‘mal connected subset of points €2 such thatu(y) = u(x).

Y(x,y) = inf e(y), Va,y € Q. By definition, the component containingcoincides with the
V€L ay equivalence clasg(V*). Thus, the quotient spa¢&(V'*) is
A particularly interesting type of path metrics occurs whehe space of components of the function. Moreover, for a set
e can be expressed as the integral gigential functionP :  of sourcesS, each element of thessellationlI(V*, S) is
Q- R a union of components af. Hence, the operator that asso-
L ciatesII(V*, S) to the functionu is connected [31] and its
e(v) = | PHD)dl, sLY o) e e un ; e
0 application simplifies the image while preserving its contour

wherel denotes the arc-length parameter. In this case), information. Th(_arefore, the p_ath variation presents a partic-
the equivalence class of a pointcorresponds to the largest!lar interest for image analysis.
connected set with null potential that containsThus, if the
potential is strictly positive, the quotient spaﬁ@ﬁ) coin- 4.2 Implementation for Color Images
cides with the domain. The metrics of this type are usually
known asweighted distance transforms Additionally, the For color images, we hav& = IR?, andd corresponds to
relation between thenergyand the potential is given in thisthe distance in the color space.
case by theikonal equatior7]. In a discrete domain, the choice of a digital connectiv-
Weighted distances are widely used in computer visidty, (usually 4, 6 or 8 connectivity) determines a notion of
where the issue becomes the definition of a relevant poteamponent and of vicinity. Thus, the component space of
tial from the image data for a particular problem. Exampl&ge functionu can be represented by an adjacency gi@ph
of applications include shape from shading [18], continuowere the nodes correspond to discrete components and each
scale morphology [19], shape recovery [22], active contdink joins two neighboring components. Since the quotient
models [7], differential morphology [23], tubular shape exspace2(V") is the space of components, we propose to con-
traction [10] and perceptual grouping [9]. struct the discrete path variation directly 6Gn
Hence, in the case of color images, the implementation
. of the path variation is reduced to finding a path of mini-
4 The Path Variation mal cost onG, when the nodes of the graph are weighted by
, , , L distance between the two neighboring components. For the
In this section, we discuss the application of the path Mgk, mpjes presented in this paper, the color difference in the

ric obtained by considering the variation on the paths as %cesL*ab or L*uv was used. The problem can then be

length structure. solved using a greedy algorithm [11, 21]. The complexity
o of this straightforward implementation for the path variation
4.1 Definition is thenO(Nlog(N)), whereN denotes the total number of

. . discrete components of the image.
Let[a,b] C IR be an interval andX, d) a metric space. P ¢

Consider a functiory : [a,b] — X, a finite partition of
[a,b], 0 = {to,....,tn},SUChthat = t, < t; < ... < t, =b 4.3 The Extrema Mosaic
and denote by the set of such partitions. Thariation of o ) _ i
1 is defined as the (possibly infinite) number given by thd'€ Path variation is an interesting pseudo-metric for a lo-
formula: cal level of analysis of the image. Indeed, since its defini-
N tion (1) is based on an sum along the paths t¢issellations
o(f) = sup A(F (1), F(tior)). (v« S) are very sensitive to the location of the sources.

cED Therefore, in order to construct sutéssellationsthe set

i=1



Figure 2: Original image and extrema mosaic.

of sourcesS must be selected with care. First, the sourcés the construction of a different type of pseudo-metrics,
should be physically representative of the image contecalled the ultrametrics. These pseudo-metrics are more ap-
Second, each significant feature should contain at least pnepriated for coarse level of analysis of the image, as they
of them. In the case of color images, the lightness extrean® closely related to the families of nested partitions of the
appear as natural candidates for the sources. domain.
The extrema tessellationf an imageu is defined as the
Voronoi tessellatiodI(V", ext(u)), whereezt(u) denotes
the set of extremal components of the lightness chabhels 1  Definitions
of u. A mosaic image determined by thigssellationis
called anextrema mosaiof . In this paragraph, the basic properties of ultrametric geome-
Figure 2 shows the extrema mosaic of a natural image: are recalled.
The original image is on the left and the mosaic image, with o yjtrametric is a special type of metric for which the

the color at the source as the model, is on the right. This &y alTriangle Inequalityis replaced by the stronger relation:
ample illustrates four properties of the method. First, the blur

in the original image is reduced, as can be observed on thew
background. This effect is due to the low number of sources
in these regions and the fact that components belonginEto

(z,y) < max{y(z, 2),%(2,9)}, Vo,y,2€ Q. (2)

blurred contours and transition zones are not extremal; ¢ om a geometric point of view, the previous inequality can

sequently, they are absorbed by one neighboring zone. eeC_interpretfad as follows: all the. triangles in a ultrametric
ond, as shown on the wolves’ fur, the texture information ypace are either isosceles or equilateral.
preserved in the simplified image because of the high densityUrthermore, as a consequence of (2), the structure of
of extrema on these regions. Third, the contrast of the imd#eighborhoods differs significantly from the usual Euclidean
is enhanced. Finally, note how the contour information §#ace. First, all the points in a ball of centeand radius
preserved in the simplified image. r can be considered as the center. Second, two non-disjoint
In summary, the choice of the path variation as the pseualg._rametric bal_ls are al_ways conc_entric. Thg_s, the set of all
metric and the spatial distribution of the sources determinég balls of a fixed radius determines a partition of the do-
tessellationwhere a balance between simplification and col&in. Hence, the sets of ultrametric balls of radipasr in-
tent conservation is obtained. The extrema mosaic is a n&{g2ses, produce a family of nested partitions of the domain.
ral reconstruction of the image that can be seen as a first Idvdjthermore, the radii of the balls determinstztification
of abstraction for the image information. Its application agadex for the family of partitions and the resulting structure

parameter-free pre-segmentation method is illustrated in {hé&alled stratified hierarchy of partitions. Conversely, ev-
next sections. ery stratified hierarchy of partitions determines a ultrametric

on the domain. For further details, the reader is referred to
[4].
5 Ultrametrics Therefore, in our case, when ttessellatioris determined
by a ultrametric, the previous properties imply that replacing
When avoronoi tessellationvith a small number of zones isa sources; € S by another point, € Z; does not modify
required, the sensitivity of the path variation to the locatidhe tessellation Moreover, the problem of selecting a set of
of the sources may become a drawback. For this reasorsdnrces can be addressed in this case through the choice of a
the sequel, the extrema mosaic is used as the starting pradiusr.



Figure 3: Original image and extrema edges.

5.2 A Measure of Contrast for Color Images by considering any increasing function of the merging order.

) ) However, in this case, the resulting ultrametric is no longer
In this paragraph, we construct a ultrametric that eXpressef@ iy related to the dissimilarity.

global notion of contrast on a color image. For this purpose,
the bijection with the class of stratified hierarchies is funda-The goal in this paragraph was to construct a ultramet-
mental, as it provides a constructive definition for this typ& expressing the global contrast of the original image. A
of pseudo-metrics. natural candidate is the dissimilarit§f. This option suffers
Indeed, because of the properties presented in the previoogetheless from two drawbacks: firgf, is not increasing
paragraph, the distance between any two paipts Z; and and, second, since its definition uses all the information in
z; € Z; in a ultrametrictessellationcan be expressed as #he zones, its value may not reflect the real contrast. As a
dissimilarity measure, noted byd, between the zoneg; consequence, a merging process governed by this dissimi-
andZ;. In the discrete space, this remark allows to constrdatity can create artificial contours when the color inside the
the pseudo-metric through a region merging strategy.  regions varies gradually.

The idea of progressively merging regions of an initial par- Thus, in our case, the dissimilarity was constructed using
tition has been used since the early days of computer visior] ' : L )
nly boundary information and was measured directly on the

. .0
to address segmentation problems [6]. In general, this t){Rﬁi&ﬂ partition. For the examples presented in this paper, the
similarity, noted byi¢, was defined as the average color

of methods, often calledottom-upapproaches, can be im-,.
erence in the common boundary of the zones, measured

plemented efficiently using a region adjacency graph (RA :fr
[14]. A RAG is an undirected graph where the nodes corre- . ;
6raéhe extrema mosaic. As a consequence of this chdice,
IS increasing with the merging order and the corresponding

spond to connected regions of the domain. The links enc
the vicinity relation and are weighted by the dissimilarity. . .
ultrametric, noted by)¢, is strongly related to the contrast

Therefore, in this context, the choice of an initial parti- . . Lo
tion and the definition of a dissimilarity measure determir'1r(]aformatlon provided by the original image.
an order for the merging. Then, removing the links of the A classical example of a stratified hierarchy comes from
RAG for increasing values of the dissimilarity and mergingie construction of the watershed transform [5]. Intuitively,
the corresponding regions produces a family of nested patitis method can be summarized as follows: the image, con-
tions. sidered as a topographical surface, is flooded from its re-

Typically, the dissimilarity expresses a notion of resergional minima. The water forms lakes in the valleys and,
blance between neighboring regions and many examplgsen two lakes meet, they are merged. Thus, increasing lev-
have been proposed in the vast literature on the subjecteld of water produce coarser partitions. When the image is
simple case is the difference of the average color (or grdye modulus of a gradient, the resulting hierarchy is known
level) in the regions [6, 8, 20], noted hif. However, other as thedynamicg15]. In terms of a region merging process,
authors consider also factors as the variance and the sizéhefinitial partition is composed by the catchment basins of
the regions [3, 27], the orientation and the texture [34].  the minima and the dissimilarity is defined as the height of

Nevertheless, it should be noted that, in order to productha lowest pass point between two adjacent lakes, i.e., the
stratified hierarchy of partitions, the dissimilarity must be iminimal value of the gradient in the common border of the
creasing with the order of merging. Unfortunately, this comegions [26]. Therefore, the dynamics hierarchy also induces
dition is seldom satisfied in the examples found in the lites-ultrametric. However, since its definition is based on a gra-
ature. When the dissimilarity is not increasing, a stratificdient image, the result depends on the choice of a the discrete
tion index for the hierarchy of partitions can still be definegpproximation for the gradient.



Figure 4: Original image, extrema edges and threshold.

6 The Extrema Edges first used in [28] to valuate the watershed lines of a gradient
image on monochrome images.

The perception of discontinuities seems to play a essentiall our case, the saliency image associated to the con-
role for the interpretation of visual information in humandrast ultrametria)© was used for the valuation of the edges.
Consequently, edge detection is a topic of great interest in fe corresponding saliency image will be callede¢iema
field of computer vision. Many edge models and detecti6§9es

techniques have been proposed through the years. Typicallpur model of edges presents the following advantages
the edge detection process is divided in two steps: a selecéth respect to classical edge detectors. First, in order to
of possible edge points and the estimation of their relevané€!l pose differentiation, these methods often perform a lin-
Among the models proposed for the edges, one can cite @8 smoothing step; nevertheless, blurring implies a loss of
zero-crossings of the Laplacian, the maxima in the gradié@golution and the displacement of edges. In contrast, the
direction and the crest lines of the gradient’'s modulus. HofXtrema edges are precisely located and they preserve se-
ever, in spite of their diversity, the strategy in many edggantically important characteristics of contours such as cor-
detection methods consists in a differential approach and s and junctions. Second, our valuation method takes into
use of local image information to measure the relevance@scount global contrast information. Last, but not least,
the edge points [13]. In this section, the contrast meagtire@ threshold in the extrema edges always provides a set of
is used to model the edges of color images. closed contours.

In addition to the features described in Sect. 3, a remar Figures 3and 4 iIIustratfa the propgrties O.f our edge model.
able property of the extrema mosaic is the preservation aﬁbe extrema edggs are.dlsplayed with a high contrast repre-
enhancement of the contour information. Indeed, thankssf?)nted by a low mten_sny. Note that the _edges model ac-
the use of the path variation, the boundaries of the zones g%ately the contours in the scene and their value translates

scribe accurately the contours. Therefore, they constitut& ctively the perceived contrast. The rig_ht image of Fig. 4
sound set to look for edges in the image. presents the closed contours corresponding to a threshold of

. . . 29% of the maximal contrast.
Once a set of candidates for possible edge points has been

determined, the next problem is their valuation. In order to
address this issue, the following notion presents a particuar  Derived Ultrametrics
interest:

Consider a stratified hierarchy of partitiof®, }», the The previous section showed the application of the ultramet-
saliencyof a point is defined as the highest indefor which ric ¥¢ to the extraction of the contrast information in a color
the point belongs to a boundary ®f,. The valuation of image. However, contrast is just one among many factors
each point by its saliency determinesaliency imageThe considered in high-level vision tasks. In this sectigfi,is
saliency image provides a compact description of the hierased as the base to define new ultrametrics. For this purpose,
chy: a threshold\ in this image supplies the set of boundether perceptually important characteristics of the zones, as
aries of the corresponding partitig?y. This approach wastheir size, are used to complement the boundary information



Figure 5: From left to right: original imagesessellationsand mosaic images with median color. Top: 15 zones and
«a = 0.23 . Bottom: 10 zones and = 0.3 .

supplied byy°. The examples of pseudo-metrics presented in this paper
Precisely, arattribute, a positive real valued functiod, can describe accurately the image structure when the scene

is defined for every zone. The attribute is required to be iis-composed by relatively homogeneous objects. However,

creasing with the inclusion order. In genetdlcan be calcu- in order to apply this pseudo-metrics to the segmentation of

lated using the internal information of the zone; the simpldsghly textured or noisy images, a pre-processing step should

example of an increasing attribute is the area of the zohe.considered.

Then, starting fromi®, the dissimilarity associated t60°, a  Present work includes the evaluation of the method with

new dissimilarityd’ can be defined by the formula: respect to other segmentation algorithms and the definition

of pseudo-metrics where the information about the texture

d'(Z1,75) = d°(Zy, Z3) - min{ A(Z1), A(Z2)}. and the regularity of the contours is also taken into consider-
ation.

SinceA andd® are increasing/’ induces a ultrametric where
the internal informati_on is also consiQered. For thg exa?i'cknowledgements
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Figure 6: (a): original image (b)essellatiorwith 3 zones andv = 0.6 (c): tessellatiorwith 13 zones ande = 0.6 (d):
contours of (c) on the original image.
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