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Abstract. The need to regularize tensor fields arise recently in various
applications. We treat in this paper tensors that belong to matrix Lie
groups. We formulate the problem of these SO(N) flows in terms of
the principal chiral model (PCM) action. This action is defined over a
Lie group manifold. By minimizing the PCM action with respect to the
group element, we obtain the equations of motion for the group element
(or the corresponding connection). Then, by writing the gradient descent
equations we obtain the PDE for the Lie group flows. We use these
flows to regularize in particular the group of N-dimensional orthogonal
matrices with determinant one i.e. SO(N). This type of regularization
preserves their properties (i.e., the orthogonality and the determinant).
A special numerical scheme that preserves the Lie group structure is
used. However, these flows regularize the tensor field isotropically and
therefore discontinuities are not preserved. We modify the functional
and thereby the gradient descent PDEs in order to obtain an anisotropic
tensor field regularization. We demonstrate our formalism with various
examples.

1 Introduction

For more than a decade PDE’s are widely used to tackle many image processing
problems such as image restoration, segmentation, image enhancing and much
more. Especially interesting are the nonlinear PDE’s which in the context of
image restoration has been proved to have remarkable denoising, deblurring as
well as edges preserving properties. We will mention some of these works such
as the pioneering work by Perona and Malik [19] on image denoising, the work
by Osher and Rudin [16] on image enhancement and many others which are
discussed extensively in [1, 31, 11, 23]. Some of the image processing problems
may be formulated in terms of Lagrangian actions where the variation of the
Lagrangian leads to the equations of motion. The gradient descent equations
then defines the PDE’s that we wish to apply to images in order to obtain the
desired result [15, 21] (i.e, segmentation, denoising, etc).

Earlier studies dealt with scalar valued images. It was later generalized to
vector-valued images (see for example [35, 2, 24, 22, 29] and references therein).
Works on constrained regularization of vector-valued image were treated in the
literature as well in [20, 28, 3, 26, 12].
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In the last years new methods which consider tensor-valued images have
emerged. In these new methods at each point of the two (or three) dimensional
image space a tensor is attached rather than a scalar or a vector. This tensor
field might be noisy and therefore one has to regularize it in order to extract its
original texture. Moreover, the tensor field has certain properties that we wish
to preserve along the flow (e.g., orthogonality, unit norm, etc) and it might lie on
a non-flat manifold. In order to regularize these fields and preserve their original
properties one has to adopt new methods, both analytical and numerical.

A solution to the problem of orthogonal tensor field regularization was pro-
posed by Deriche et al. [30, 5]. In their formalism, the orthogonality of the tensor
field is preserved by adding a constraint term to the unconstraint gradient de-
scent equation using Lagrange multipliers. The constraint term preserve the
orthonormality of the vector basis along the flow. The unconstraint gradient
descent equation was obtained by minimizing the unconstrained φ functional.
Different methods for regularization of tensor fields were proposed recently by
[32, 4, 18, 17, 13]. Their work is mainly in relation with the DT-MRI application.

In this work we suggest a novel and natural framework to the problem of
tensor field regularization. We assume here that the tensor at each point is a
Lie group element and construct a regularization flow that respects the group’s
structure. The constrained gradient descent equation will be derived directly
from a Lagrangian without any additional constraint e.g. without a lagrange
multiplier. The functional is defined directly on the Lie group manifold. In order
to solve the PDE numerically such that the Lie group field evolves on the group
manifold we use the Lie group integrating methods introduced in [8, 10]. Our
main example is the SO(N) group which is of relevant in DT-MRI yet the
formalism is of general applicability.

The plan of the paper is as follows: In section 2 we will give some math-
ematical preliminaries that will be used in this work. In section 3 we present
the generalized Principal Chiral Model (PCM) action and derive the gradient
descent equations. The gradient descent equations for this action will define the
PDE flow on the group manifold. In section 4 we describe how to implement
the flow to evolve on group manifold in general and on SO(N) in particular.
We will present and use modern Lie-group numerical integration methods. Re-
sults are given in section 5 where we demonstrate regularization of noisy three-
dimensional orthogonal tensor field. Finally, concluding remarks are given in
section 6.

2 A bit about Lie groups

For our discussion it is essential to introduce some of the basic definitions con-
sidering Lie groups and Lie algebra.

Definition 1 A Lie group is a group G which is a differentiable manifold equipped
with smooth product G × G 7→ G.
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Definition 2 The Lie algebra g of Lie group G is defined as the linear vector
space of all tangent vectors to G at the identity. This tangent space is denoted
TIG.

Definition 3 A real matrix Lie group is a smooth subset G ⊆ IRN×N closed
under matrix product and matrix inversion. The identity matrix is denoted I ∈ G.

Definition 4 A Lie algebra of a matrix Lie group is a linear subspace g ⊆
IRN×N equipped with the operation g × g 7→ g which is the Lie bracket (the
commutator) [A,B] = AB − BA. This operation is bilinear, skew-symmetric
([A,B] = −[B, A]), and satisfies the Jacobi identity

[A, [B, C]] + [C, [A,B]] + [B, [C, A]] = 0. (1)

Definition 5 The elements which span the Lie algebra space are called the gen-
erators of the Lie group or the infinitesimal operators of the group. Let ta, tb
and tc be the generators of the Lie group, then their algebra is close under the
commutator operation

[ta, tb] = f c
abtc, (2)

where fc
ab are the structure constants of the group and are antisymmetric in their

lower indices f c
ab = −f c

ba.

We will demonstrate our study on the special orthogonal matrix Lie group,
SO(N). Its elements are N ×N orthogonal matrices with determinant one. This
group is a subgroup of O(N) which is the orthogonal group and its elements are
N × N orthogonal matrices. The Lie algebra of SO(N) and O(N) is denoted
so(n) and consists of N × N skew-symmetric matrices. O(N) and SO(N) are
special cases of quadratic Lie group which takes the form

G = {X|XT PX = P}, (3)

where P is a constant matrix (for O(N) and SO(N), P is identity matrix). The
corresponding Lie algebra is given by g = {A|PA + AT P = 0}.

In order to map elements of the Lie algebra into the Lie group one may use
the following maps

Definition 6 The exponential mapping expm : g 7→ G is defined as

expm(A) =
∞∑

k=0

Ak

k!
, (4)

where expm(0) = I. Note that for A which is sufficiently near o ∈ g the exponen-
tial mapping has a smooth inverse given by the matrix logarithm logm : G 7→ g.

For quadratic groups one may also use the Cayley mapping

Definition 7 The Cayley mapping Cay : g 7→ G is defined as

Cayρ(x) = (I − ρx)−1(I + ρx), (5)
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where ρ is a non-negative constant. When ρ = 1/2 the Cayley map is a special
case of the Padé approximant to the exponential, Cay1/2(x) = expm(x)+O(x3).

Definition 8 The inverse of the Cayley mapping invcay : G 7→ g is defined as

invcayρ(X) =
1
ρ
(I + X)−1(X − I). (6)

Note that if X has an eigenvalue -1, this transform is undefined.

Definition 9 The adjoint representation, Ad, and its derivative, ad, are given
by the formulae

AdA(B) = BAB−1, (7)
adA(B) = [A,B] = AB −BA. (8)

3 The Generalized Principal Chiral Model

The principal chiral models (PCMs) which are known also as the sigma models
arise in many branches of physics (e.g., classical and quantum physics, condensed
matter, high-energy physics, etc...). These models are known to be integrable
[33, 34, 7]. We consider a variation of the sigma models which is the generalized
principal chiral model (GPCM) and is given by the action [26, 9]

L =
∫

d2x ηµνHab(g)(g−1∂µg)a(g−1∂νg)b, (9)

where g takes values in the Lie group G, η is the spatial metric and Hab(g) is
invertible symmetric dimG × dimG matrix such that

Hab(g) = H(g)Kab, (10)

where Kab is the bilinear Killing form

Kab = Tr(tatb), ta, tb ∈ g. (11)

The bilinear form is considered as the metric over the Lie group manifold.
Since we are interested in tensor fields which are attached to two-dimensional

flat image space, we will take the metric ηµν to be the Euclidean metric ηµν =
δµν . The integration is taken over the two-dimensional image space. The term
Aµ = g−1∂µg is known as the flat-connection and also as the Yang-Mills gauge
field. The flat-connection is an element of the Lie algebra and therefore it may
be represented in terms of the generators of the Lie algebra such that

Aµ = g−1∂µg = Aa
µta. (12)

Also, it obeys the Bianchi identity

∂µAν − ∂νAµ + [Aµ, Aν ] = 0. (13)



Denoising Tensors via Lie Group Flows 5

In order to obtain the equations of motion we vary the GPCM action with
respect to g−1δg to obtain

−Had δL
δρd

= ∂µAµa + Γ a
bcA

b
µAµc = 0, (14)

where we have used the relation

δAa
µ = ∂νδρa − fa

bcA
b
νδρc, (15)

and where δρ = g−1δg. The connection Γ a
bc is a sum of two parts

Γ a
bc = Sa

bc + γa
bc, (16)

where Sa
bc is defined as

Sa
bc =

1
2
(F a

bc + F a
cb), (17)

F a
bc = (H−1)apfq

pbHqc.

The second part are the Christoffel symbols for the metric Hab

γa
bc =

1
2
(H−1)ad(∂bHcd + ∂cHbd − ∂dHbc). (18)

Taking Hab to be constant on the group manifold (i.e., Hab = Kab) we have
γa

bc = 0. The bilinear form over the SO(N) group manifold, for example, is
negative definite and is given by Kab = Tr(tatb) = −2δab. Plugging Hab into Eq.
(17) we have,

F a
bc = 2(fa

bc + fa
cb). (19)

However, since the structure constants are antisymmetric in their indices (i.e.,
fa

bc = −fa
cb), F a

bc = 0 and we are left with the equation of motion

∂µAµa = 0. (20)

Contracting this equation with the group generators ta from the right we have

∂µAµata = ∂µAµ = 0. (21)

Since Aµ = g−1∂µg we may write the equation of motion in the following form

∂µ(g−1∂µg) = 0. (22)

In order to write the gradient descent equations we have to remember that the
term ∂µ(g−1∂µg) is in the Lie algebra and therefore the left hand side (LHS)
of the gradient descent equation should contain a term which is also in the Lie
algebra. Therefore, we suggest the following expression

g−1 ∂g

∂t
= ∂µ(g−1∂µg) (23)

= ∂x(g−1∂xg) + ∂y(g−1∂yg).
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where
(
g−1 ∂g

∂t

)
∈ g.

Multiplying by g from the left of both sides we have

∂g

∂t
= g∂µ(g−1∂µg). (24)

This equation has the form of an orthogonal ODE flow

∂g

∂t
= ga, (25)

where g ∈ G and a ∈ g. The numerical solutions of this type of equation were
discussed in [10, 8]. However, since a and g in our case depend on the spatial
coordinates as well as the time, our equation is an orthogonal PDE flow. Note
that ∂g

∂t ∈ TgG and the RHS (right hand side) lies also in TgG since it is a left-
trivialization form of the tangent written as ga. In [10, 8] the tangent is written
in its right-trivialization form ag ∈ TgG. A different orthogonal PDE flow which
has the same form was discussed in [30, 5].

4 Implementation

The implementation of Eq. (24) is not straightforward. In order to get the desired
results, the flow has to evolve on the group manifold. This means that the group
element g has to preserve its properties (i.e., orthogonality and unit determinant)
for every time t. Since the group manifold is not a linear space, we cannot
use classical PDEs integration schemes since the group structure will not be
preserved along the flow. For the same reason we cannot use finite-difference
schemes in order to evaluate the spatial derivatives. Therefore, the first challenge
is to find a scheme which enables to evaluate the spatial derivative such as
∂µg ∈ TgG and g−1∂µg ∈ g for any number of iterations.

This goal is achieved by using the exponential mapping in order to express
the Lie group element in terms of the Lie algebra. Then, the spatial derivative of
the group element reads ∂µexp(a) where now we have to evaluate the derivative
of the exponent. For the scalar case a ∈ IR and for Abelian groups (where a, ã ∈
g commute) the formula for the derivative of the exponent is d

dxexp(a(x)) =
a′(x)exp(a(x)). However, this formula does not hold for non-Abelian groups such
as SO(N) with N > 2 since [a, ã] 6= 0. Therefore, one should apply a different
formula.

The correct formula may be written in terms of the dexp functionsuch that

∂

∂x
exp(a(x, t)) = dexpa(x,t)a

′(x, t)exp(a(x, t)), (26)

where a′ is the derivative with respect to the spatial coordinate. The dexp func-
tion is defined as a power series as follows

dexpAB = B +
1
2!

[A,B] +
1
3!

[A, [A,B]] (27)

+
1
4!

[A, [A, [A,B]]] + . . . =
∞∑

k=0

1
(k + 1)!

adk
AB.
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As we have mentioned earlier, the derivative of the exponential mapping should
lie in Tg(x,t)G. In the right-trivialization form, the tangent may be written as
a(x, t)g(x, t) which is exactly the expression in the RHS of Eq. (26). However,
since in Eq. (24) the tangent is written in its left-trivialized form g(x, t)a(x, t) ∈
Tg(x,t)G, we should use the left-trivialized version of Eq. (26) which takes the
form [10]

∂

∂x
exp(a(x, t)) = exp(a(x, t))dexp−a(x,t)a

′(x, t), (28)

where the sign of the commutators in the dexp series has been changed by
adding a minus sign. Finally, we multiply this equation from the left by g−1 =
exp(−a(x, t)) to obtain

g−1∂µg = dexp−a(x,t)∂µa(x, t) . (29)

Then, the flow reads

∂g(x, t)
∂t

= g(x, t)∂µ

[
dexp−a(x,t)(∂µa(x, t))

]
. (30)

Since the Lie-algebra is a linear space, the partial derivative of a may be evalu-
ated using e.g. the forward finite difference scheme

∂a

∂x
≈ a(x + h, y)− a(x, y)

h
, (31)

∂a

∂y
≈ a(x, y + h)− a(x, y)

h
,

where h is the grid size. The partial derivative of the dexp function will be
evaluated using the backward finite difference scheme. The values of the Lie-
algebra elements on the grid will be calculated using the logm operator such
that

logm : g(x, y, t) 7→ a(x, y, t). (32)

In order that the proposed flow evolves on the group manifold we use methods
of Lie group integration mainly due to Iserles et al. [10]. We apply the simplest
time integration operator which is the Lie-group version of the forward Euler
operator. It reads

gn+1 = φ(dt a(gn, tn))gn, (33)

where dt is the time step, a is the element of the algebra and φ : g 7→ G. For our
‘left-trivialized’ flow we may use the following forward Euler operator

gn+1 = gnφ(dt a(gn, tn)). (34)

Therefore, our time step operator reads

gn+1 = gn exp
(
∂µ dexp−a(x,t)(∂µa(x, t))

)
(35)

= gn exp
(
∂µ dexp−log g(x,t)(∂µlog g(x, t))

)
.
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Although on each iteration we have to calculate the dexp power series, this
calculation is almost immediate since this power series converges very fast. The
calculation of the first eight terms is accurate enough where the norm of the
eighth element if already of order 10−6.

These calculations may be also be done via the Cayley mapping where the
dcay function will replace the dexp function. However, despite of the Cayley
mapping advantages (fast calculations), we have found that it is not a suitable
choice for our algorithm. The main reason is that we have to use the invcay
function instead of the logm. As we have pointed out in definition 8, the invcay
mapping is undefined when X ∈ G has an eigenvalue −1. Since some elements
of SO(N) do have an eigenvalue −1, this causes the algorithm to be unstable
numerically and to diverge.

5 Experiments

We demonstrate in Fig. 1 the isotropic regularization of an orthogonal tensor
field using our proposed orthogonal PDE flow. We have built a synthetic tensor
field of SO(3) matrices which represents 3D rotations. We have created a discon-
tinuity such that the tensor field is divided into two homogenous regions where
each region corresponds to a different 3D rotation. The orthogonal matrices are
represented in terms of the three column vectors where for SO(N) matrix, these
vectors form an N-dimensional orthonormal vector basis. A Gaussian noise has
been added to the original field as normally distributed random rotations around
the axes. We have applied Eq. (24) to the noisy field for 100 iterations and with
a time step of dt = 0.1. As expected, the result of the regularization process is
a smooth averaged tensor field where the discontinuity has not been preserved.

5.1 Anisotropic regularization

It is clear that Eq. (24) has to be modified in order to obtain an anisotropic
regularization of the tensor field. It is well known due to the work by Perona
and Malik that this goal may be achieved by replacing the diffusion constant
by a spatially dependent function which is a function of the image gradient.
This function has to be smooth and monotonically decreasing with c(0) = 1
and c(+∞) = 0 whereas it controls the amount of local regularization. We will
adopt this attitude. Since in our proposed model the operator which measures
the gradients over the tensor field is g−1∂µg, a suitable choice for this function
will be

c(x, y, t) = exp(−||g−1(x, y, t)∂µg(x, y, t)||2/k2), (36)

where k is the threshold. The flow then takes the form

∂g

∂t
= g∂µ(c(x, y, t)g−1∂µg). (37)

We have tested the modified equation on the same noisy tensor field which is
presented in Fig. 1b. The result of the anisotropic regularization is presented
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(a) (b) 

(c) (d) 

Fig. 1. (a) Original orthogonal tensor field. (b) Noisy field. (c) The result of applying
the isotropic orthogonal PDE flow. (d) The results of applying the anisotropic orthog-
onal PDE flow for 50 iterations and time step dt = 0.1. The original tensor field has
been recovered.



10 Y. Gur, N. Sochen

in Fig. 1d. One can see that at the end of the process the original tensor field
has been recovered where the discontinuity has been preserved. In both cases,
the isotropic and the anisotropic, the properties of the matrices (orthogonality
and determinant one) has been preserved. The threshold k has been set by hand
where we have found that its value has to be around one.

The distance between the regularized tensor field and the original tensor field
was approximated using the MSE criterion. Let H be the original tensor field
and Ĥ the regularized tensor field, then

MSE(Ĥ −H) =
1

MN

M−1∑
m=0

N−1∑
n=0

|Ĥm,n −Hm,n|2, (38)

where MN is the size of the grid. For the example which is presented in Fig. 1 we
have MSE = 0.0057 which means that the regularized tensor field is very close
to the original one. We have repeated the same experiment for the weighting
function

c(x, y, t) =
1

1 +
(
||g−1∂µg||

k

)2 . (39)

We have set the threshold to a value of k = 0.4 where the results in this case
were as good as in the previous case with MSE = 0.006.

6 Summary

In this work we proposed a novel framework to tackle the problem of regularizing
of Lie group tensor fields in general and the SO(N) group in particular. This was
obtained using a PDE flow which was derived directly from a minimization of
the GPCM action. Since this action is defined over Lie-group manifold which is a
constrained manifold, we arrived at the constrained flow without any additional
operations. We have applied the proposed flow to a three-dimensional orthogonal
tensor field in order to regularize it. Then, we have modified the flow à la Perona
and Malik in order to obtain an anisotropic regularization of the tensor field.
This framework is general where it can be applied to any dimension directly and
without any additional complexities.

This work may be extended to many directions. We would like to apply this
framework to the regularization problem of DT-MRI data sets. This framework
may also be integrated with recent level-set frameworks [14, 27, ?] in order to
consider regularization of tensor fields which are attached to non-flat manifolds.
Also, other Lie-group manifolds rather than SO(N) may be considered. All of
these challenging problems as well as many others are under investigation.
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