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ABSTRACT

We propose a simple and straightforward analytic solution for

the Q-ball reconstruction of the diffusion orientation distribu-

tion function (ODF) of the underlying fiber population. First,

the signal is modeled with a high order spherical harmonic

series using a Laplace-Beltrami regularization method which

leads to an elegant mathematical simplification of the Funk-

Radon transform using the Funk-Hecke formula. In doing

so, we obtain a fast and robust model-free ODF approxima-

tion. We validate the accuracy of the estimation quantitatively

against synthetic data generated from the multi-tensor model

and show that our estimated ODF can recover known multiple

fiber regions in a biological phantom and in the human brain.

1. INTRODUCTION

To resolve the well-known limitations of diffusion tensor imag-

ing (DTI), recent research has been done to generalize the

existing Gaussian diffusion model [1] with new higher reso-

lution diffusion MRI acquisition techniques such as Q-Space

Imaging (QSI) and High Angular Resolution Diffusion Imag-

ing (HARDI). Stejskal and Tanner [2] showed that with the

narrow pulse assumption, the signal attenuation S(q) can be
expressed as the 3D Fourier transform F of the ensemble av-
erage propagator P ,

S(q)

S0
=

∫
P (r)e−2πiqT

rdr = F [P (r)], (1)

where the q-value is an imaging parameter, S0 is the base-

line image and P (r) is the probability that a spin starting at
a given point in the voxel will have displaced by some radial

vector r in the gradient pulse time. The latter is the prob-

ability density function (PDF) that characterizes the average

diffusion of water molecules.
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Existing high order techniques generally approximate this

PDF or variants of it such as the persistent angular structure

(PAS), the fiber orientation distribution (FOD) or the diffu-

sion orientation distribution function (ODF) which are very

well reviewed in [3]. For all these functions, the important

property is that their maxima agree with the underlying fiber

orientations. However, these existing methods lack a straight-

forward regularization process and are all computed numer-

ically which is computationally expensive. In this paper, we

overcome these limitations by proposing a closed form for the

Funk-Radon transform that estimates the ODF. It is based on

a physically meaningful regularized spherical harmonic se-

ries approximation of the measured signal which is simple

and fast to compute.

2. Q-BALL IMAGING

Q-ball Imaging (QBI) [4] seeks to reconstruct the diffusion

ODF. The latter is intuitive and gives a good representation

of the underlying fiber distribution which as made it a popu-

lar tool in many high order recent works for fiber tracking [5,

refs. therein]. The ODF in a unit direction u is given by the

radial projection of the diffusion PDF and without lost of gen-

erality, if u is the z-axis, the exact ODF can be expressed as

Ψ(u) =

∫ ∞

0

P (αu)dα =

∫
P (r, θ, z)δ(θ, z)rdrdθdz.

(2)

Tuch [4] showed that this ODF could be estimated directly

from the raw HARDI data on a single sphere of q-space by

the Funk-Radon transform (FRT) G by proving that

Gq′ [S(q)](u) = 2πq′
∫

P (r, θ, z)J0(2πq′r)rdrdθdz, (3)

which is essentially a smoothed version of the true ODF of

Eq. 2. In fact, the larger the q′, the closer the FRT approxi-
mation is to the exact ODF as the zeroth-order Bessel func-

tion J0 approaches a Dirac delta function δ. In practice, the
FRT value at a given spherical point u is the great circle inte-

gral of the signal on the sphere defined by the plane through

the origin with normal vector u. A matrix multiplication can

implement this integral but involves several numerical com-

putations such as a regridding to find points outside the ac-
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tual measurements required to compute the discrete points on

each great circle [4, tbl.1]. Our main contribution in this arti-

cle is to show how to solve this FRT integral analytically by

first showing how to find a regularized spherical harmonics

parametrization of the input signal.

3. A NEW ODF ESTIMATION

3.1. Signal Description Using Spherical Harmonics

The spherical harmonics (SH), normally indicated by Y m
� (�

denotes the order andm the phase factor), are a basis for com-
plex functions on the unit sphere. Letting j = (�,m), we
showed in [6] how to define a new modified SH basis, Yj ,

designed to be symmetric, orthonormal and real. The latter
better models the physical constraints of the diffusion MRI

acquisition. We can thus approximate the diffusion signal at

each of the ns gradient direction i as

S(θi, φi) =

N∑
j=1

cjYj(θi, φi) (4)

where N = (� + 1)(� + 2)/2 is the number of terms in the
SH series of order �. We can write the set of equations as an
over-determined linear system S = BC+error, where B is
constructed with the modified spherical harmonics basis

B =

⎡
⎢⎣ Y1(θ1, φ1) · · · YN (θ1, φ1)

...
. . .

...

Y1(θns
, φns

) · · · YN (θns
, φns

)

⎤
⎥⎦

and C is the vector of SH coefficients cj . We want to solve for

C, where cj =
∫
Ω

S(θi, φi)Yj(θi, φi)dΩ, where integration
over Ω denotes integration over the unit sphere. At this point,
instead of evaluating the integrals directly [7] or performing

a simple least-squared minimization as in [8], we add local

regularization to our fitting procedure. We define a measure

of the deviation from smoothness E of a function f defined
on the unit sphere as E(f) =

∫
Ω
(�bf)2dΩ, where�b is the

Laplace-Beltrami operator. The Laplace-Beltrami operator,

which is the Laplacian operator in spherical coordinates, is a

natural measure of smoothness for functions defined on the

unit sphere. It has a very simple expression as it must satisfy

the relation�bYj = −�j(�j +1)Yj . As a result, using the or-

thornormality of the modified SH basis, the above functional

E can be rewritten straightforwardly as

E(f) =

∫
Ω

�b

(∑
p

cpYp

)
�b

(∑
q

cqYq

)
dΩ

=

N∑
j=1

c2
j�

2
j (�j + 1)2 = CT LC,

(5)

where L is simply the square matrix with entries �2
j (�j + 1)2

along the diagonal. Therefore, the quantity we wish to mini-

mize can be expressed in matrix form as

M(C) = (BC − S)T (BC − S) + λCT LC, where λ is the
weight on the regularization term. The coefficient vector min-

imizing this expression can then be determined just as in the

standard least-squares fit (λ = 0), from which we obtain the
generalized closed form expression for the desired spherical

harmonic series coefficient vector

C = (BT B + λL)−1BT S (6)

From this SH coefficient vector we can recover the signal on

the Q-ball for any (θ, φ) as S(θ, φ) =
∑N

j=1 cjYj(θ, φ). Intu-
itively, this approach penalizes an approximation function for

having higher order terms in its modified SH series. There-

fore, higher order terms will only be included in the fit if they

significantly improve the overall accuracy of the approxima-

tion. This eliminates most of the high order terms due to noise

while leaving those that are necessary to describe the under-

lying function. However, obtaining this balance depends on

choosing a good value for the parameter λ. We use the L-
curve numerical method to determine the best λ. [6, 9].

3.2. Analytic Funk-Radon Transform

The Funk-Hecke theorem [10] is a powerful formula that re-

lates the inner product of any surface harmonic with the pro-

jection on the sphere of any continuous function defined on

the interval [−1, 1].

Funk-Hecke Theorem: Let f(t) be continuous on
[−1, 1] and H� any surface harmonic of order �.
Then, given a unit vector x∫

|u|=1

f(xT u)H�(u)du = λ(�)H�(x), (7)

where

λ(�) =
2π

P�(1)

∫ 1

−1

P�(t)f(t)dt

with P� the Legendre polynomial of degree �.

We use the theorem to evaluate the Funk-Radon integral. By

replacing the signal with our series of SH, the FRT in a unit

direction x can be expressed as

G[S](x) =

∫
|u|=1

δ(xT u)S(u)du

=
∑

j

cj

∫
|u|=1

δ(xT u)Yj(u)du︸ ︷︷ ︸
I

(8)

Note that if the Dirac delta function δ were continuous on
the interval [−1, 1], I could be directly evaluated using the
Funk-Hecke formula of Eq. 7. However, δ(t) is discontin-
uous at zero. Hence, we approximate the Dirac delta func-

tion with a Gaussian of decreasing variance given by δn(x) =
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(n/
√

π)e−n2x2

. This is a well-known delta sequence which

converges to a Dirac delta function (limn→∞ δn = δ), i.e.

lim
n→∞

∫ ∞

−∞

δn(x)f(x) = f(0). (9)

Since the Gaussian is continuous on the interval [−1, 1], the
delta sequence δn is also continuous on [−1, 1] for all n. Hence,

I(x) =

∫
δ(xT u)Yj(u)du

= lim
n→∞

∫
δn(xT u)Yj(u)du

= 2π
P�(1)

(
lim

n→∞

∫ 1

−1

δn(t)P�(t)dt

)
Yj(x) (Eq. 7)

= 2π
P�j

(0)

P�j
(1)Yj(x) (Eq. 9)

Therefore, referring back to Eq. 8, the FRT of a function

given in terms of our modified spherical harmonic series is

G[S(q)](x) =
∑

j

2π
P�j

(0)

P�j
(1)

cjYj(x) (10)

Thus, the spherical harmonics are eigenfunctions of the Funk-

Radon transform with eigenvalues depending only on the or-

der � of the SH series. When the signal S(q) is parametrized
by the vector C of SH coefficients, i.e. S = BC, the ana-
lytic Funk-Radon transform for all directions is obtained in a

single step with a diagonal linear transformation given by

ODF ≈

⎛
⎜⎜⎜⎝
. . .

2π
P�(j)(0)

P�(j)(1)

. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝
...

cj

...

⎞
⎟⎟⎠ = PC

(11)

Hence, not only do spherical harmonics allow the definition

of a simple regularization procedure but also simplify greatly

the computation of the FRT using the Funk-Hecke formula.

4. EVALUATING THE ODF ESTIMATION

We now evaluate our ODF estimation. We use the multi-

tensor model [8, 6] because it is simple and it leads to an an-

alytic computation of the exact ODF. The exact ODF is given

in Tuch [4, Eq.2] for a single Gaussian fiber and by linearity,

we can easily obtain the exact ODF for many fibers. Hence,

we generate a set of 1000 mixed random 1, 2 and 3 fiber dis-

tributions using a HARDI sampling of 81 gradient direction

on the hemisphere with different b-values, different noise lev-
els, random angles between fibers and random relative fiber

weights, each time calculating the optimal regularization λ
parameter. We use an order-8 SH approximation of the signal

to obtain the coefficients C given by Eq. 6 and then apply the
linear transformation P given Eq. 11 to obtain the estimated
ODF, f ′.

Letting f represent the exact ODF for the fiber distri-
bution, we can compute a simple Euclidean average of the

squared error between f and f ′ over all ns gradient sampling

on the sphere as [f, f ′] = 1/ns

∑ns

i=1(f
′
i − fi)

2. Moreover,

we can compute another interesting comparison measure if

we also describe f with an order-8 SH series. Although this
last step is not exact, it also leads to a very simple expression

of the inner product between the two functions on the sphere.

Recalling the real and orthonormality of our modified SH ba-

sis, the inner product is< f, f ′ >=
∫
Ω

f ·f ′dΩ =
∑

j cj ·dj ,

which is CT D in matrix form when C and D are the respec-
tive vectors of SH coefficients of f and f ′. If we normalize

such that < f, f >=< f ′, f ′ >= 1, this angularity measure
is 1 when the functions are the same and its range is [−1, 1].
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Fig. 1. Highest accuracy and lowest error are respectively ob-
served for a plateau of high b-values between 2000 and 6000.

As seen in Fig.1, the estimation is very precise and we

observe the same behavior using both angularity measure for

comparison. As expected, the accuracy using the inner prod-

uct is > 0.99 and the Euclidean average normalized error is
< 0.01 for a plateau of relatively high b-values between 2000
and 6000. Note also that for low b-values, the Bessel func-
tion averaging effect mentioned earlier reduces the precision

of the estimation. Finally, observe that the best results are not

necessarily for very high b-values because in this case, the
signal is sharper and the effect of noise more important.

Finally, we illustrate how the estimated ODF are able to

recover voxels with multiple fibers. The ODFs are overlaid

on the Generalized Fractional Anisotropy (GFA) measure [4]

with the maxima detected. First, we show the recovered cross-

ings in the rat spinal chords phantom Fig.2 created by Camp-

bell et al. [5] at the Montreal Neurological Institute. This data

was acquired on a 1.5 Tesla scanner with 90 gradient direc-

tions and a b-value of 3000. Note that the DTI ellipsoids can-
not distinguish the multiple directions. We can also recover

known multi-fiber voxels in the human brain. This dataset

was acquired on a 3 Tesla scanner, has 3mm3 cubic grid and

contains 24, 64x64 slices with 81 gradients and a b-value of
1000. Fig.3 high-lights two important crossings in the cen-
tral semiovale. First, the corona radiata crossing the corpus

callosum (cc) transcallosal fibers projecting to the precentral

gyrus. Secondly, the crossings between transcallosal projec-

tions and superior longitudinal fasciculus (sfl), which are ro-
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T1-weighted DTI ellipsoids

ODFs + GFA Maxima detected

Fig. 2. ODFs for the rat biological phantom from [5].

Fig. 3. Coronal slice with multiple fiber crossings.

tated by ninety degrees in the zoomed version to facilitate the

visualization of the slf fibers coming out of the page. Note

also the single fibers of the body of the cc coming out of the

page in the lower left corner.

5. DISCUSSION AND CONCLUSION

The principal contribution of this paper is the derivation of an

analytic solution of the Funk-Radon transform (FRT) com-

monly solved numerically in Q-ball imaging to reconstruct

the orientation density function (ODF). This was possible us-

ing a physically meaningful regularized spherical harmonics

approximation of the measured signal. The final ODF estima-

tion is an elegant product of the modified SH basis function

with the simple ratio of the corresponding order-� Legendre
polynomials evaluated at 0 and at 1. This simplification was

possible by using a delta sequence so that the Funk-Hecke for-

mula could be used to solve the Funk-Radon integral. Without

this derivation, the FRT can only be computed with a more

complicated numerical scheme. Assuming, the multi-tensor

model, we have shown that the ODF estimation is very accu-

rate and behaves as expected. Finally, it is clear that multi-

ple fiber distributions can be detected from noisy sparse real

HARDI as demonstrated on a biological phantom and regions

of the human brain.
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