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Abstract. A novel two-stage approach is proposed for image manipu-
lation and generation. User-interactive image deformation is performed
through editing of contours. This is performed in the latent edge space
with both color and gradient information. The output of editing is then
fed into a multi-scale representation of the image to recover quality out-
put. The model is flexible in terms of transferability and training effi-
ciency.
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Fig. 1. Top row, from left to right: a) Input. b) Reconstruction from sparse contour.
c) Reconstruction from deformed contour, moving the lip and eyebrow contours via
user interaction. Bottom row, from left to right: Multi-scale Super-resolution of the
deformed Reconstruction.
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1 Introduction

Image manipulation task is among one of the fast-growing fields in Computer Vi-
sion. Many existing algorithms for image editing are supervised and not adaptive
to new data, and often require fine-tuning and slow training to achieve desirable
performance. Therefore, the motivation of this work is to propose an alternative
unsupervised way to refine the reconstruction, providing flexibility for difficult
training and limited dataset.

In our setting of image manipulation, we introduce two manifolds M and N ,
where M denotes the space of natural images, and N is the space of contour
representation of the images. Function A inM stands for the desired final editing
effect, whereas B in N is user’s editing in the latent space. Since A is often
complicated to implement, we alternatively perform editing B in the hidden
contour space N via a pull-back mapping.

Mathematically speaking, Conjugation, or Similarity Transformation, refers
to a pair of transformations A : M −→ M and B : N −→ N that satisfies
A = φ−1 ◦ B ◦ φ, where φ is a diffeomorphism between two manifolds M and
N . In our case, φ is a well-defined image contour detector. The invertibility of
φ is necessary for the well-definedness of the conjugation, but it is an ill-posed
inverse problem. With the recent advancement of CNN-based Image Translation
models, the inversion map φ−1 can be learned in a data-driven manner.

One of the advantages of contour representation is its sparsity, since any
moving or distorting operation will create no effect on flat or zero-valued areas,
but will create discontinuity effect on a natural image. Moving or distorting
operation can be easily manipulated by human interaction on a computer, and
thus is practically meaningful. Furthermore, contour information is not enough
to recover an image, and therefore color and gradient information are helpful to
improve the contour’s representation ability without adding to sparsity.

On top of the conjugation paradigm, a strategy similar to deep internal learn-
ing[23] is performed. Instead of storing all the information in a single model to
produce a high-quality image, we make use of the input image itself to carve de-
tails on the output image. This method is especially good at producing textures
similar to the input image, even if they are never seen in the training database.

The organization of this paper is as follows. After reviewing related work in
Section 2, we will present the main ideas of our work in Section 3, including
sparse contour and multi-scale representations, and then detail the algorithms
involved in Section 4, illustrated by examples on various databases.

Our contribution is that a natural Downscaling-Reconstruction strategy is
proposed as a post-processing approach to obtain high-fidelity output for image
manipulation, and it requires very short training time, and at the same time
provides better transferability comparing to the existing approach.

2 Related Works

There are lines of research that understand the latent space M as sparse rep-
resentation [4], color representation [28], or both [19]. Recently there are works



Geometric Deformation on Objects 3

which deals with implicit hidden representation using inner features [7][8], pro-
viding the model with explainability. In this paper, we focus on geometric manip-
ulation in the hidden space, and especially recovery in a new perspective under
both supervised and unsupervised setting.

Sketch translation [3] [14] aims to produce realistic images out of abstract
sketches drawn by human. Natural images can be produced even with messy or
cartoon-like input. Therefore, the precision of geometric constraints is compro-
mised on as a systematic side effect of the trade-off. These methods are to tackle
challenges like Sketchy [18], QuickDraw [10], or ShoeV2/ChairV2 datasets [27],
whereas the contours in our method is similar to Edge2shoes[26] or Edges2hand-
bags [28], according to their realistic structure. Therefore, our focus is towards
image synthesis, rather than image retrieval in the database or on the image
manifold. It does not require any a priori edge information, since this is al-
ready incorporated inside the image itself, and could be computed using efficient
context-aware edge detectors (section 3.1).

On the other hand, the multi-scale image structure is motivated by Sin-
GAN[21], a multiscale invariant of InGAN[22]. Other super-resolution techniques
such as [25] [6] exist but only tackle the standard super-resolution problem. The
hierarchical structure of SinGAN enables more flexible input, and is able to re-
cover not only inputs of low-resolution, but also color shapes, even those created
from scrach by human.

3 Image Model

The intuition of our approach is twofold, consisting of two different ways of
understanding for neural image perception.

3.1 Sparse Contour Representation

Fig. 2. Recovery from Sparse Representation. From left to right: Real image, Contour
representation, Low frequency reconstruction, High frequency reconstruction.

Given image space M and contour space N , in order to achieve a robust diffeo-
morphism φ : M −→ N between the edge representation space and the image
space, as is mentioned, the invertibility of φ is the key to the recovery result.
More precisely, φ−1 is naturally defined as φ−1 : N −→ 2M, φ−1(y) = {x ∈
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M|φ(x) = y}, ∀y ∈ N , and the pre-image of contour is not unique. Minimizing
the GAN energy (Equation 1) further finds the point in the pre-image which

looks like the image database the most. This result in !φ−1 : N −→ M, a well-
defined surrogate in a data-driven sense.

In practice, we use an edge detector as φ, and apply a Generator network to
fit the function φ−1, together with its Discriminator counterpart. This is under
the scope of Image Translation problem.

In general, image translation problem is described as follows. Let X = Y =
R3×H×W be two image spaces of fixed size H × W , with training examples
xi ∈ X , yi ∈ Y, i = 1, . . . , N . Supervised Learning approaches for image trans-

lation aims to learn a map !φ−1 from X to Y by minimizing the loss function
L(φ(xi), yi). The fitted function is then used to generate images following the
same distribution in M. The restriction of this map on the sketch manifold

G := !φ−1
|N : N ⊆ X −→ M is supposed to be an onto map to the image manifold

M ⊆ Y, which is often called a Conditional Generator since it has a complex
prior distribution on X , and is obtained by minimizing the Adversarial Loss in
equation (1).

Now we discuss some properties of G:

– Ideally, the onto property of G on M is often called generalization ability,
whereas the lack of onto property on M and the fact that the image of G
is restricted on {yi}Ni=1 ⊆ N is called overfitting. Moreover, the lack of onto
property of G on {yi}Ni=1 ⊆ N is referred to as Mode Collapse.

– In practice, for the empirical !φ−1, the pre-image of M is not necessarily

equal to N . In fact φ−1(M) ⊇ N . In other words, the map !φ−1
−1

is not
L1-continuous, since the inverse of open ball in M is not open in N under L1

topology. Illustrations are as follows in figure (3). We perform a differential
attack or latent recovery [24] on a pretrained Pix2Pix [12] model, resulting in
a non-sparse noisy pre-image. Instead of recovering the latent code as white
noise in the original work, our input has meaningful structure. The fact that
c) is not a clean sketch shows that for L1 neighbours in M, a) and d), their

pre-image are not neighbours in N , implying that !φ−1
−1

is far from smooth.

Therefore !φ−1 is not an L1-diffeomorphism itself. However, by restricting
!φ−1 on the contour manifold N , the resulting G = !φ−1

|N turns out to be a

proper counterpart for φ to recover image from geometrical constraints.

Fig. 3. From left to right: a) Original Image, b) Initialization for the Pre-Image Search,
c) Pre-image Found, d) Reconstruction from c)
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The edge-detector/translator pair φ and G between M and N are detailed
as follows:

Edge Detector A tree-based edge detection algorithm [5] is applied as edge ex-
tractor φ. The random forest is trained with samples from BSDS500 dataset
with structured labels of edge and segmentation. Hard thresholding is then
applied with a pre-defined threshold to produce an edge mask. We follow
[4] to use an N-channel contour representation but with modifications. a)
Different from their fixed sparsity rate, we used a fixed threshold since our
image database naturally have contours of diverse sparsity. b) We extract
both 3D-color and 6D-gradient information on the contour pixels without
computing that of both side of the contour (proposed in the original paper).
This solution reduces computation and at the same time avoids contour
overlapping after user’s editting to the greatest extend.

Image Generator A U-Net[17] is applied as the baseline algorithm to approx-
imate φ−1. [4] refer to this model as the Low Frequency Network (LFN),
which produces an intermediate output, and propose to apply another U-
Net on top of the Low Frequency output and the contour input. The second
network is called the High Frequency Network (HFN) since it produces finer
details. It’s worth noting that: a) During the optimization of the HFN, it’s
optional to update the weights of LFN in the meantime, since the computa-
tional graph of back-propagation can reach layers in the first network. This
optional operation will distort the output of LFN, since the training process
for the second network does not anymore aim to minimize the L1 distance
between the Low Frequency output and the training target. b) The second
network adds complexity to the model, but it does not provide additional
information to the model input. In fact, the concatenation operation in the
U-Net plays a similar role, since it is nothing but concatenating inputs along
with the intermediate outputs. HFN and concatenation operations are mean-
ingful since they enforce the generator with intermediate layer information,
and the secondary goal, low frequency network, is both meaningful and ex-
plainable. A recent work [15] is similar to this idea, and it inspires us that
both networks could be trained simultaneously, encouraging LFN to be of
even less frequency to be suitable for the input of the multi-scale model. In
fact, flat and “quantized” input proves to be more effective in some cases[21].
c) Existing work does not tackle the cross-domain challenge, which motivates
us to consider using the information outside the training database, namely
the testing target itself.

With these considerations, we introduce the post-processing part of the model,
based on every single test image.
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3.2 Multi-scale Representation

Fig. 4. Optimal Reconstruction of an Image from coarse-grained scale.

We first introduce a sequence of RGB image space Vn ⊆ X = R3×Hn×Wn ,
n ∈ Z, for images of height Hn and width Wn monotonically increasing with
respect to n. The coarse-grained space V0 is of some fixed size H0 × W0, and
xN ∈ VN denotes an image with camera resolution HN × WN . VN = M is
the output space, which is the previously defined image manifold. By definition,
V−∞ := limn→−∞ Vn is a single RGB pixel, whereas V∞ := limn→∞ Vn is the
perfect vision with infinite resolution. For each n, down-scaling π : xn ∈ Vn )−→
xn−1 ∈ Vn−1 from xn ∈ Vn with scaling factor r ∈ (0, 1), since the corresponding
upsampling map π−1 is a bijection between Vn−1 and a linear subspace of Vn.

An image is represented by a Convolutional Neural Network. In other words,
information in the image is memorized in weights of the neurons. More precisely,
this is done by fitting a map G from randomly sampled noise to image data.
An image generator is defined by G : Z −→ M : z )−→ xN and is trained to
represent the image from the multi-scale code z ∈ Z =

"N
n=1 Zn, where Zn = Rd

is the perturbation at each scale, for n = 0, . . . , N . Mathematically, a map G!

between two probability distribution spaces is induced by the neural network
G, where a smooth distribution in Rd is mapped to a probability distribution
on the Image Manifold. This can be an empirical distribution, in the case of a
database, or a Dirac distribution, in the case of a single image. A model that
learns only to represent a single target is often referred to as Mode Collapse,
which often causes low representation ability, signifying improper optimization.
However, in our Super Resolution setting, our goal is to add texture details to
the blurry input that are unique to the image. Therefore the flexibility over local
perturbations on the input is the key to the model.

The unconditional GAN is defined as follows in an iterative form:

Refinement:
Upsampling:
Initialization:

#
$

%

xn = !xn−1 +Gn(!xn−1 + zn), n = 0, . . . , N
&xn = π(xn)
x0 = G0(z0)

where at scale n, xn is the downsampled image at rate rN−n, and zn is white
noise. As a result, the final Generator is given by
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G(z) := GN (z0, . . . , zN )

= G0(z0)' () *
≜x0

+G1(G0(z0) + z1)

' () *
≜x1

+ · · ·

+GN (GN−1(· · ·G1(G0(z0) + z1) · · ·' () *
≜xN−2

+zN−1)

' () *
≜xN−1

+zN ).

Upsampling is omitted here for simplicity, by assuming that every object
lives in V∞.

Note that r = 1
2 is the special case. When Hn−1 = 1

2Hn,Wn−1 = 1
2Wn,

suppose xN ∈ VN is an image, and suppose the corresponding 2D Haar wavelet
decomposition is xN =

+N
n=0 anϕn, then {ϕn}Nn=1 are orthogonal and anϕn ∈

Vn,
However, in practice, r = 1

2 does not produce high-fidelity recovery, and
r = 3/4 is a good balance between model complexity and quality. Upsampling
operation π is performed by spline interpolation. zn is chosen to be N (0,σn)
with σn ∝ ‖π(xn−1) − xn‖ in order to match the intensity of randomness at
each scale. In reconstruction/super-resolution task, perturbation zn can be set
to zero. The input image can be fed into any scale by down-scaling/up-scaling
to obtain output of size greater than the input image, which adds to the detail
of the image and achieves super-resolutions.

4 Algorithm

The minimization formulation for the multi-scale reconstruction problem is adapted
from [12]. For each scale n = 1, . . . , N ,

min
G

max
D

L = Ladv(Gn, Dn) + αLrec(Gn) (1)

The Adversarial Loss Ladv(Gn, Dn) is adapted from WGAN-GP[9]:

Ladv(Gn, Dn) = Ex[Dn(xn)] + Ez[−Dn(Gn(xn + zn))] (2)

where xn := (x0, . . . , xn) and zn := (z0, . . . , zn) are sub-scale images and noise
respectively.

In the sparse recovery case, the setting is similar and xn is replaced with the
real images y, and the perturbed down-scaled image xn + zn is replaced with
contour representation x.

Ladv(G,D) = Ey[D(y)] + Ex[−D(G(x))] (3)
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This optimization objective is similar to the Binary Cross-Entropy Loss in
the Vanilla GAN:

Ladv(Gn, Dn) = Ex[logDn(x)] + Ez[log(1−Dn(Gn(z)))] (4)

Note that in Vanilla GAN, the discriminator D : N −→ [0, 1] could be under-
stood as the probability that the input image is fake, and thus the adversarial
loss could be treated as the log likelihood function. In comparison, our discrim-
inator aims to detect fake images as positive or negative otherwise, as opposed
to the original case.

Reconstruction Loss is given by

Lrec(Gn) = ‖Gn(π(!xn−1) + 0)− xn‖2. (5)

This deterministic term ensures that each layer performs proper refinement and
adds high-frequency information to the image.

4.1 Cross-domain Transferability

Fig. 5. Pretrained on VGG Face dataset. From left to right: a) Input. b) Reconstruction
from supervised edge prior (Pix2Pix model trained on paired data). c) Reconstruction
from detected edge (pretrained on Face Dataset). Original tensorflow implementation
by [4]. d) Reconstruction from cleaned sparse edge. e) Our reconstruction result.

Figure 5 shows an example of cross-domain results of the model, using the
original tensorflow implementation. The model was trained on the VGG Face
Dataset[16], and tested on an image of a single object. Artefacts are produced
with the cross-domain test sample, whereas our implementation trained on shoe
dataset (right column) works well. However, this can be corrected by post-
processing procedure (see Figure 7 below). We also show the baseline result
of Pix2Pix on the second left column as comparison.
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Fig. 6. Fast convergence for training –more contour reconstruction examples. From left
to right: a) High Frequency Reconstruction b) Intermediate Low Frequency Reconstruc-
tion. c) Input Image. d) Sparse edge representation. This result can be obtained after
a few minutes on an NVIDIA T4 GPU.

4.2 Contour Manipulation

We illustrate our results with contour translation (Figure 7) and contour removal
(Figure 8) examples.

− −

Fig. 7. From left to right: a) Input. b) Multi-scale Reconstruction. c),d) input and
output of Pix2Pix model. e) Multi-scale Reconstruction of the Pix2Pix output. f)
Reconstruction from contour representation, by manually moving the edge of the logo
on the shoe. g) Multi-scale reconstruction of the deformation.

Figure 7 shows the robustness of the multi-scale post-processing in terms
of transferability. The result is trained on face data and tested on shoe data.
Even if the output of edge reconstruction has unexpected cool tone caused by
cross-domain transfer learning (Second right in the figure), the information of
the input image is still able to correct the details. The effectiveness of the post-
processing for other tasks is presented as a bonus product (c, d, e in Figure 7),
still not perfect but showing significant improvement over the previous outcome.
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Fig. 8. From left to right: a) Input. b) Pre-image in parse edge space. c) Edge removal.
d) Reconstruction of Low Frequency. d) Final Reconstruction.

Figure 8 shows the robustness of the sparse recovery method in terms of
editing, quality and sparsity. Reconstruction is clean after a rough eraser edit.
The figure is well recovered even from undertrained edge detector which produces
noise on both sides of the contour. Recovery quality are not harmed by manually
cleaning the noise on both sides.

Finally, figure 1 shows our final result where the supervised stage is trained
independently on the VGG face dataset. The first row shows the validity of
contour editing, and the second row presents the quality of post-processing. As
can be seen, not only does the post-processing produce more natural skin color
than the unprocessed reconstruction, it also adds to tiny randomness to the
image so that the image is more diverse and privacy-protecting comparing to
the input. The latter effect could be augmented by tuning α.

4.3 Implementation Details

Edge Detection Edge detection is performed[5] by training on a few samples
from the BSDS500 dataset[1]. We find that this version of edge detector,
though under-trained, well preserves color information for image recovery.

Network Structure For the Contour Reconstruction, we tested both U-net
and ResNet Generators[29][13]. The U-net consists of Conv(3×3)-BatchNorm-
LeakyReLU blocks of feature with concatenation operation. The ResNet[11]
contains convolutions layers, several residual blocks, and then convolutions.
For Multi-scale Reconstruction, we use ResNet of 5 convolution blocks of the
form Conv(3×3)-BatchNorm-LeakyReLU[20]. The Discriminator are Patch-
GANs of fixed structure[12]. The number of patches depends on the input
size. This is similar to a recent work[2] that propose to improve classification
with Bag-of-words Patch features.

Training Strategy For Contour Reconstruction, we use the Adam optimizer
with learning rate 0.001 with Cosine Annealing learning rate for 50 epochs
on a mini dataset of 200 samples. For Multi-scale Reconstruction, we train
the hierarchical architecture of 5-layer ResNet by each scale, each with 2000
steps. Network and parameters are adapted from the original SinGAN paper.
We use the Adam optimizer with learning rate 0.0005, β1 = 0.5,β2 = 0.999,
and we apply Cosine Annealing to update the learning rate. To stabilize the
training, we used WGAN-GP[9] to regularize the loss with gradient penalty.
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5 Conclusion

A CNN-based image manipulation model is proposed, which incorporates geo-
metric constraints. In practice, user performs editing through geometric defor-
mation on the contour representation of the image, and the model produces high-
quality robust reconstructions. Since we perform target-specific post-processing
technique that does not require supervision, the model shows improvement in
terms of transferability over existing work. Although our approach captures ob-
jects’ textures automatically even if they are not a priori seen by the neural
network in the training database, still more complex real-world image data (e.g.
the BSDS database) are not within the scope. Future work includes adapting to
more diverse dataset in the real life.
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