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ABSTRACT

In this paper, we propose a new minimal path-based frame-
work for minimally interactive tubular structure tracking in
conjunction with a perceptual grouping scheme. The minimal
path models have shown great advantages in tubular struc-
tures tracing. However, they suffer from shortcuts or short
branches combination problems especially in the case of tubu-
lar network with complicated structures or background. Thus,
we utilize the curvature-penalized minimal paths and the pre-
scribed tubular trajectories to seek the desired shortest path.
The proposed approach benefits from the local smoothness
prior on tubular structures and the global optimality of the
graph-based path searching scheme. Experimental results on
synthetic and real images prove that the proposed model in-
deed obtains outperformance to state-of-the-art minimal path-
based algorithms.

Index Terms— Tubular structure tracking, minimal path,
perceptual grouping, curvature regularization

1. INTRODUCTION

Tubular structure tracking is an important task in many image
analysis fields of computer vision and medical image analy-
sis, a basic target for which is to search for the centerline or
boundaries to delineate an elongated structure. The existing
tubular structure tracking approaches can be roughly divided
into automatic tracking models and interactive models.

A simple idea for automatic tubular structure tracking
is implemented by growing curves iteratively from a set of
seed points based on local tubular features [1, 2]. Unfortu-
nately, they may suffer from difficulty in coping with tubular
structures with gaps. The implementation of minimal paths
is an alternative solution for tracking a connected tubular
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Fig. 1: Short branches combination problems. Columns1-4: Origi-
nal image, Results from [7], [9] and the proposed method.

structure tree automatically. Significant examples include the
keypoints-based models [3], the geodesic voting methods [4]
and the minimum spanning tree models [5].The minimal path
model is regarded as one of the most successful interactive
tools in tracing tubular structures, by which a tubular struc-
ture can be naturally treated as a minimal path. The original
minimal path model [6] provides a Eikonal PDE framework
for tubular structure tracing. However, there is no guaran-
tee that the minimal paths pass through the exact tubular
centerlines. Significant improvements on tracing the tubu-
lar structure have been made by designing different metrics.
An abstract dimension representing the thickness of tubular
structures is added to track the centerlines and boundaries
simultaneously [7]. The dynamic metric models [8] incor-
porate the update procedure of geodesic metrics during the
fronts propagation. The curvature regularization is introduced
to minimal path computation in either continuous domain [9]
or discrete domain [10].

Despite the above efforts, the short branches combina-
tion problem still occurs when dealing with complicated situ-
ation, as depicted in Figs. 1.2 and 1.3. In this paper, we pro-
pose a new tubular structure tracing model which combines
the curvature-penalization geodesic distance and prescribed
trajectories. The curvature-penalized geodesic path is intro-
duced to recover the gap between two neighbouring trajacto-
ries, which is more accurate and natural.

2. BACKGROUND ON CURVATURE-PENALIZED
MINIMAL PATH MODEL

The curvature-penalized minimal paths [11, 12, 9] utilize the
curvature property instead of the curve length [6], as a reg-
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Fig. 2: The procedure of the proposed tubular structure tracing model. 1 Visualization for the vessel score map ψ. 2 Set of trajectories
superimposed on the image. 3 The final path obtained by connecting the gaps between adjacent trajectories using bridging paths (white lines)

ularization term, which yields minimal paths with strongly
smooth and elastic property.

Denote by Ω̃ = Ω× S1 an orientation-lifted space, where
Ω ⊂ R2 is an open and bounded image domain and S1 =
[0, 2π] is an interval with periodic boundary condition. Ba-
sically, the curvature-penalized minimal path models aim to
minimize a curve length functional measured along a regular
curve γ : [0, 1] → Ω̃ with second-order derivative as follows:

L(γ) =
! 1

0

F(γ(u), γ′(u))du, (1)

where F : Ω̃ × R3 → R+ is a geodesic metric over the tan-
gent bundle of the manifold M := Ω̃. It implicitly encodes
a curvature term. The geodesic distance map Uã very often
lends itself to the minimization of the weighted curve length
L:

Uã(x̃) := inf
γ
{L(γ), γ(0) = ã, γ(1) = x̃}.

We exploit the the Finsler variant of the sub-Riemannian
(FSR) model where the metric F := Fε,β can be formulated
for any point x̃ = (x, θ) ∈ Ω̃ and any vector ũ = (u, ν) ∈ R3

Fε,β(x̃, ũ) := C(x̃)Fε,β(x̃, ũ), (2)

where ε ∈ [0, 1] and β ∈ R+ are penalty parameters, C : Ω̃ →
R+ is an orientation-dependent function derived from the im-
age data and the vector nθ is defined as nθ = (cos θ, sin θ).
The function Fε,β is the FSR metric that can be expressed by

F2
ε,β(x̃, ũ) =|〈u,nθ〉|2 + β|ν|2 + ε−2(‖u‖2 − |〈u,nθ〉|2)

+ (ε−2 − 1)min{0, 〈u,nθ〉}2. (3)

It is known that the geodesic distance map Uã satisfies the
Eikonal equation such that Uã(ã) = 0 and for any orientation-
lifted point x̃ ∈ Ω̃\{ã} we have

max
ṽ ∕=0

〈∇Uã(x̃), ṽ〉
Fε,β(x̃, ṽ)

= 1. (4)

The Eikonal equation (4) can be solved by using the state-
of-the-art Finsler variant of the fast marching method [13].
A geodesic path Cã,x̃ linking from ã to x̃ can be derived by
re-parametering the solution C to a gradient descent ordinary
differential equation (ODE) on the geodesic distance map Uã

C′(u) = argmax
‖ṽ‖=1

"
〈ṽ,∇Uã(C(u))〉

Fε,β(ṽ,∇Uã(C(u)))

#
. (5)

The metric Fε,β implicitly encodes curvature penalization
such that the FSR minimal paths are the approximate mini-
mizers to the cost

$ 1

0

%
1 + βκ(u)2 du with in-reversible con-

straint on paths, where κ : [0, 1] → R is the curvature of γ.

3. TRAJECTORIES GROUPING FOR TRACING
TUBULAR STRUCTURES

The tubular structure may cross over another one with
stronger appearance, or lie in complicated background. The
short branches combination or shortcuts problem often occur
when exploiting minimal path approaches for tubular tra-
jectory tracing. We propose a new minimal path model for
minimal interactive tubular structure tracking, in conjunction
with FSR geodesic distance estimation and Dijkstra’s short
path algorithm [14], as depicted in Fig. 2. The proposed
model is built on a graph G = (V, E), where V represents the
node set and E stands for the edge set. eij ∈ E denotes the
edge linking two nodes ϑi and ϑj ∈ V . Each edge eij will
be assigned a weight value ωij ∈ R+

0 and ωij = +∞ implies
that the node ϑi disconnects to ϑj .

3.1. Graph-based Shortest Path

We suppose that the tubular structures have locally lower in-
tensities than background. The node set V is constructed
by the prescribed tubular trajectories. These trajectories can
be computed using the tubularity segmentation, with various
tubular structure segmentation approaches. Ti ⊂ Ω (i =
1, 2, · · · ) denotes the trajectories and each point x ∈ Ti is
assigned two orientations θx, θx + π ∈ S1.
Tubular Trajectory Extraction. We exploit the optimally ori-
ented flux (OOF) filter [15] to segment the tubular structures
and obtain the trajectories. Let Gσ be a Gaussian kernel with
variance σ and let {∂xixjGσ} be the Hessian matrix of the
kernel Gσ . The response of the OOF filter on an image I :
Ω → R at a point x and a scale r ∈ [Rmin, Rmax] can be
expressed as

Ψ(x, r) =
&
I ∗ {∂xi,xjGσ}i,j ∗ χr

'
(x), (6)

where χr is the indicator function for a disk of radius r and
{∂xi,xjGσ}i,j is the Hessian matrix of the Gaussian kernel
Gσ . As analyzed in [15], the confidence map, which indicates
the likelihood of a point belonging to the tubular structures,
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can be computed from the eigenvalues, denoted by λ1(·) and
λ2(·), of Ψ(·). Supporting that the eigenvalues λ1(·) ≤ λ2(·).
Thus the confidence map can be denoted as

ψ(x) = min
r∈[Rmin,Rmax]

"
−1

r
λ1(x, r), 0

#
. (7)

Furthermore, the anisotropy features at a point x located at
a tubular trajectory are the two directions tangent to that
trajectory. They can be estimated using the eigenvectors
v1(x, r

∗) of the matrix Ψ(x, r∗) corresponding to the eigen-
value λ1(x, r

∗), where r∗ is the scale of the tubular structure
should have at x.

The orientation θx assigned to a point x of a trajectory can
be estimated being such that

nθx = (cos θx, sin θx) ∝ v1(x, r
∗), (8)

where ∝ is the proportional operator. The image data-driven
function C used in Eq. (2) can be computed as

C(x, θ) = exp
&
α (nT

θ Ψ(x, r∗)nθ)
'
, (9)

where α ∈ R+ is a constant. The value max{−nT
θ Ψ(x, r∗)nθ, 0}

can be regarded as the orientation scores.
The tubular structure segmentation can be achieved by

simply thresholding the confidence map ψ. After that the tra-
jectories are derived by applying the morphological filters on
the binary segmented tubular structures to get the skeletons.
In order to obtain a set of separate trajectories, we remove
all the branch points from tubular skeletons. By Eq. (8), we
can obtain the orientations for each trajectory Ti. Note that in
this case, the trajectories are a set of connected grid points of
one-point width.
Graph Construction. For the graph construction, each trajec-
tory Ti can be regarded as a node so as to form the node set V .
For the construction of E , we should identify the neighbour-
ing nodes for each node ϑi. This can be done by building the
a tubular neighbourhood for each trajectory Ti which corre-
sponds to the node ϑi. Here we use the same method with [16]
for identifying the neighbourhood region for each trajectory
Ti. We first prolong Ti from its two end points along the re-
spective tangents. Then we build a regular tubular neighbour-
hood Mi for extended trajectory with radius τ . A trajectory
Tj with j ∕= i is said to be connected to Ti, if Mi ∩ Tj ∕= ∅.

3.2. Computation of the Edge Weights

Once the construction of the edge set E is done, the weights
ωi,j for all the edges eij should be identified. In this section,
a new method is introduced to estimate the weights ωi,j be-
tween two connected trajectories Ti and Tj , i.e. two nodes ϑi

and ϑj , based on the FSR metric (3) and its data-driven ver-
sion (2). We lift all the trajectories Ti to the orientation-lifted
space to obtain the lifted trajectory T̃i = {(x, θx), (x, θx +
π); ∀x ∈ Ti}.

We first define a function Di,j measuring the minimal
curvature-penalized distance from the orientaiton-lifted tra-
jectories T̃i to T̃j :

Di,j = inf
γ(0)∈T̃i,γ(1)∈T̃j

! 1

0

Fε,β(γ(u), γ
′(u))du. (10)

The distance Di,j thus leads to a pair of points (x̃∗, ỹ∗) ∈ T̃i×
T̃j such that Ux̃∗(ỹ∗) = Di,j and a corresponding geodesic
path Ci,j linking the point x̃∗ to ỹ∗. It can be recovered by
solving a gradient descent ordinary differential equation on
the geodesic distance.

The geodesic distance Di,j is weighted by the data-driven
function C, which may introduce bias to the edge weights
ωi,j . In order to overcome this shortcoming, we compute
ωi,j via a curvature-dependent and data-independent distance
Di,j . We reformulate the geodesic path Ci,j := (γi,j , θi,j)
and the Di,j can be estimated by

Di,j =

! 1

0

(
|γ′

i,j(u)|2 + β1θ′i,j(u)
2du

=

! 1

0

(
1 + β1κi,j(u)2|γ′

i,j(u)|du, (11)

where κi,j is the curvature of γi,j and β1 ∈ R+ is a constant
controlling the importance of the curvature. Similarly, we can
obtain the distance form the distance Dj,i by the correspond-
ing geodesic path Cj,i with Cj,i(0) ∈ T̃j and Cj,i(1) ∈ T̃i.
Now we can build the weight ωi,j for the edge ei,j :

ωi,j = min{Di,j , Dj,i}, (12)

yielding that ωi,j = ωj,i.

3.3. Tubular structure tracing

A graph thus can be constructed and the Dijkstra’s method
will be applied to extract a path between two given points.
The obtained rough path is the grouping of a series of ordered
trajectories, which describes the tubular structures by the con-
catenation of these order trajectories and the respective FSR
minimal paths joining them. However, the obtained curve is
not able to delineate the centerline smoothly especially for a
case with complicated background. We introduce the region-
constrained geodesic model to refine the final curve for tubu-
lar structure tracing. In implementation, the tubular neigh-
boring region along the target tubular is generated by dilat-
ing the obtained rough path. Then, the FSR model tracks the
real tubular structure centerlines within the neighboring re-
gion. The desired path is accurate and smooth.

4. EXPERIMENTAL RESULTS

We conduct the experiments with both qualitative and quan-
titative comparison to the anisotropic model (Aniso) [7], the
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Original Aniso Progressive FSR Group Proposed

Fig. 3: Qualitative comparison. Columns 1-6: Original images, the paths (red lines) derived from the Aniso model, the Progressive model,
the FSR model, Group model and the proposed model, respectively. The cyan and yellow dots indicate the source and end points, respectively.

Table 1: Average values of J for evaluating the performance of the
considered models in artery vessels tracing on retinal images from
the DRIVE and IOSTAR datasets

Datasets Aniso Progressive FSR Group Proposed
DRIVE 52.26% 54.92% 48.01% 84.01% 98.50%

IOSTAR 67.09% 74.54% 78.71% 85.62% 98.43%

progressive model with bending constraint (Progressive) [17],
the FSR model [9], the graph-based grouping method with
Euclidean distance for edge weights (Group) [16] on both
synthetic and real images. For fair comparison, we apply the
same trajectories for Group and the proposed one.

In Fig. 3, we present experiment results for the qualitative
comparison on synthetic images and real image patches in-
volving vessel and road structures. One can observe that the
results derived from the Aniso, Progressive, FSR and Group
models, which are depicted in columns 1 to 4, suffer from the
short branches combination and shortcut problems. While the
paths generated by the proposed, as shown in fifth column,
have correctly trace the target tubular structures, thanks to the
use of the curvature-penalized distance to estimate the edge
weights of the graph.

The quantitative evaluation is conducted on DRIVE [18]
and IOSTAR [19] retinal vessel datasets. In retinal optics im-
ages, the artery vessels appear to be weak while vein vessels
are stronger. Tracing artery vessels using few user-provided
points is a changeling task thus can well measure the perfor-

mance of the models. We consider an accuracy score

J = #|S ∩G|/#|S|,

where S is the set of grid points passed through by the eval-
uated path, G denotes the region of artery vessels from the
artery-vein ground truth, #|S| stands for the elements in-
volved in the set S. Each individual artery vessel is tracked
in the whole image. For most tests, we provide only 2 points,
which serve as the source and end points, to extract one artery
vessel and only very few cases require 3 to 5 points. We have
made use of more than 1000 artery vessels sampled from two
datasets. From Table. 1, the average score of the proposed
model achieves more accuracy.

5. CONCLUSION

In this paper, we propose a new minimal path model for the
delineation of tubular structure trajectories in a grouping pre-
scribed trajectories. We introduce a natural and effective way
to estimate the weights in conjunction with the curvature-
penalized geodesic distance. The experimental results prove
that our model has outperformed the state-of-the-art minimal
path-based tubular structure tracing models. Future work will
be devoted to improve the construction of the trajectories.
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