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Abstract In this paper, we introduce an efficient method
for computing curves minimizing a variant of the Euler-
Mumford elastica energy, with fixed endpoints and tangents
at these endpoints, where the bending energy is enhanced
with a user defined and data-driven scalar-valued term referred
to as the curvature prior. In order to guarantee that the
globally optimal curve is extracted, the proposed method
involves the numerical computation of the viscosity solution
to a specific static Hamilton-Jacobi-Bellman (HJB) partial
differential equation (PDE). For that purpose, we derive the
explicit Hamiltonian associated to this variant model equipped
with a curvature prior, discretize the resulting HJB PDE
using an adaptive finite difference scheme, and solve it in
a single pass using a generalized Fast-Marching method. In
addition, we also present a practical method for estimating
the curvature prior values from image data, designed for the
task of accurately tracking curvilinear structure centerlines.
Numerical experiments on synthetic and real image data
illustrate the advantages of the considered variant of the
elastica model with a prior curvature enhancement in complex
scenarios where challenging geometric structures appear.
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1 Introduction

Computing globally optimal geodesic curves, in domains
equipped with complex metric cost functions, is a task
efficiently achieved by solving the so-called eikonal equa-
tion, which is at the foundation of a line of works in the
modeling of curvilinear shapes (Sethian, 1999; Peyré et al,
2010). Second-order geodesic models featuring curvature
regularization allow imposing particular geometric priors (e.g.
rigidity and smoothness) to the minimal geodesic paths, whose
computation hence has become a core step to numerous
practical applications. Typical examples include image anal-
ysis (Chen et al, 2017; Bekkers et al, 2015a), computer vision
problems involving visual curve completion (Ben-Shahar and
Ben-Yosef, 2014; Parent and Zucker, 1989) and perceptual
grouping (Bekkers et al, 2018; Wertheimer, 1938), the study
of optical illusions (Franceschiello et al, 2019), and robot
motion planing (Mirebeau and Portegies, 2019; Kimmel and
Sethian, 2001). This work is motivated by the fact that
curvilinear structures exhibit significant geometric features
such as orientation and curvature, which can be leveraged
as crucial cues for computing geodesic paths to efficiently
delineate these elongated shapes.

Approaches to computing globally optimal paths con-
necting two disjoint sets can be backtracked to Dijkstra’s
shortest path algorithm (Dijkstra, 1959) in a finite graph.
However, such a discrete setting may lead to metrication
errors, especially for applications in image analysis. In order
to address this issue, Cohen and Kimmel introduced a minimal
geodesic model (Cohen and Kimmel, 1997) founded in a
continuous PDE domain, and established the connection
between the minimization of an energy defined as a weighted
curve length (Caselles et al, 1997) and the viscosity solution to
a static first-order HJB PDE. As a consequence, the computa-
tion of minimal geodesic paths is transferred to numerically
solving the HJB PDE, which is efficiently addressed via
Sethian’s pioneering work (Sethian, 1996, 1999) the Fast-
Marching method.

The original geodesic model (Cohen and Kimmel, 1997)
measures the length of regular curves in an isotropic manner,
using weights depending on the local curve position but not
on its orientation, which limits its practical applications. The
introduction of anisotropic geometric models, and measures
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of path length depending on the orientation in a user-defined
manner, is an important extension to the original geodesic
model, which has deeply extended its applicable scope, lead-
ing to successful applications in image analysis and computer
vision (Melonakos et al, 2008). For instance, curvilinear struc-
ture tracking can take advantage of anisotropic Riemannian
models, by enhancing the geodesic metric with anisotropy
features extracted from the elongated structures present in
the processed image (Parker et al, 2002; Benmansour and
Cohen, 2011; Jbabdi et al, 2008). Chen et al (2016) proposed
to address the region-based active contour problem (Mumford
and Shah, 1989) by computing the minimal geodesic path as-
sociated to a Randers metric (Randers, 1941) featuring a data-
driven drift term. For geodesic models involving anisotropic
metrics, the classical Fast-Marching method (Sethian, 1996) is
no longer suitable for estimating the solutions to the respective
HJB PDEs (Sethian and Vladimirsky, 2001, 2003). In order
to bridge this gap, Mirebeau introduced variants of the Fast-
Marching method which rely on adaptive stencil systems de-
pending on the associated metrics, based on either the geomet-
ric tool of Lattice basis reduction (Mirebeau, 2014b,a) or the
Voronoi’s first reduction technique (Mirebeau, 2019, 2018).
In practice, those state-of-the-art generalized anisotropic Fast-
Marching methods can address various anisotropic geodesic
models, while achieving sufficient accuracy and requiring a
low computational cost.

Second-order geodesic models, which use the path cur-
vature as a regularizer of the weighted curve length, can
be regarded as limit cases of anisotropic models defined
over the configuration space of positions and orientations,
see (Chen et al, 2017; Duits et al, 2018; Bekkers et al,
2015a; Mirebeau, 2018) for significant examples. Following
the optimal control framework, the Euler-Mumford elastica,
Reeds–Shepp car and Dubins car problems are respectively
connected to the associated HJB PDEs, yielding efficient Fast-
Marching schemes for finding curvature-penalized optimal
curves (Mirebeau, 2018). An extension of these models allows
computing curves which are boundaries of convex shapes,
by controlling the sign of the curvature and the winding
number of the path (Chen et al, 2021). In these works, the
curvature penalization is regarded as a regularization term,
whose importance is delicately balanced with an image data
term, following the general principles of data fitting.

In practice, unfortunately, striking a good balance between
the curvature regularization and the image data terms remains
a challenging problem for these second-order geodesic mod-
els (Chen et al, 2017; Duits et al, 2018; Mirebeau, 2018),
particularly in the presence of crossing structures, strongly
bent segments, and complex image background content.
In general, assigning high importance weights to curvature
regularization usually corresponds to optimal paths favoring
low curvature. On the other hand, such a setting may in turn
introduce a bias to the underlying strongly curved segments,
thus giving rise to unexpected results. Fig. 1 illustrates an
example in an aerial image, where the goal is to extract a
road joining two given points (red and blue dots), see Fig. 1a.
In Fig. 1b, one can see that the geodesic path derived from
the classical Euler-Mumford elastica model (Chen et al, 2017;
Mirebeau, 2018) suffers from a shortcut problem, due to the
unbalanced importance of the weights associated to the curva-

ture regularization and to the image data. This shortcoming of
the classical elastica model prevents its practical applications
in complex scenarios. An alternative approach, explored in
this paper and motivated by the drawback as mentioned above,
is to compute geodesic paths whose curvature approximates
some data-driven prior reference values and more generally
to introduce data information in the new curvature term. An
additional contribution is a collection of techniques to estimate
these prior curvature values from the image data, and to
extend and preprocess them for their use as an enhancement
to the geodesic model. Fig. 1c illustrates an optimal path from
the variant of the elastica model, equipped with a suitable
curvature prior which enables the accurate extraction of the
target road.

In (Mirebeau and Portegies, 2019), the authors illustrated
how geodesic paths with a type of curvature prior could
be computed using a modification of the Hamiltonian Fast-
Marching (HFM) method (Mirebeau, 2018, 2019). However,
the mathematical PDE framework, the construction of the
numerical scheme, and the application scope of the geodesic
models with embedded curvature prior were not investigated.
In this paper, we describe the Hamiltonian of a variant of
the Euler-Mumford elastica model featuring a curvature prior
enhancement, and we illustrate related objects known as
control sets. The Hamiltonian of this variant of the classical
elastica model, referred to as the curvature prior elastica
model, is then discretized, leading to a numerical method for
solving the corresponding static first-order HJB PDE, and
thus computing the globally optimal geodesic paths. Finally,
we introduce a practical method for estimating the curvature
prior values, designed to improve the performance of tracking
curvilinear structures from challenging image data.

The remainder of this manuscript is organized as follows.
We first review the classical Euler-Mumford elastica model,
including the expression of the associated HJB PDE which
is posed over the configuration space of positions and
orientations, and the computation of the relevant minimal
geodesic paths. Then we present the core of this work: the
derivation of the Hamiltonian of a variant of the elastica
model equipped with a curvature prior, the relevant static HJB
PDE, and its implementation in the application of curvilinear
structure tracking. Eventually, we present experimental results
conducted on both synthetic and real images.

2 The Euler-Mumford Elastica Model

2.1 Background

The celebrated Euler-Mumford elastica model (Mumford,
1994; Nitzberg, 1990) characterizes smooth curves which
minimize a functional featuring a length term and a bending
energy term, in other words a curvature penalization. Let κ :

[0, 1] → R be the curvature of a smooth curve γ : [0, 1] → Ω

with non-vanishing velocity, where Ω ⊂ R2 is a bounded
domain. Given a data-driven cost function ψ̃ : Ω × R2 →
]0,∞[, the energy functional considered in the classical Euler-
Mumford elastica model reads∫ 1

0

ψ̃ (γ(u), γ′(u)/‖γ′(u)‖) (1 + β2κ(u)2)‖γ′(u)‖du, (1)
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(a) (b) (c)

Fig. 1 Illustration of the extraction of geodesic paths from an aerial image. a The original image, where the red and blue dots represent the two
endpoints of the target structure. b and c Physical projections of the minimal geodesic paths for the Euler-Mumford elastica model and the variant of
the elastica model with a curvature prior enhancement respectively.

where γ′ is the first-order derivative of the curve γ, and ‖ · ‖
denotes the standard Euclidean norm over the space R2. The
constant parameter β > 0 controls the relative importance
of the bending energy term κ(u)2, which penalizes curvature,
w.r.t. the penalization of path length. By construction, Eq. (1)
is invariant under smooth increasing re-parametrizations of the
curve γ, and the second argument of ψ̃ is the unit tangent
vector to the path. In the special case where ψ̃ is constant,
the curves γ for which Eq. (1) is extremal correspond to the
rest positions of elastic rods of suitable length (with their
endpoints clamped), however this physical interpretation is
lost for non-constant ψ̃.

2.2 Reformulation via Orientation Lifting

A widely used strategy for addressing the classical Euler-
Mumford elastica optimal curve problem is to lift a planar
smooth curve γ into the higher dimensional configuration
space M := Ω × S1 of positions and orientations, see (Chen
et al, 2017; Duits et al, 2018; Chambolle and Pock, 2019),
where S1 := R/2πZ denotes the angular domain. In other
words S1 = [0, 2π[ with periodic boundary conditions, and
we can parametrize the unit circle via the unit vector ṅ(θ) :=
(cos θ, sin θ) for any angle θ ∈ S1. Furthermore, we denote by
E := R2×R the tangent vector space to M, and by E∗ the dual
vector space of E. Recall that γ : [0, 1]→ Ω is a smooth curve
with non-vanishing velocity. Following the literature (Chen
et al, 2017; Mirebeau, 2018; Duits et al, 2018), an orientation-
lifted curve ρ = (γ, η) : [0, 1] → M, whose physical
projection is the given planar curve γ, can be constructed by
introducing an angular function η : [0, 1]→ S1 such that

γ′(u) = ṅ(η(u))‖γ′(u)‖, ∀u ∈ [0, 1]. (2)

This leads to an alternative representation of the curvature

κ(u) =
η′(u)

‖γ′(u)‖
. (3)

Inserting this expression of the curvature κ into the energy de-
fined in Eq. (1) yields an equivalent formula, measured along
an orientation-lifted curve ρ = (γ, η) whose components γ
and η obey Eq. (2):

L(ρ) :=
∫ 1

0

ψ(γ(u), η(u))

(
‖γ′(u)‖+ β2η′(u)2

‖γ′(u)‖

)
du, (4)

where ψ : M→]0,∞[ is a positive cost function defined by

ψ(x, θ) := ψ̃(x, ṅ(θ)).

For the task of curvilinear structure tracking, as considered in
this work, the value of ψ(x, θ) should be relatively low in case
the physical position x is inside a curvilinear structure and the
direction ṅ(θ) matches its local geometry at the position x,
i.e. ṅ(θ) is approximately tangent to its centerline at x. Fig. 2
shows an example for the cost function ψ derived from an
image that consists of curvilinear structures. The construction
and the numerical computation of ψ is presented in Eq. (25)
below, and relies on a tool known as the orientation score.

2.3 Elastica Metric and Control Sets

The energy L(ρ) formulated in Eq. (4) can be expressed in
terms of a degenerate geodesic metric (Chen et al, 2017;
Mirebeau, 2018), denoted by F : M × E → [0,+∞] and
referred to as the elastica metric. For any point x = (x, θ) and
any non-zero vector ẋ = (ẋ, θ̇) this elastica metric is defined
as

F(x, ẋ) :=

 ‖ẋ‖+
(βθ̇)2

‖ẋ‖
, if ẋ = ṅ(θ)‖ẋ‖,

+∞, otherwise.
(5)

Note that this metric is not symmetric, since F(x, ẋ) 6=
F(x,−ẋ) in general in view of the non-linear constraint ẋ =

ṅ(θ)‖ẋ‖, and thus the corresponding distance defined below
(see Eq. (11)) is likewise non-symmetric. Such asymmetric
objects are often referred to as quasi-metrics and quasi-
distances, but the prefix “quasi-” is dropped in this paper for
the sake of readability.

Several mathematical objects can be attached to such a
metric. The control sets B(x) ⊂ E, for all points x ∈ M,
allow visualizing the geometry, see Fig. 3, and are defined as

B(x) := {ẋ ∈ E | F(x, ẋ) ≤ 1} . (6)

The Hamiltonian H : M × E∗ → [0,∞[ is involved in the
numerical computation of optimal geodesic paths through the
HJB PDE, as formulated in next subsection, and is defined for
any co-vector x̂ ∈ E∗ as

H(x, x̂) := 1

2

(
max

ẋ∈B(x)
〈x̂, ẋ〉

)2
. (7)
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Fig. 2 Visualizing the cost function ψ in a synthetic example. a The original image consisting of curvilinear structures, where the red and blue dots
indicate two sampled points. b Visualizing the cost function ψ(·, θ) at three slices corresponding to the angles θ = π/6, π/2 and π. c Visualizing the
cost function ψ(x, ·) at two sampled points in polar coordinates, where the red and blue lines correspond to plots of the values at the red and blue dots,
respectively.

In the special case of the elastica metric, one can use
Eq. (5) to obtain the explicit expressions of the control sets
and Hamiltonian, see (Mirebeau, 2018) for the details of this
computation. Specifically, for any point x = (x, θ) ∈ M one
has

B(x) ={
(ẋ, θ̇) ∈ E | ẋ = ṅ(θ)‖ẋ‖,

(
‖ẋ‖ − 1

2

)2

+ β2θ̇2 ≤ 1

4

}
.

(8)

For any co-vector x̂ = (x̂, θ̂) ∈ E∗ one obtains

H(x, x̂) = 1

8

(
〈x̂, ṅ(θ)〉+

√
〈x̂, ṅ(θ)〉2 + (θ̂/β)2

)2

. (9)

The following equivalent expression of the Hamiltonian, in
integral form, is established in Mirebeau (2018)

H(x, x̂) = 3

8

∫ π/2

−π/2
〈x̂, (ṅ(θ) cosϕ, β−1 sinϕ)〉2+ cosϕdϕ,

(10)

where 〈·, ·〉+ := max{0, 〈·, ·〉} is the positive part of the
Euclidean scalar product 〈·, ·〉. Here and below we denote the
vector ṅ(θ, a) := (ṅ(θ), a) ∈ E for any angle θ ∈ S1 and
any scalar a ∈ R, and observe that in particular 〈x̂, ṅ(θ)〉 =
〈x̂, ṅ(θ, 0)〉.

2.4 Computing Elastica Geodesic Paths

Consider a fixed source point s ∈ M and an arbitrary target
point x ∈ M, thus defining initial and final planar endpoints
and tangent path directions. The classical Euler-Mumford
elastica geodesic model (Chen et al, 2017; Mirebeau, 2018)
aims to track a minimal geodesic path Gs,x : [0, 1] → M
which links from the source point s to the target point x

(i.e. Gs,x(0) = s, Gs,x(1) = x) and minimizes the energy
L formulated in Eq. (4). For that purpose, we first consider
the set Lip([0, 1],M) of all Lipschitz continuous curves ρ :

[0, 1] → M as the search space of geodesic paths. The

minimization of the energy L yields a geodesic distance map
Ds : M→ [0,∞), defined as

Ds(x) := inf
ρ∈Lip([0,1],M)

L(ρ), s.t.

{
ρ(0) = s,

ρ(1) = x.
(11)

The geodesic distance map Ds is a potentially discontinuous
viscosity solution to the first-order static HJB PDE (Bardi and
Capuzzo-Dolcetta, 2008)H(x, dDs(x)) =

1

2
ψ(x)2, ∀x ∈M\{s},

Ds(s) = 0,
(12)

where dDs denotes the differential of the geodesic distance
map Ds. Outflow boundary conditions are applied on ∂M.

A reversely parametrized minimal geodesic path G̃, start-
ing from a given target point x and going back to the source
point s, can be obtained by solving the following gradient
descent ordinary differential equation (ODE), known as the
geodesic backtracking ODE

G̃′(u) = −∂2H(G̃(u), dDs(G̃(u))), (13)

with initial condition G̃(0) = x, and where ∂2H :=

∂H(x, x̂)/∂x̂. By construction, this path is well-defined up
to the minimal arrival time T := Ds(x), and G̃(T ) = s is the
source point. The reparametrization Gs,x(u) := G̃(T (1 − u))
yields a minimal geodesic path Gs,x : [0, 1] → M such that
Gs,x(0) = s and Gs,x(1) = x.

3 Curvature Prior Elastica Model: A Variant of the
Classical Euler-Mumford Elastica Model

In this section, we present a variant of the Euler-Mumford
elastica geodesic model, favoring minimal geodesic paths
whose curvature remains close to a prior reference value, de-
fined pointwise. For comparison, the classical Euler-Mumford
elastica model (Chen et al, 2017), which favors geodesic paths
of low curvature, corresponds to the special case where these
prior values are defined as zero uniformly over the domain M.
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3.1 Formalism

We begin by formulating a new curvature penalization term,
which involves a scalar-valued function ω : M → R. For a
smooth curve γ with curvature κ, we consider

κ̃(u) = κ(u)− ω
(
γ(u), η(u)

)
, (14)

where the angle η(u) ∈ S1 reflects the tangent path direction
for all u ∈ [0, 1], see Eq. (2). In this model, the function ω
is referred to as the curvature prior map. For the purposes of
curvilinear structure tracking, as considered in this paper the
value ω(x, θ) may be defined as the curvature of a reference
curve passing nearby the position x, with a tangent orientation
close to θ, and obtained using an independent skeletonization
procedure, see Eq. (24).

We consider the variant of the Euler-Mumford elastic
energy involving the curvature prior map ω and defined as:

∫ 1

0

ψ(γ(u), η(u))
(
1 + (βκ̃(u))2

)
‖γ′(u)‖du. (15)

For an orientation-lifted curve ρ = (γ, η) satisfying Eq. (2),
the corresponding quantity is defined as

L(ρ) :=

∫ 1

0

ψ(ρ)

(
1 + β2

(
η′

‖γ′‖
− ω(ρ)

)2
)
‖γ′‖du.

(16)

The energy L leads to a new metric F : M × E →
[0,∞] (Mirebeau and Portegies, 2019)

F(x, ẋ) :=

{
‖ẋ‖+ β2(θ̇−ω(x)‖ẋ‖)2

‖ẋ‖ , if ẋ = ṅ(θ)‖ẋ‖,
∞, otherwise,

(17)

where x = (x, θ) ∈ M, and where ẋ = (ẋ, θ̇) ∈ E, with the
convention F(x,0) = 0. The energy L(ρ) can therefore be
reformulated as

L(ρ) =

∫ 1

0

ψ(ρ(u))F(ρ(u),ρ′(u))du.

Path globally minimizing this energy can be obtained, simi-
larly to the classical case and following the general principles
of optimal control, by applying the geodesic backtracking
ODE to the viscosity solution of a HJB PDE, both involving a
suitably modified Hamiltonian described in the next section.

3.2 Transformation of the Hamiltonian and Control Set

In order to describe our variant of the classical elastica model
with curvature prior, we briefly adopt a more general point of
view. A (sub-Finslerian) metric on the domain M is a mapping
F : M× E→ [0,∞], obeying F(x, λẋ) = λF(x, ẋ) for any
x ∈ M, ẋ ∈ E, λ > 0, satisfying F(x,0) = 0, and such
that the control sets B(x) defined by Eq. (6) are non-empty,
convex, compact, and depend continuously on the base point
x ∈ M w.r.t. the Hausdorff distance (Chen et al, 2017). Some
control sets obeying these properties are illustrated in the right
column of Fig. 3, where the corresponding Hamiltonian H is
defined by Eq. (7).

Proposition 3.1 Let F be a metric on the domain M, let Lx :

E → E be a linear invertible map depending continuously
on the parameter x ∈ M, and let F(x, ẋ) := F(x,Lxẋ) for
all ẋ ∈ E. Then F is a metric on M, and the corresponding
control sets B and Hamiltonian H are obtained from those of
the metric F denoted B andH as follows

B(x) = L−1x B(x), H(x, x̂) = H(x,L−>x x̂).

Proof The expression of the transformed control set B(x) ⊂
E follows from the series of equivalences:

ẋ ∈ B(x)⇔ F(x,Lxẋ) ≤ 1⇔ Lxẋ ∈ B(x)⇔ ẋ ∈ L−1x B(x).

By linearity of L−1x , the set B(x) is like B(x) non-empty,
convex, and compact. In addition, the set B(x) depends
continuously on the point x ∈ M, by continuity of B(x) and
L−1x . Noting that F(x, λẋ) = F(x, λLxẋ) = λF(x,Lxẋ) =

λF(x, ẋ) and that F(x,0) = F(x,0) = 0, by linearity of
Lx, we obtain as announced that F is a metric. Finally, the
announced expression of the Hamiltonian H follows from the
computation

max
ẋ∈B(x)

〈x̂, ẋ〉 = max
ẋ∈B(x)

〈
x̂,L−1x ẋ

〉
= max

ẋ∈B(x)

〈
L−>x x̂, ẋ

〉
,

which concludes the proof. ut

Proposition 3.2 The considered variant of the classical elas-
tica model, equipped with a continuous curvature prior map
ω : M → R, defines a metric with explicit expression
in Eq. (17), with control sets

B(x) :=
{
ẋ = (ẋ, θ̇) ∈ E | ẋ = ṅ(θ)‖ẋ‖,(
‖ẋ‖ − 1

2

)2
+ β2

(
θ̇ − ω(x)‖ẋ‖

)2
≤ 1

4

}
, (18)

for all x = (x, θ) ∈M, and whose Hamiltonian reads

H(x, x̂) =

1

8

(
〈x̂, ṅ(θ, ω(x))〉+

√
〈x̂, ṅ(θ, ω(x))〉2 + (θ̂/β)2)

)2

,

for all co-vectors x̂ = (x̂, θ̂) ∈ E∗. Recall that ṅ(θ, a) :=

((cos θ, sin θ), a) ∈ E := R2 × R. This Hamiltonian can also
be written as:

H(x, x̂) =
3

8

∫ π/2

−π/2
〈x̂, q̇(x, ϕ)〉2+ cosϕdϕ, (19)

where q̇(x, ϕ) ∈ E is defined for any ϕ ∈ [−π/2, π/2] as

q̇(x, ϕ) :=
(
ṅ(θ) cosϕ, ω(x) cosϕ+ β−1 sinϕ

)
.

Proof Let us fix x = (x, θ) ∈ M in the following. Consider
the linear map Lx : E→ E defined for all ẋ = (ẋ, θ̇) ∈ E as

Lx(ẋ) := (ẋ, θ̇ − ω(x)〈ṅ(θ), ẋ〉).

For clarity, let us also provide the matrix of this operator in the
canonical basis of the three-dimensional space E = R2 × R

[Lx] =

1 0 −ω(x) cos θ
0 1 −ω(x) sin θ
0 0 1

 . (20)

ThenLx depends continuously on the point x, and is invertible
in view of the triangular form of its matrix. Since F(x, ẋ) =



6 Da Chen et al.

0.2 0.4 0.6 0.8 1.0

-0.5

-0.2

0

0.2

0.5  = 4

 = 2

 = 1

0.2 0.4 0.6 0.8 1.0

-0.2

0

0.2

0.4

0.6

0.8
 = 4

 = 2

 = 1

Fig. 3 Illustration of the control sets associated with the classical elastica model and the curvature prior elastica model. Left: The lines of different
colors denote the sets of all (ν̇, θ̇) such that F(x, (ν̇ṅ(θ), θ̇)) = 1 w.r.t. curvature penalization parameter β ∈ {1, 2, 4}, where ν̇ := ‖ẋ‖. Each of
these sets is the boundary of the intersection between the control set B(x) of the elastica metric F and the slice defined by ẋ = ṅ(θ)‖ẋ‖. Center:
Likewise for the curvature prior elastica model with ω(x) = 1/2. Right: Control sets for the curvature prior elastica model, embedded in the tangent
space E = R2 × R.

F(x,Lxẋ), indeed compare Eq. (17) with Eq. (5), the variant
of the elastica model equipped with the curvature prior ω
defines a valid metric whose control sets and Hamiltonian
can be expressed in terms of those of the classical Euler-
Mumford elastica model, see Theorem 3.1. More precisely,
noting the equivalence ẋ ∈ B(x) ⇔ Lxẋ ∈ B(x) and
using the characterization of B(x) established in Eq. (8), we
obtain Eq. (18). From Eq. (20), we can easily compute the
inverse and the transposed inverse mappings, namely

L−1x (ẋ) = (ẋ, θ̇ + ω(x)〈ṅ(θ), ẋ〉), ∀ẋ = (ẋ, θ̇) ∈ E,

L−>x (x̂) = (x̂+ ω(x)ṅ(θ), θ̂), ∀x̂ = (x̂, θ̂) ∈ E∗.

Note that

〈L−>x x̂, ṅ(θ, 0)〉 = 〈x̂,L−1x ṅ(θ, 0)〉 = 〈x̂, ṅ(θ, ω(x))〉

and likewise that

〈L−>x x̂, (ṅ(θ) cosϕ, β−1 sinϕ)〉 = 〈x̂, q̇(x, ϕ)〉.

Evaluating Eq. (9) and Eq. (10) at L−>x (x̂), and using the
previous identities, we obtain the announced expressions of
the Hamiltonian H, which concludes the proof.

The integral form of the Hamiltonian H, formulated
in Eq. (19) can be approximated using the L-point Fejer
quadrature rule for any positive integer L, following (Mire-
beau, 2018). This yields

H(x, x̂) =

L∑
l=1

µl〈x̂, q̇(x, ϕl)〉2+ + ‖x̂‖2O(L−2), (21)

where we denoted by µl > 0 the weights of the Fejer
quadrature rule at the angles ϕl = (2l − 1 − L)π/(2L) ∈
[−π/2, π/2], for any 1 ≤ l ≤ L. This approximation plays a
crucial role in the HFM method, as presented in next section.

4 Application to Tracking Curvilinear Structures

Geodesic paths are considered as a powerful tool for interac-
tive curvilinear structure tracking (Cohen and Kimmel, 1997;
Li and Yezzi, 2007; Péchaud et al, 2009; Liao et al, 2018;
Chen et al, 2019). Following the spirit of this line of works, we
propose a fast and reliable method for computing a curvature

prior map ω from image data, allowing the curvature prior
elastica model to accurately extract curvilinear structures of
interest. This computation method, presented in the remainder
of this section, consists of two main steps: (I) the generation of
a set of disjoint curvilinear structure centerlines, and (II) the
estimation of the tangent direction and curvature associated
with those disjoint centerlines.

4.1 Generation of the Disjoint Centerlines

Centerlines serve as an effective descriptor for curvilinear
structures, by which geometric features such as their tangent
direction and curvature properties can be estimated. A broad
variety of approaches have been introduced to handle the task
of extracting centerlines from curvilinear structure networks
which usually include complex junctions, e.g. (Kaul et al,
2012; Cetin et al, 2012; Türetken et al, 2016). Among those
methods, the skeletonization schemes, adopted in this work,
provide a powerful way for producing centerlines as the
skeletons of the pre-segmented curvilinear structures (Kimmel
et al, 1995; Siddiqi et al, 2002; Lam et al, 1992).

Let Ξ : Ω → {0, 1} represent the binary segmentation of
curvilinear structures contained in an image, where Ξ(x) = 1

implies that the position x belongs to a curvilinear structure,
while Ξ(x) = 0 indicates a background position x. We
compute the skeleton or medial axis of the elongated shapes
{x ∈ Ω | Ξ(x) = 1}, and remove all the junction
points of these skeleton structures, yielding J disjoint skeleton
segments, where J is a positive integer. After applying a curve
smoothing procedure to regularize these skeleton segments,
we obtain a family of smooth curves ρj : [0, 1]→ Ω, indexed
by 1 ≤ j ≤ J , as the parametrization of the regularized
skeleton segments. In what follows we refer to these curves
ρj as candidate centerlines.

In practice, we rely on morphological filters (Lam et al,
1992), which benefit from a low computational complexity, to
generate skeletons from pre-segmentation data. Fig. 4 illus-
trates an example for constructing the candidate centerlines
{ρj}1≤j≤J using a synthetic image. Fig. 4b visualizes the
corresponding binary segmentation map Ξ . In Fig. 4c, the
candidate centerlines are illustrated using different colors,
and arrows indicate their directions. The curvature of these
candidate centerlines is depicted in Fig. 4d.
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(a) (b) (c)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

(d)

Fig. 4 An example for the construction of candidate centerlines. a The original image. b Visualizing the binary segmentation map Ξ. c The candidate
centerlines ρj indicated by different colors. The arrows illustrate the directions of the corresponding candidate centerlines. d Visualizing the curvature
of the candidate centerlines.

Note that a curvilinear structure of interest usually corre-
sponds to the concatenation of several candidate centerlines,
together with the crucial curves connecting pairs of adjacent
centerlines. For this reason, the skeletonization process is not
an appropriate solution to the curvilinear structure tracking
problem considered, but rather an efficient descriptor for
extracting the geometric features of parts of the curvilinear
structures.

4.2 Construction of the Curvature Prior Map ω

We propose to estimate the curvature prior map ω using the
computed candidate centerlines ρj , whose curvature and unit
normal are respectively denoted by κj : [0, 1] →] − ∞,∞[

and Nj : [0, 1]→ R2, for 1 ≤ j ≤ J .
Let 0 < U < minj{1/‖κj‖∞} be a bounded constant.

Consider the mapping Ψj : [0, 1]× [−U,U ] → R2, depending
on the curve parameter and the deviation from ρj , defined as

Ψj(u, λ) := ρj(u) + λNj(u)

for any u ∈ [0, 1] and λ ∈ [−U,U ]. The bounding constraint
on the parameter U implies that the mappings Ψj are injective,
and each of them parametrizes a tubular neighborhood Tj ⊂
Ω of width U surrounding the candidate centerline ρj

Tj := {x = Ψj(u, λ) ∈ Ω | ∀u ∈ [0, 1] and ∀λ ∈ [−U,U ]} .

However, such a tubular neighborhood Ti may intersect with a
distinct one Tj , i.e. Ti∩Tj 6= ∅, when their centerlines ρi and
ρj are close to each other. In order to tackle this problem, we
partition the domainΩ into a series of disjoint regions Vj ⊂ Ω
for 1 ≤ j ≤ J

Vj :=
{
x ∈ Ω | dρj (x) < dρi(x), ∀i 6= j

}
, (22)

where dρj (x) denotes the Euclidean distance between x and
the candidate centerline ρj . These regions are also known as
the Voronoi cells. Accordingly, for each ρj a modified tubular
neighborhood Tj ⊂ Ω can be constructed by

Tj := Tj ∩ Vj , (23)

which satisfies Tj ∩ Ti = ∅ for any i 6= j. In practice,
the construction of the Voronoi cells Vj can be efficiently
implemented by propagating an unsigned Euclidean distance
map simultaneously from all the candidate centerlines Saye
and Sethian (2011, 2012).

We consider two scalar-valued functions φ : ∪jTj → R
and ϑ : ∪jTj → S1 using all the candidate centerlines ρj , 1 ≤
j ≤ J , such that for any physical position x = Ψj(u, λ) ∈ Tj ,
one respectively has

φ(x) := κj(u), and ṅ(ϑ(x))‖ρ′j(u)‖ = ρ′j(u).

The function φ extends the curvature of the candidate cen-
terlines ρj to their respective neighborhood regions Tj of
width U . Furthermore, for a physical position x ∈ Tj , the
angles ϑ(x) and ϑ(x) + π correspond to the two possible
orientations that the elongated structure should have at the
position x. With these definitions, the curvature prior map ω
can be generated in terms of the estimated functions φ and ϑ.
More precisely, we define the curvature prior map ω for any
point x = (x, θ) ∈M as follows

ω(x) :=

{
φ(x) sign

(
〈ṅ(θ), ṅ(ϑ(x))〉

)
, ∀x ∈ ∪jTj × S1,

0, otherwise,

(24)

where sign(a) stands for the sign of a scalar value a ∈ R. In
the first line of Eq. (24), for any physical position x ∈ ∪jTj
we set ω(x, θ) = ω(x, ϑ(x)) = φ(x) if the angular position θ
is closer to ϑ(x) in the sense of the Euclidean scalar product of
the vectors ṅ(θ) and ṅ(ϑ(x)), and ω(x, θ) = ω(x, ϑ(x)+π) =

−φ(x) if θ is closer to ϑ(x) + π.

4.3 Computation of the Cost Function ψ

The multi-orientation data-driven cost function ψ(x, θ) should
have low values when both (i) the physical position x is close
to the centerline of a curvilinear structure, and (ii) the direction
ṅ(θ) closely aligns with the tangent of this centerline at the
physical position x. For that purpose and following (Chen
et al, 2017; Duits et al, 2018; Bekkers et al, 2015a), we build
the cost function ψ for any point x = (x, θ) ∈M as follows

ψ(x) = exp

(
−α g(x)

‖g‖∞

)
, (25)

where α > 0 is a positive weighting parameter, and where
g : M → [0,∞[ is an orientation score map usually taken as
an efficient tool in image analysis (Franken and Duits, 2009;
Hummel and Zucker, 1983; Bekkers et al, 2014; Parent and
Zucker, 1989). This map carries the curvilinear appearance
and anisotropy features, and obeys g(x, θ) = g(x, θ + π),
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Fig. 5 Illustration of the physical projections of geodesic paths for the
curvature prior elastica model with different values of ω. The red and blue
dots with the associated arrows represent the source and target points of
the geodesic paths, respectively.

∀(x, θ) ∈ M. In this work, the steerable optimally oriented
flux filter (Law and Chung, 2008) is chosen as the curvilinear
feature extractor in order to compute the orientation score
g. We refer to (Chen et al, 2017) for more details on the
computation of the orientation score map g from image data
involving curvilinear structures.

4.4 Initialization and Geodesic Paths Tracking

The curvilinear structure tracking method can be implemented
in an interactive manner, requiring a source point s =

(s, θs) ∈ M and a target point y = (y, θy) ∈ M as
initialization. In our model, we assume that the physical
positions s and y are provided by the user. Furthermore, the
corresponding angles θs and θy can be either given by the user
in complex scenarios, or be estimated from the cost function
ψ as

θs = argmin
θ∈[0,π[

ψ(s, θ). (26)

In addition to the points s and y as described above, we
generate another pair of source and target points s̃ =

(
s, θs +

π
)

and ỹ =
(
y, θy + π

)
. In other words, s and s̃ (resp. y

and ỹ) share the same physical position but different angular
positions. In this case, the goal is to find a minimal geodesic
path from the source point set s = {s, s̃} to the target point
set y = {y, ỹ}, as considered in (Chen et al, 2017). For that
purpose, a geodesic distance map Ds is estimated by solving
the HJB PDE

H(x, dDs(x)) =
1

2
ψ(x)2,

for all x ∈M \ s, with the boundary condition Ds(x) = 0 for
any point x ∈ s, which is a straightforward generalization of
the single source case described in Eq. (28). The geodesic of
interest is backtracked, as described in Eq. (13), from the point
of the target set y whose geodesic distance value is smallest,
and by the nature of the viscosity solution the backtracking
procedure ends at the point of the seed set s which is
closest w.r.t. the metric. For computational efficiency, the

s

y

(a) (b)

Fig. 6 Illustration of the extraction of a smooth curve using the curvature
prior elastica model. a A smooth planar curve whose endpoints s and y
are respectively denoted by the red and blue dots. The arrows represent
the tangent vectors at the endpoints s and y of the planar curve. b The
blue solid line denotes the physical projection of the geodesic path from
the curvature prior elastica model, and the red dashed line illustrates the
given smooth curve.

procedure for estimating the respective geodesic distances can
be terminated immediately once either point of the target set
y is reached by the fast marching front, and this optimization
is valid since the fast marching front advances monotonically.
Note that this geodesic path tracking procedure allows the user
not to distinguish between the source and target points, which
is convenient in practice.

5 Experimental Results

In this section, we present numerical results obtained with the
introduced curvature prior elastica model. Our experiments
are meant to illustrate the influence of the curvature prior term
ω, and for that purpose we perform qualitative and quantitative
comparisons with the classical elastica model (Chen et al,
2017; Mirebeau, 2018), on curvilinear structure tracking tasks
applied to both synthetic and real images. In the remainder
of this section, both geodesic models are configured using the
identical setting, except for the curvature prior term which is
set to ω ≡ 0 for the classical elastica model.

Fig. 5 illustrates several geodesic paths from the curvature
prior elastica geodesic model where the term ω is set as a
constant function with different values. The cost function is set
as ψ ≡ 1. The orientation-lifted source point s = (s, θs) ∈M
is shown as a red dot at the position s equipped with an arrow
pointing in the direction ṅ(θs), and likewise for the target
point y = (y, θy) in blue. In this figure, the planar physical
projections of four distinct geodesic paths corresponding to
different values of ω are illustrated. The blue line corresponds
to the geodesic path from the classical elastica model (i.e.
ω ≡ 0). As the value of ω increases, we observe in this figure
that the portions of these geodesic paths surrounding the target
point feature turns with diminishing turning radius.

Fig. 6 illustrates a geodesic path computed using the
curvature prior elastica model, where the curvature prior term
ω : M → R is estimated pointwise from a given smooth
curve as described in Eq. (24), and the cost function ψ ≡ 1

is constant. The given reference curve is shown on Fig. 6a,
and connects an endpoint s to another one y, with tangent
directions ṅ(θs) and ṅ(θy) shown as red and blue arrows
respectively. The blue solid line in Fig. 6b illustrates the
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Fig. 7 Qualitative comparison results on synthetic images blurred by
additive Gaussian noise. The initialization for each image is shown in
column 1, where the red and blue dots with the respective arrows indicate
the source and target points. The physical projections of the geodesic
paths from the classical elastica model and the curvature prior elastica
model are respectively illustrated with red lines in columns 2 and 3.

physical projection of the geodesic path obtained using the
variant of the elastica model, equipped with the estimated
curvature prior map ω described above, from the source point
s = (s, θs) to the target point y = (y, θy). In Fig. 6b,
the reference smooth curve is shown in red and dashed.
When the curvature penalization parameter β is sufficiently
large, as in this experiment where we use β = 20, the
physical projection of the computed geodesic path should be
almost overlaid onto the reference smooth curve, since they
have almost identical curvature (recall that by construction
the energy functional penalizes the square of their curvature
difference), and since they share their endpoints and tangents
at these endpoints. More precisely, the physical projection of
the computed geodesic path converges to the reference curve
as β → ∞, and to a straight line joining the endpoints as
β → 0. The computed geodesic path shown in Fig. 6b indeed
well approximates the given reference curve, illustrating the
effectiveness of the curvature prior in the considered variant
of the classical elastica model.

5.1 Qualitative Comparison

In Fig. 7, we compare results obtained with the classical
elastica model, and with the curvature prior elastica model, on

Fig. 8 Qualitative comparison results on retinal images. Left: The
initialization. The blue and red dots with the associated arrows indicate
the source and target points. Center and Right: The computed minimal
geodesic paths (red lines) for the classical elastica model and the
curvature prior elastica model, respectively.

five synthetic images. A common feature for the curvilinear
structures in those images is that each of them involves
strongly bent segments. The first column of Fig. 7 shows
the initialization information for each synthetic image, where
the blue and red dots together with the arrows stand for the
source and target points respectively used to define the sets
s and y. Columns 2 and 3 illustrate the physical projections
of the computed geodesic paths from the classical elastica
model and the curvature prior elastica model, respectively.
More specifically, in column 2 of rows 1 to 3, we can observe
that the physical projections of the geodesic paths from the
classical elastica model are trapped into a shortcut problem,
i.e. the projected paths travel along non-target regions. The
reason is that the “correct” path features strongly curved
segments whose squared curvature accumulate and lead to
a high value of the classical elastica energy, hence it is
not selected by this model. In contrast, in column 3 of the
same rows, the curvature prior elastica model indeed leads
to accurate extraction of the target structures, even through
the two endpoints of the structures in rows 2 and 3 are very
close to each other. In rows 4 and 5, each of the curvilinear
structures is interrupted by an almost straight segment with
slightly stronger appearance features, i.e. with higher values of
the orientation score along this segment, yielding challenging
crossing structures. In these tests, the physical projections
of the geodesic paths from the classical elastica model pass
through the interrupting segments, yielding a short branches
combination problem (Chen et al, 2018), i.e. the obtained
geodesic paths travel different segments not belonging to
the targets. In contrast, the curvature prior elastica model
produces satisfactory results which are able to accurately
delineate the target curvilinear structures, as shown in column
3.

Fundus vessel tracking is a task of fundamental impor-
tance in retinal imaging and the relevant disease diagnosis.
In Fig. 8, we compare the curvature prior elastica model to
the classical elastica model in 3 patches of retinal fundus
images, chosen from the IOSTAR dataset (Zhang et al, 2016).
In this experiment, the goal is to extract artery blood vessels,
given two endpoints of each target vessel, as shown in the left
column of Fig. 8. In a typical retinal fundus image, the major
artery vessels usually exhibit weaker appearance features than
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Fig. 9 Qualitative comparison results on road images. Left: The ini-
tialization. The red and cyan dots with the respective arrows indicate
the source and target points. Center and Right: The computed minimal
geodesic paths (red lines) for the classical elastica model and the
curvature prior elastica model, respectively.

Table 1 Quantitive comparison between the classical Euler-Mumford
elastica model and the curvature prior elastica model on synthetic images,
illustrated by the average and the standard deviation of the Jaccard score
values.

Elastica Model Curvature Prior Elastica Model

Ave. Std. Ave. Std.

β = 4.5 52.72% 0.27 91.83% 0.03

β = 6.0 51.47% 0.26 90.61% 0.07

those of the nearby vein vessels, and often cross over vein
vessels yielding junction structures. An additional difficulty
is that the target artery vessels also consist of segments with
strong tortuosity. For the classical Euler-Mumford elastica
model, one needs to assign a low importance weight to the
curvature term, in order to avoid the underlying shortcut
problem at those segments. However, this in turn encourages
the computed paths to pass through the stronger neighboring
vein vessels (whose cost ψ is lower), thus increasing the
risk of the short branches combination problem, see the
center column of Fig. 8. In contrast, the minimization of
the energy (16) defining the curvature prior elastica model
favors optimal geodesic paths whose curvature is close to
ω, allowing to handle scenarios where challenging structures
such as crossings and strongly bent segments appear, see the
right column of Fig. 8.

Another practical application for geodesic models is road
tracking from aerial images, as demonstrated in Fig. 9. In this
experiment, the centerlines of the objective roads have high
Euclidean length, and simultaneously feature segments with
low turning radii, as shown in Fig. 9a. We can see that the
classical elastica model generates tracking results which suffer
from a shortcut problem, see the center column of Fig. 9.
In contrast, accurate results derived from the curvature prior
elastica model are observed in the right column of Fig. 9,
thanks to the use of the curvature prior term which alleviates
difficulties associated to the complex scenarios.

5.2 Quantitative Comparison

We perform a quantitative evaluation of the performance and
stability of the classical elastica model and of the curvature

prior elastica model on synthetic images, when one varies the
parameters β and α involved in these models, see Eqs. (16)
and (25). These parameters determine the balance between
the image data and the curvature regularization. The test data
are generated by incorporating different levels of additive
Gaussian noise to the original binary images of those shown
in Fig. 7. More specifically, we add zero-mean Gaussian noise
with 16 levels of normalized variance values between 0 and
0.15 to each clean image, producing 16× 5 = 80 test images.
Both geodesic models are configured by choosing parameters
β ∈ {4.5, 6} and α ∈ {3, 4, 5}, thus yielding 6 runs per test
image. In each test, the accuracy of the curvilinear structure
tracking is measured using the Jaccard score between two
bounded regions A,B ⊂ R2, defined as

JS(A,B) :=
|A ∩B|
|A ∪B|

, (27)

where |A| represents the area of the region A. In our case, the
regions A and B are defined as tubular neighborhoods with a
fixed radius of 6 grid points along the ground truth centerline
and the physical projection of the computed geodesic path,
respectively. Table 1 shows the quantitative results comparing
the classical elastica model and the curvature prior elastica
model, in terms of the Jaccard score between the ground truth
centerlines and the physical projections of geodesic paths,
see (27). In each row of Table 1, the average (Ave.) and
standard deviation (Std.) values of JS, which are derived
from 480 runs w.r.t. different values of the parameters α

and β. Overall, the results from the classical Euler-Mumford
elastica model in general exhibit low average values of JS,
and large standard deviation, reflecting the fact that various
shortcut and short branches combination problems occur in
most of the tests. In contrast, we observe much higher average
values of JS using the curvature prior elastica model, and a
smaller standard deviation, illustrating its ability to accurately
and robustly extract curvilinear structures in the presence of
strongly bent segments and junctions.

6 Conclusion and Discussion

In this work, we present a nonlinear HJB PDE approach to
numerically compute the curve which globally minimizes a
variant of the classical Euler-Mumford elastica energy, involv-
ing a curvature prior enhancement. The main contributions
include (i) the establishment of the explicit expression of
the Hamiltonian of the curvature prior elastica model, in
such way that globally optimal paths can be characterized
using the HJB PDE framework, (ii) the design of a finite
differences scheme based on the HFM method for estimating
the numerical solution to the associated HJB PDE, and
(iii) the introduction of an efficient and robust method for
computing the curvature prior in the context of curvilinear
structure tracking. Numerical experiments indeed demonstrate
promising results in medical and aerial images.

From the modeling standpoint, rather than penalizing the
difference to a given curvature prior ω as proposed here, an al-
ternative interesting route would be to penalize the variation of
curvature along the path. The latter approach indeed appears
to be appropriate and reasonable in relevant applications; for
instance it would naturally address the shortcut problem, a
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segmentation artefact which usually involves sharp turns. For
that purpose, one may for instance introduce in the elastica
energy defined in (15) the squared derivative κ′(·)2 of the
path curvature. However, this defines a third-order geodesic
model, which raises substantial numerical difficulties. A
closely related problem considered in the literature is the
computation of geodesic paths with bounded derivative of
curvature, however the approach Bakolas and Tsiotras (2009)
cannot take into account a data-driven cost function, which
is required by image processing applications. Another related
problem is the penalization of torsion, a quantity which is
also defined in terms of the third-order derivatives of the path,
and is approximated in Ulen et al (2015) with the torsion
of some local Bezier interpolations of the path. In the HJB
PDE framework, considered in this paper, the computation
of minimal geodesic paths for third-order planar models as
considered here would involve the numerical solution of
a strongly anisotropic PDE posed on the four dimensional
domain Ω × S1 × R 3 (x, θ, κ), which implies an increased
computational cost. We regard it as an opportunity for future
research.

We have introduced a practical method for computing
the curvature prior ω, using a set of reconstructed piecewise
smooth centerlines which reflect the geometry of curvilinear
structures in the image. In our work, those centerlines are nu-
merically generated by applying a skeletonization procedure
on the segmented curvilinear structures. A proper integration
of the voting method Rouchdy and Cohen (2013) and of the
keypoints detection method Benmansour and Cohen (2009);
Kaul et al (2012) might be an alternative way for constructing
the centerlines, where the dependency on the segmentation
process can be removed. Furthermore, the estimation of the
curvature of curves or surfaces from an orientation score map
could also be investigated for computing ω, e.g. Bekkers et al
(2015b). Unfortunately, the orientation score values around
the positions where complex junctions appear usually lack
reliability, thus requiring additional procedures to alleviate
this problem.

We have established in Theorem 3.1 a general theoretical
framework for deriving the Hamiltonian and control set
of a curvature-penalized geodesic model equipped with a
curvature prior enhancement, and have shown its application
to the Euler-Mumford elastica model. This framework can
also be exploited to generalize the Reeds-Sheep forward
model Duits et al (2018) and the Dubins car model Mirebeau
(2018). Finally, we intend to use the curvature-penalized
geodesic models with curvature prior enhancement to address
various image segmentation problems.

Appendix A Finite Difference Scheme for the
Hamiltonian H

We introduce here the numerical scheme for estimating the
geodesic distance map associated to the Hamiltonian H based
on the state-of-the-art HFM method Mirebeau (2018, 2019).
Recall that the distance map Ds is the unique viscosity
solution to the static HJB PDE

H(x, dDs(x)) =
1
2ψ(x)

2, ∀x ∈M\{s}, (28)

with the same point source s and outflow boundary conditions
as in (12). We discretize this PDE over the Cartesian grid

Mh := (hZ2 × (hZ/2πZ)) ∩M,

where h is the grid scale, which is chosen so that 2π/h

is a positive integer for periodicity. Note that hZ/2πZ =

{0, h, · · · , (Nθ − 1)h} ⊂ S1, where Nθ := 2π/h represents
the number of angles discretized in the orientation dimension.
We fix Nθ = 72 in the numerical experiments of this paper.

Given a non-zero vector v̇ ∈ E and a relaxation parameter
ε ∈ ]0, 1[, a crucial ingredient of the HFM method Mirebeau
(2018) is an approximation of the form

〈x̂, v̇〉2+ =

K∑
k=1

ξεk(v̇)〈x̂, ėεk(v̇)〉2+ + ‖x̂‖2‖v̇‖2O(ε2), (29)

for any co-vector x̂ ∈ E∗, where ξεk(v̇) ≥ 0 is a non-
negative weight, and ėεk(v̇) ∈ Z3 is an offset having integer
coordinates, for each 1 ≤ k ≤ K where K is a positive
integer. The construction of these weights and offsets relies on
Selling’s decomposition of positive quadratic forms Mirebeau
(2014b), with K = 6 in dimension dim(E) = 3, and
‖ėεk(v̇)‖ = O(ε−1). In practice, we use ε = 0.1.

By applying the approximation scheme in (29) to the terms
of (21), we obtain the following expression

〈x̂, q̇(x, ϕl)〉2+ ≈
K∑
k=1

ξεk(q̇(x, ϕl))〈x̂, ėεk(q̇(x, ϕl))〉2+. (30)

For the sake of readability, we leverage the abbreviations
ξεkl(x) and ėεkl(x) to denote ξεk(q̇(x, ϕl)) and ėεk(q̇(x, ϕl)),
respectively. Combining (21) with (30) yields the following
approximation of the Hamiltonian H

H(x, x̂) ≈
L∑
l=1

µl

K∑
k=1

ξεkl(x) 〈x̂, ėεkl(x)〉
2
+ . (31)

The set Sε(x) = {ėεkl(x)}
1≤k≤K
1≤l≤L ⊂ Z3 of all offsets, at a

given discretization point x ∈ Mh, is known as the stencil of
the HFM method and defines the neighborhood system of this
numerical scheme, see Fig. 10.

Now we can discretize the introduced Hamiltonian H

using a first order upwind finite difference scheme Mirebeau
(2018)

〈dDs(x), ė〉2+ =

(
Ds(x)−Ds(x− hė)

h

)2

+

+O(h), (32)

for any discretization point x ∈Mh and any offset ė ∈ Sε(x).
Since the offset ė has integer coordinates by construction, one
has x−hė ∈Mh, and therefore the r.h.s. of (32) only involves
values of the unknown geodesic distance map Ds on the
discretization grid Mh. Finally, we obtain a finite differences
discrete counterpart of the HJB PDE defined in (28)

L∑
l=1

µl

K∑
k=1

ξεkl(x)

(
Ds(x)−Ds(x− hėεkl(x))

h

)2

+

=
1

2
ψ(x)2

(33)

for all x ∈Mh \ {s}, with boundary condition Ds(s) = 0.
The HFM method computes the numerical solution to the

discretized HJB PDE (see (33)) in an efficient single-pass
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Fig. 10 Visualizing the stencils associated with the classical elastica model and the curvature prior elastica model. Left: Stencil Sε(x) for the classical
Euler-Mumford elastica model with β = 2, θ = π/6, and discretization parameters L = 5, ε = 0.1. Right: Likewise for the curvature prior elastica
model with ω(x) = 0.5. Note that the latter is not symmetric w.r.t. the horizontal plane.

wavefront propagation manner, using a generalization of the
original Fast-Marching method Sethian (1999). Assuming that
the computation is performed on a finite subset of the Carte-
sian grid Mh, containing Nh points, the computation com-
plexity for estimating the solution to (33) isO(LKNh lnNh),
where L is the discretization parameter as used in (21), and
K = 6 as observed below (29). In practice, the choice
L = 5 is a good compromise between numerical accuracy
and computation cost. Furthermore, the computation time of
the HFM method can be deeply speeded up by exploiting
a GPU-implemented scheme for estimating the geodesic
distances, as proposed in (Mirebeau et al, 2023). The codes
for the HFM method associated with the variant of the Euler-
Mumford elastica model equipped with a curvature prior,
involving the construction for the stencils, the computation
for the geodesic distance map and the numerical solution
to the geodesic backtracking ODE, can be downloaded
from https://github.com/Mirebeau/HamiltonFastMarching.
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