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Abstract. Image registration is definitely one of the most prominent techniques 
at the heart of computer vision research. Applications range from medical image 
analysis, remote sensing or robotics to security-related tasks such as surveillance 
or motion tracking. In our previous work, a solution was provided to address the 
registration problem involving top-view radiographic images of vehicles. A uni-
dimensional minimization scheme was formulated along with a column-wise 
constancy constraint on the displacement field. 
In this paper, we show that the proposed method is not sufficient in case of sig-
nificant vertical shifts between the cars of both moving and static images. In fact, 
the radiated beam is triangular, thus any translated object is projected differently 
according to its distance to the x-ray source. We therefore add a 1D unconstrained 
optimization to the previous scheme for a y-direction correction. We also demon-
strate that applying the vertical correction following our 1D optimization in the 
x-axis yields better results than performing a simultaneous minimization on both 
components. 
Finally, the possible apparition of artefacts in the deformed image throughout the 
optimization process is analyzed. Diffusion and volume-preserving schemes are 
considered and compared in this regard.  

Keywords: Image Registration, Variational Approach, Energy Minimization 
Methods, Difference Detection, Volume Preservation. 

1 Introduction 

Security is imposing itself as one of the most defining stakes in modern societies. Mas-
sive investments have been dedicated to find innovative solutions in order to assist the 
military or custom officers in their tasks. Image processing and computer vision meth-
ods are utterly ubiquitous in defense industries and provide wide-ranging applications. 

Image registration is commonly referred to as the searching process of a transfor-
mation that aligns, in an optimal but “plausible” way, a moving image T with a static 
image R [1, 2]. 
 
Aiming at automatic threat targeting, the registration problem of top-view x-ray scans 
of same-model vehicles was introduced in our previous work [3]. A straightforward 
solution was proposed to address the nonlinear deformations issue: a unidimensional 
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optimization scheme with a constancy constraint formulated for each column of the 
displacement field. 

 

  
(a) 

 
(b) 

Fig. 1. (a) R containing threats and T; (b) the normalized difference map following pose estima-
tion and unidimensional registration on x-axis. The substantial vertical shift between both acqui-
sitions entails alignment artefacts, particularly on the front part where inspection is impossible.  

Yet, this assumption doesn’t hold in case of significant translation between both 
scanned cars in the vertical axis. The beam emitted from the source located at the center 
of the detection line is indeed triangular (see Fig. 2.). Hence, any shift may be impacted 
differently in the projection image, according to the distance separating the source from 
the object. 
In Fig. 1. for instance, registration artefacts at the front region prevent any threat detec-
tion capacity. 

Horizontal and vertical deformations being of a different nature, instead of employ-
ing “blind” non-rigid registration models, we provide a method based on the separate 
analysis of horizontal and vertical deformation phenomena (inherent to the scanning 
system features). 

In this paper, we will briefly give an outline of the main energy-minimization based 
registration methods along with their numerical solutions. 



 

A second part will describe the registration issue while scanning shifted cars. Then, 
we will show that performing a post-processing elastic registration over the vertical 
component of the displacement field yields satisfactory results. We will also demon-
strate that the approach combining successive optimizations on horizontal and vertical 
components is preferable to a simultaneous minimization approach. 

2 Outline of Non-Linear Registration Methods 

2.1 Mathematical Problem Setup 

Let’s consider a static image R and a moving template T; we look for a transformation 
applied on T such that both images align as closely as possible [1, 2]. The general for-
mulation is given by the definition of R and T as d-dimensional images represented by 
the mappings 𝑹, 𝑻: Ω ⟶ ℝ,Ω ∈ 0,1 + in normalized coordinates. The transformation 
𝜙	is expressed via the displacement field 𝒖:	 Ω	⟶	ℝ+	with	𝜙 = 𝑖𝑑 + 𝒖.	

Hence, given 𝒙 ∈ Ω, the transformed image is written 𝑻 𝜙 𝒙 = 	𝑻 𝒙 + 𝒖 𝒙  
where 𝒖 is applied on the position 𝒙	of 𝑻. In other words, 𝑻 𝒙 	 is the intensity of	𝑻	at 
𝒙 and 𝑻 𝒙 + 𝒖 𝒙 	designates the value of 𝑻 at the translated position. 

Since we wish to minimize the distance between 𝑻 ∘ 𝜙 and 𝑹, the unified optimiza-
tion framework for intensity-based registration is given by the following joint func-
tional scheme: 

Find 𝑢 minimizing 

 𝒥 𝑢 = 𝒟 𝑻 𝒖 , 𝑹 + 𝛼𝒮 𝒖  (1) 

where 𝒟 is referred to as the distance measure between 𝑻 ∘ 𝜙, the transformed image, 
and 𝑹. It commonly designates the data-fitting term or external force [4] to obtain an 
ideal alignment. 

In order to tackle the ill-posedness of the optimization problem ([1, 2]), a regulari-
zation term 𝒮 is introduced (internal force [4]). It is designed to keep the displacement 
smooth during deformation by penalizing unwanted or implausible solutions. The reg-
ularization strength is controlled by the smoothing parameter 𝛼: increasing its value 
emphasizes the smoothness of 𝒖 and vice-versa. The choice of this parameter has been 
studied but remains utterly dependent on the considered application and the apprecia-
tion of the operator ([5-7]).  

Similarly, both data-fitting and smoothing terms are selected according to the spec-
ificity of the registration task. The most popular similarity measure is the Sum of 
Squared Differences (SSD). The Normalized Cross Correlation (NCC) is also wide-
spread for matching problems of images sampled with the same modality. Information-
theoretic approaches based on Shannon’s entropy are employed for multimodal regis-
tration (Mutual Information – MI). Over the years, more sophisticated measures have 
also been explored such as the so-called NGF- Normalized Gradient Fields. See [1], 
[2], or [7] for further details about similarity measures. 

In various registration tasks, the choice of the smoothing term is crucial ([1]). It al-
lows the embedding of physical priors or possible acquisition constraints within the 
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optimization scheme. The next section will depict a larger overview of the most wide-
spread regularization terms.  

Note that the selection of both terms is conditioned upon the existence of a Gâteaux 
derivative ([1, 2, 7, 8])  

2.2 Registration Methods 

Registration can be landmark-base, i.e. the image is transformed via the matching of 
sparse elements (feature points or manually annotated control landmarks) combined 
with TPS (Thin-Plate-Spline) interpolation to yield dense correspondences ([1, 2, 6]). 
Although these methods have proven their efficiency in many applications e.g. in med-
ical image analysis, they show less flexibility than the unified variational framework 
introduced in (1) (see [4]). In addition, despite the recent achievements on key points 
automatic generation (deep-learning based), unmanned landmark detection remains a 
challenging task. 

For these reasons, we chose to focus our work on intensity-based or so-called iconic 
methods. These approaches generally split into two categories ([1, 2, 6]). 

Regarding parametric image-registration techniques (PIR), the displacement field 𝒖 
is parametrized. The optimization process thereby consists in finding the parameters 
minimizing 𝒥. In B-spline approaches, the displacement is defined as a linear combi-
nation of a small set of basis functions. See ([2, 6]) for a further description of PIR 
approaches. In general, the smoothing terms are chosen such that 𝒮 𝑢 = 0 with a par-
ametrization meant to implicitly integrate regularization constraints. Though, Ty-
chonov regularization may often be used. 

In non-parametric approaches (NPIR), the smoothing term plays a major role while 
the displacement is no longer parametrized. Most common techniques employ L2- 
normed terms: diffusion, elastic, curvature or fluid regularizers ([2, 4]). The demons 
method [9] is inspired from optical-flow techniques, where a Gaussian smoothing ap-
plied at each iteration falls within a diffusion-like regularization ([4]). Topology-pre-
serving registration is also a very active field of research. In fluid mechanics, incom-
pressibility imposes that the determinant of the transformation Jacobian remains equal 
to one (see e.g. [6]). On this basis, Rohling [10] and Christensen [11] add a soft con-
straint to (1): det 𝐼𝑑 + ∇𝒖 − 1 D or its logarithmic version to ensure volume preser-
vation (various regularizers are also described in [10-12]). Instead, Haber and Mod-
ersitzki opt for an inequality/equality hard constraint (resp. [8] and [7]). More recently, 
Rueckert et al. compare soft and hard-constraint techniques in [13]. 

 Alternative approaches concentrate on the diffeomorphic framework. 𝜙 is then ex-
plicitly constrained to be a continuously differentiable bijection having a smooth in-
verse. The deformation is modeled via a time-dependent velocity vector field. See [13], 
the LDMM model [14] or the earlier work of [15] for detailed explanations about these 
schemes. See also the recent contributions of Mang et al. about mass and volume preser-
vation constraints for a comprehensive state of the art overview ([16, 17]).  

Other methods suggest to apply a post-processing step over the displacement field 
after registration. In [18], Poisson’s equation is solved to maintain a so-called solenoi-
dal displacement field 𝒖	and maintain the preservation of volumes.  



 

Similarly, rigidity constraints (hard and soft versions) have been formulated in dif-
ferent publications. Though, they are beyond the scope of this paper (see [19] for in-
stance). 

2.3 Numerical Solutions 

In [1, 2], Modersitzki suggests a general optimization framework to solve (1). An ap-
proximation of the Gauss-Newton method is employed, usually combined with a multi-
level strategy as well as a backtracking line-search method to yield an optimal step size 
at each iteration [2]. Matrix-free approaches are also proposed to speed-up the compu-
tations ([2, 20]). The variations of the displacement between consecutive iterations are 
estimated by ∇𝒖 Din order to stop the minimization process whenever it falls under a 
pre-set threshold	𝜖. See [1, 2] for further details about the stopping criterion. 

Alternative numerical techniques have also been presented for computationally-de-
manding problems. See [2] on l-BFGS or Trust-Region methods that can achieve fast 
quadratic convergence. 

For volume-preserving constrained problems, Modersitzki et al.  resort to the frame-
work of Sequential Quadratic Methods (SQP) [7] or a variant of the log-barrier method 
[8].  

Diffeomorphic image registration as described in [13, 14] typically uses an implicit 
regularization (by solving a Poisson pde) while gradient-descent methods are used to 
find an optimal solution. In their latest works, Mang et al. [15] proposed second-order 
numerical methods to produce diffeomorphic mappings. 

In [1, 2], a discretize-then-optimize approach is used. In several applications, the 
choice of discretization paradigms is crucial. Staggered, nodal or cell-centered grids 
may be used. See [2] for more details about interpolation or discretization issues. 

For an in-depth description and analysis of registration methods, please refer to [6]. 

3 Problem Presentation 

3.1 1D Horizontal Correction Scheme Remainder 

In our previous work [3], we demonstrated that rigid registration was not sufficient for 
top-view scans of vehicles obtained by the Smiths Detection HCVL system. Actually, 
despite the intrinsic rigidity of cars, non-linear deformations may occur as a result of 
shocks between the conveyor rollers and the back wheels. The issue was simply ad-
dressed by applying a rigid pre-processing registration (similarity pose estimation) and 
then running a 1D registration scheme assuming: 

i. a column-wise constancy condition on the displacement field 
ii. a negligible vertical component 

 
By combining i. and ii. we had: 
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 𝒖 = (𝑢G 𝑥 , 0) (2) 

Eventually, using an SSD distance and a diffusion regularization, we formulated (1) as 
follows: 

Find 𝑢G(𝑥) minimizing 

 𝒥 𝑢G = 
1

2
𝑻 𝑢𝑥 − 	𝑹 2

2 + 	
1

2
𝛼 ∇𝑥𝑢𝑥 2

2 (3) 

These assumptions hold in most cases and yield nice registration results. See [3] for a 
numerical and visual appraisal of the method. Yet, in some situations, the registration 
accuracy achieves lower performances, as depicted in the next section. 

3.2 Necessity for a Vertical Correction  

In fact, the scanning system allows for an additional degree of freedom: the car trans-
lation along the trailer width (Fig. 3.). Besides, the x-ray source is located at the detec-
tion line center and generates a pyramidal beam. Any significant translation w.r.t the 
other image therefore leads to important deformations in the y-axis. More particularly, 
the deformation magnitude depends on the distance/depth separating the radioactive 
source from the scanned object as shown in Fig.2. Hence, hypothesis ii. is not anymore 
valid in this situation. 

 
Fig. 2. Vertical shift effect description. The projected distances r2 and p2 after displacement are 
larger than r1 and p1. Similarly to the stereovision problem, this difference grows with the object 
proximity to the x-ray source:  p2 / p1 > r2 / r1 

These deformations may require either small or even larger scale corrections as shown 
in Fig. 1. 



 

 
Fig. 3. Top-view of the HCVL system. Translations are permitted along the conveyor width 

4 Vertical Correction Solution 

4.1 Solution Description 

Remaining in the variational framework, we simply intend to apply a supplementary 
1D registration over the vertical component of the displacement field. Unlike our pre-
vious scheme exposed in sect. 3.1, we do not assume any specific priors or constraints 
on the vertical displacement component since the required correction varies accordingly 
to the objects depth (Fig. 2.). A row-wise constancy restriction on 𝑢K is therefore irrel-
evant. Hence, 

  𝒖 = (0, 𝑢K 𝑥, 𝑦 ) (4) 

With a diffusion regularizer, (1) is written as follows: 

Find 𝑢K(𝑥, 𝑦) minimizing 

 𝒥 𝑢K = 
1

2
𝑻 𝑢𝑦 − 	𝑹

2

2
+ 	

1

2
𝛼 ∇𝑢𝑦 2

2
 (5) 

A volume-preserving approach is also tested by adding a soft constraint to the above 
formula. The joint functional is then given by: 

Find 𝑢K(𝑥, 𝑦) minimizing 

 𝒥 𝑢K = 
1

2
𝑻 𝑢𝑦 − 	𝑹

2

2
+ 	

1

2
𝛼 ∇𝑢𝑦 2

2
+

1

2
𝛽 det ∇𝑢𝑦 + 𝐼𝑑 − 1

2

2
 (6) 

The soft constrained approach ([10, 11]) is preferred over hard constraints or dif-
feomorphisms because of its flexibility and implementation simplicity. The 𝛽 parame-
ter	allows control over the balance between diffusion registration and more stringent 
volume preservation constraints. In alternative methods, parameter tuning turns into a 
tougher task. 

We also wish to compare both simultaneous and successive optimization paradigms 
for horizontal and vertical corrections. Let’s therefore formulate the above problems in 
two dimensions, maintaining the column-wise constancy constraint for the horizontal 
component of the displacement field. Thus, let’s consider for (𝑥, 𝑦) 	 ∈ Ω:  
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 𝒖 = (𝑢G 𝑥 , 𝑢K 𝑥, 𝑦 ) (7) 

The 2D version of the diffusion registration (7) is given by: 

Find 𝒖	minimizing 

 𝒥 𝒖 = 
1

2
𝑻 𝒖 − 	𝑹 2

2 + 	
1

2
𝛼( ∇𝑢𝑥 2

2 +	 ∇𝑢𝑦 2

2) (8) 

The two-dimensional volume-preserving optimization scheme is also written as fol-
lows: 

 Find 𝒖	minimizing (9) 

𝒥 𝒖 = 
1

2
𝑻 𝒖 − 	𝑹 2

2 + 	
1

2
𝛼 ∇𝑢𝑥 2

2 +	 ∇𝑢𝑦 2

2 + 1

2
𝛽 det ∇𝒖 + 𝐼𝑑 − 1 2

2  

4.2 Numerical Resolution 

We will describe the numerical resolution of the 2D problems (8) and (9). The resolu-
tion of (5) and (6) is then straightforward since it amounts to exclusively optimizing the 
vertical displacement field component after obtaining an optimal 𝑢G∗  by solving (3). 

In the meantime, we resort to first-order minimization methods. Yet, in a future 
work, we may consider Gauss-Newton methods for speed purposes. 
For the diffusion-regularization problem (10), the directional derivatives of the joint 
functional are given by:  

 ∇𝑢𝒥 𝒖 = 	𝛁𝑻 𝒙 + 𝒖 𝒙 𝑻 𝒙 + 𝒖 𝒙 − 𝑹 𝒙 − 	𝛼∆𝒖   (10) 

with 𝒙 = (𝑥, 𝑦) ∈ Ω and 𝒖	as defined in (7). See [1] for a comprehensive demonstra-
tion of the Gâteaux derivatives result. 
Let’s now look at the volume-preserving soft constraint introduced in (9). With a line-
arization approximation, valid for small displacements, we get: 

 det ∇𝒖 + 𝐼𝑑 − 1	 ≈ 𝜕𝑥𝑢𝑥 + 𝜕𝑦𝑢𝑦 = div(𝒖)    (11) 

Consequently, the directional derivatives computation yields the following result: 

 ∇𝑢𝒥 𝒖 = 	𝛁𝑻 𝒙 + 𝒖 𝒙 𝑻 𝒙 + 𝒖 𝒙 − 𝑹 𝒙 − 	𝛼∆𝒖 − 𝛽𝛁. div(𝒖) (12) 

which actually corresponds to the derivative of the elastic registration functional (see 
[4]). In fact, by noting 𝛽 = 𝛼 + 𝛾	we retrieve the well-known Lamé coefficients 𝛼 and 
𝛾. See the appendix in Albrecht et al.’s paper [21] for a detailed demonstration on how 
to obtain (12). 

 
As in our previous work [3], a gradient-descent method is combined with a multiscale 
approach to avoid convergence at local minima. We usually run the descent algorithm 



 

with a 4-levels Gaussian pyramid. Armijo’s backtracking line-search technique is also 
integrated into the process to yield an optimal step size for each update of 𝒖. 

Both 𝛼 and 𝛽 are defined for each scale by fixing desired ratios 𝑟V	and 𝑟W between 
the data fitting term and the regularizers (small ratios indicate large regularization and 
vice versa). The parameters are estimated at the first iteration and hold for the whole 
level.  

The optimization process is stopped as soon as the displacement variation ∇𝒖 D	 
falls below 𝜖 = 	10XY. Computations are performed on a 8 Go RAM - 3,1 GHz Intel 
Core i7 MacBook. The average calculation time on 992×1186 images with MATLAB 
2016b is about 50 s for the successive minimization scheme and reaches more than two 
minutes for the simultaneous one (no MEX files used so far). 

In the next section, we present the results of both approaches for a simultaneous and 
consecutive optimization fashion. 

5 Results 

In this chapter, we will use the example brought in Fig. 1. and focus on the front part 
of the vehicle for a visual and numerical assessment of the different techniques. 

5.1 Horizontal-then-Vertical Optimization 

In Fig. 4. and Fig. 5, we observe that the smoothing parameters/ratios must be cho-
sen carefully. A too large regularization entails a poor registration accuracy (Fig. 4. 
and Fig. 5. (a)) while a too soft smoothing makes objects disappear in the difference 
map. In this case, the threat cannot be longer detected (Fig. 4. (c), more explanations 
are given in subsect. 5.3). Overall, elastic registration yields better results in terms of 
threat visualization and MSE measures, as detailed in Table 1..  

 
 

     
(a)                           (b)       (c)             (d) 

Fig. 4. (a) Front part difference map after 1D horizontal correction; Diffusion Registration with 
various parameters - 𝑟W = ∞ (b) 𝑟V = 0.1; (c) 𝑟V = 1; (d) 𝑟V = 2.5 
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(a)                               (b)       (c) 

Fig. 5. Elastic Registration – maps of differences with various parameters (𝑟V, 𝑟W) (a) (1, 0.1); 
(b) (1.5, 2); (c) (2.5, 1)  

In Fig. 5. (c), the addition of a vertical “volume-preserving” constraint gives an accu-
rate and reasonable difference map in contrast with the output obtained with the same 
𝑟V ratio in Fig. 4. (d). 

Table 1. Mean Square Error measures obtained with the different regularization ratios 

  𝒓𝜶 𝒓𝜷 MSE 
 

diffusion 
0.1 ∞ 3.68E-03 
1 ∞ 1.53E-03 

2.5 ∞ 7.81E-04 
 
elastic 

1 0.1 4.21E-03 
2.5 1 1.38E-03 
1.5 2 1.54E-03 

5.2 Simultaneous Optimization 

    
(a)                   (b)       (c)          (d)       

Fig. 6. Post-registration difference maps with different parameters – 𝑟V, 𝑟W  (a) 1,∞ ;  
(b) 1.5, 2 ; (c) 2.5, 1 ; (d) 3, 3  



 

As depicted in Fig. 6., we get “cleaner” difference maps with the horizontal-then-
vertical registration approach where the columns are first rectified to enable a further 
vertical correction. In addition, by using analogous parameters, the simultaneous 
method yields larger MSE distances after convergence. 

Table 2. Mean Square Error measures obtained with the different regularization ratios 

 𝒓𝜶 𝒓𝜷 MSE 
diffusion 1 ∞ 4.59E-03 

 
elastic 

1.5 2 4.41E-03 
2.5 1 4.41E-03 
3 3 3.80E-03 

5.3 Further Observations 

As mentioned, regularization should be tuned carefully, a too weak smoothing may 
give a better registration accuracy at the expense of unreasonable deformations. This is 
especially true when the algorithm tends to deform T in a non-diffeomorphic fashion 
to “imitate” the added objects in R.  

Fig. 7. describes the resulting difference map with a weakly-regularized registration. 
The transformation is piecewise-constant (Fig. 7. (b)), meaning that, in a given column, 
a pixel in the original image T is repeated several times in the deformed Tfinal. It actually 
corresponds to a non-bijective, or more generally: a non-diffeomorphic transformation. 

 

 
(a)                                                                     (b) 

Fig. 7. Elastic Registration with low smoothing 𝑟V = 5, 𝑟W = 5 (a) difference map; 
 (b) 𝑦 + 𝑢K 𝑥, 𝑦  transformation representation on localized 1D-cross-section 

By using proper parameters, we prevent the transformation from being non-dif-
feomorphic. See the localized 1D-cross section of 𝜙 in Fig. 8. (b): the curve is smoother 
and strictly increasing.  
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(a)                                                             (b) 

Fig. 8. Elastic Registration with stronger smoothing 𝑟V = 1.5, 𝑟W = 2 (a) difference map; 
 (b) 𝑦 + 𝑢K 𝑥, 𝑦  transformation representation on localized 1D-cross-section 

 
(a)                                                        (b) 

Fig. 9. Diffusion Registration with 𝑟V = 1.5, 𝑟W = ∞ (a) difference map; 
 (b) 𝑦 + 𝑢K 𝑥, 𝑦  transformation representation on localized 1D-cross-section 

In Fig. 9., we show the relevance of the additional volume-preserving soft constraint 
with respect to the diffusion registration result. On a visual aspect, the preservation of 
volumes is not maintained, leading to a weaker detectability of objects in the difference 
map. The transformation 𝜙	lacks regularity and is clearly non-diffeomorphic. 
 
  

An additional example depicting the registration of images of a carrier is given in 
Fig. 10. 
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(a) 

 

    
(b)        (c)      (d)           (e) 

Fig. 10. (a) R and T; Difference maps following: (b) rigid registration, (c) 1D horizontal correc-
tion, (d) horizontal-then-vertical registration, (e) simultaneous registration with 𝑟V = 1.5, 𝑟W = 2  

On this simpler image set too, the consecutive minimization scheme generally shows a 
better correction than the simultaneous approach. Visually, the major differences at the 
wheels or the frame borders are removed. It also achieves the lowest MSE (Table. 3.). 
 

Table. 3. Mean Square Error measures obtained with the different registration methods 
 

  Rigid  
Registration 

X-axis  
Correction 

X-then-Y  
Correction 

Simultaneous 

MSE 1.55E-02 4.14E-03 1.11E-03 4.90E-03 
 
 After validating our method on hundreds of scan pairs, we empirically obtain sta-
ble and accurate results with the ratio parameters  𝑟V = 1.5, 𝑟W = 2 for an optimal de-
tectability of the objects of interest targeted. In Fig. 11. and Table. 4., an additional 
illustration of our method performances is given. 
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              (a) 
 

  
(b)                                                                (c) 

 

  
      (d)                                                                 (e) 

 

Fig. 11. (a) T and R with a visible strong vertical shift between both images; Difference maps 
following: (b) rigid registration, (c) 1D horizontal correction, (d) simultaneous registration, (e) 
horizontal-then-vertical registration with 𝑟V = 1.5, 𝑟W = 2  

 
Table. 4. Mean Square Error measures obtained with the different registration methods 

 
  Rigid  

Registration 
X-axis  

Correction 
X-then-Y  

Correction 
Simultaneous 

MSE 3.40E-03 2.80E-03 1.10E-03 2.10E-03 
 
In Fig. 12., an extra visualization enhancement case is described. 
 



 

  
                          (a)                           (b)      (c)     

Fig. 12. (a) R and T; Difference maps after: (b) 1D horizontal correction, (c) horizontal-then-
vertical elastic registration with 𝑟V = 1.5, 𝑟W = 2. Threat detection capacity is strongly enhanced. 

6 Conclusion 

In this paper, we address the issue of vertical correction for the registration of x-ray 
images of same-model vehicles. This correction is particularly necessary whenever a 
singular vertical translation occurs between the cars in R and T. Two approaches are 
put forward: a simple diffusion paradigm together with a linearized approximation of 
the smoothly-constrained volume-preserving registration (which turns into the famous 
elastic registration problem). A discussion is given about applying the registration sim-
ultaneously on both components of the displacement field 𝒖 (with the columnwise-
constancy constraint on the horizontal term). The alternative, more efficient method, 
consists in running the horizontal registration first, followed by the vertical correction 
in a separate fashion. The results are less noisy, yielding a better registration accuracy 
on both numerical and visual aspects, especially when elastic regularization is em-
ployed.  

We also highlight the importance of an appropriate choice for the regularization pa-
rameters with the risk of smoothing out suspicious items in the difference map. 

Still, resorting to second-order techniques instead of gradient descent methods 
should be considered for speed purposes. Similarly, matrix-free approaches should also 
be regarded in future works. 
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