
adfa, p. 1, 2011. 

© Springer-Verlag Berlin Heidelberg 2011 

Vehicle X-Ray Scans Registration: A One-Dimensional 

Optimization Problem 

Abraham Marciano1, 2 *, Laurent D. Cohen1, Najib Gadi2 

1 Université Paris-Dauphine, PSL Research University, CNRS, UMR 7534, CEREMADE, 

75016 Paris, France  
2 Smiths Detection, 94405 Vitry-sur-Seine, France 

marciano@ceremade.dauphine.fr 

Abstract. Over the years, image registration has been largely employed in med-

ical applications, robotics and geophysics. More recently, it has increasingly 

drawn attention of security and defense industries, particularly aiming at threat 

detection automation. This paper first introduces a short overview of mathemat-

ical methods for image registration, with a focus on variational approaches. In a 

second part, a specific registration task is presented: the optimal alignment be-

tween X-ray scans of an inspected vehicle and an empty reference of the same 

car model. Indeed, while being scanned by dedicated imaging systems, the car 

speed is not necessarily constant which may entail non-rigid deformations in the 

resulting image. The paper simply addresses this issue by applying a rigid trans-

form on the reference image before using the variational framework solved in 

one dimension. For convergence and speed purposes, line-search techniques and 

a multiscale approach are used. 
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1 Introduction 

Due to the recent global context, security has increasingly become a top priority for 

governments and agencies all around the world. Meanwhile, larger amounts of data 

have to be processed in more limited periods of time. Thus, the switch to automation of 

threat targeting constitutes a crucial step.  

 

The vision industry has significantly been impacted by this move and must address 

new problems, often by resorting to widely used techniques such as image registration. 

As defined by Modersitzki et al. [1,2,3], it consists in finding a “reasonable” transfor-

mation applied on a template image T to get an optimal alignment with a reference 

image R.  

 

In this paper, we present a challenging registration task: aligning top-view scans of 

a car under inspection and an empty reference of the same model. The obvious purpose 

of this process is to automatically identify added objects in a vehicle and target potential 



security threats or contraband goods. Though, for X-ray imaging systems such as 

Smiths Detection HCVL, the car is trailed by a mechanism pushing its rear wheels so 

that the speed may not be constant over time. This imperfection often gives non-rigid 

deformations in the resulting image (see Fig. 1.) due to “over-sampling” (car decelera-

tion) or “sub-sampling” (car acceleration) of the scanned object. 

 

Fig. 1. Top-view scan of a vehicle. The spare wheel shows a non-rigid deformation as a result 

of the car slowdown during the scanning process. 

Note that deforming potential threats in the image is not desirable for further recog-

nition tasks. Thus, we consider the current inspection scan as the static image R and the 

empty reference image from our database as the moving template T (such that R does 

not undergo any non-linear warping). 

 

The paper first gives an overview of the general non-rigid registration problem for-

mulated in the variational framework. Parametric and non-parametric methods are de-

tailed along with their numerical resolution. We will also show that, when applied to 

our registration problem, these schemes fail to yield a consistent transform with respect 

to the reference image or by violating the car’s intrinsic rigidity. 

 

In section 3, we will demonstrate that the composition of a rigid transform followed 

by a one-dimensional optimization scheme applied on T gives a valid solution. An ex-

plicit formulation of the problem is given in detail as well as its numerical framework.  

 

2 Problem Setup and Non-Linear Methods Overview 
 

2.1 Mathematical Problem Setup 

As mentioned, given R and T, respectively a reference image and a template image, 

we aim at finding a transformation on T such that the warped template matches the 

reference as closely as possible [1,2,3]. Generally, R and T are defined as d-dimensional 

images  𝑹, 𝑻 ∶  Ω →  ℝ, Ω ∈ ]0,1[𝑑  (normalized coordinates). The transformation is 



expressed by 𝒖 ∶  Ω →  ℝ𝑑, commonly referred to as the displacement field applied on 

each position 𝒙 ∈  Ω in T.  

Hence, for a particular 𝒙 ∈  Ω, 𝑻(𝒙) corresponds to the grayscale value of T at 𝒙 and 

we wish to find 𝒖 so that  𝑻(𝒙 + 𝒖) is similar to 𝑹(𝒙) (see [4,5] e.g.). Since our images 

are 2D, we take 𝑑 = 2. 

 

The unified non-linear registration framework is formulated as follows [2]: find a 

transformation 𝒖 minimizing the joint energy: 

 𝐽(𝒖) = 𝐷(𝑻(𝒖), 𝑹) +  𝛼𝑆(𝒖) (1) 

Where 𝑻(𝒖)  denotes the transformed image with value 𝑻(𝒙 + 𝒖) at location 𝒙, and 

D represents the data fitting term, quantifying the similarity between 𝑻(𝒖) and 𝑹 (ex-

ternal force). Since optimizing D turns to an ill-posed problem, a regularizer term S has 

been introduced. It refers directly to the “reasonable” aspect of the transformation as 

defined in section 1. The smoothing parameter 𝛼 controls the strength of the displace-

ment field 𝒖 regularization, ensuring its smoothness during deformation (internal force) 

[2,3,4,5]. Several methods have been developed to estimate a proper 𝛼 (see [2], [6]), 

but in most situations it is conditional upon the type of application and the operator 

assessment. 

 

Different distance/similarity measures are employed for this task. The most popular 

is the sum of differences distance (SSD) whereas the normalized-cross-correlation 

(NCC) is also widely used for monomodal registration problems. The mutual infor-

mation distance (MI) is dedicated to the registration of images obtained with different 

modalities (e.g. CT and MRI) [3], [7]. More sophisticated measures have also been 

developed in the last decade, such as the normalized gradient fields (NGF) (see [7,8]). 

In this paper the SSD distance is preferred for its simplicity and efficiency to solve our 

monomodal registration issue. 

 

Likewise, several regularizers are outlined in the state of the art literature. The next 

sub-section gives more details about the different smoothing techniques. Note that the 

main constraint in the selection of similarity measures or regularizers is the existence 

of a Gâteaux derivative for the optimization scheme to be used later [4]. 

2.2 Methods Overview 

Landmark-based registration is widely adopted in medical applications for instance 

([9]). The displacement field is first evaluated on identified points (landmarks), fol-

lowed by a TPS (thin-plate-spline) interpolation yielding a dense estimation of 𝒖 (see 

[3]). 

Still, an accurate automatic detection of landmarks remains a challenging task (see 

[9] e.g.). In this paper, the focus is therefore given on intensity-based methods which 

fall into two categories: 



 Parametric techniques: the transformation is restricted to a known parametric model. 

The optimization process aims at automatically identifying the optimal parameters 

of 𝒖. Non-linear techniques resort to a linear combination of a small set of basis 

functions (B-spline, free-form deformations – FFD methods). See [3], [7] for a com-

plete overview of PIR methods (Parametric Image Registration). For these tech-

niques, the parametrization itself implicitly integrates a strong regularizer, especially 

for low dimensional transformation spaces (𝑆(𝒖) = 0). Yet, a Tychonov smoothing 

term may also be employed [3]. 

 

 Non-parametric techniques: The transformation is no longer parametrized. The op-

timization processes over the displacement field 𝒖 itself making the regularization 

term 𝑆(𝒖) essential. L2 norm-based models such as curvature [5], fluid [10] and 

elastic [11] regularizers are the most widespread (see [3] or [7] for a complete over-

view). For NPIR (Non-Parametric Image Registration) methods, discretization is 

regularizer-dependent. Different schemes can be adopted such as nodal, centered or 

staggered grids. See ([3], [7]) for more details about discretization and interpolation 

issues.  

Thirion’s demons popular method [12] derives from optical flow techniques with a 

diffusion-like regularizer ([1], [5]). It is especially useful for high dimensional and 

computationally demanding non-linear problems [5]. 

Models with rigidity or volume-preserving constraints have also proven their effi-

ciency. Yet, they are beyond the scope of this paper. See [13,14,15] for further de-

tails. 

2.3 Numerical Resolution 

Modersitzki ([3], [7]) proposes a unified numerical optimization framework to min-

imize (1). Both NPIR and PIR are solved by a quasi-Gauss-Newton descent method 

([16]). The gradient ∇𝐽(𝒖) and Hessian 𝐻(𝒖)  of 𝐽(𝒖) are computed (the Hessian is of-

ten approximated). The descent direction 𝑑𝑑 = 𝐻(𝒖)−1∇𝐽(𝒖) is calculated at each it-

eration. Also, Armijo’s line-search backtracking method is employed to get an optimal 

step size for each update of 𝒖 ([3], [16]). In general, minimization is stopped whenever 

the variation of the transformation ‖𝛁𝒖‖2 falls below a pre-set tolerance threshold 𝜖. 

See [3] for more details about the stopping criterion. 

A multi-level strategy is also used. It yields a smoother objective function at coarser 

levels, hence easier to minimize. Thus, the resulting displacement field constitutes a 

good initialization for the finer level and local minima issues can be overcome [2,3]. 

Alternative optimization paradigms have also been proposed for computationally 

expensive cases. The l-BFGS approximates the inverse of the Hessian using an initial 

guess 𝐻0 and a sequence composed of descent directions and gradients [16]. Trust-re-

gion methods are quite popular as well since they can achieve fast quadratic conver-

gence [16]. See [3] for further details and [17] for a more advanced overview of varia-

tional methods and their numerical frameworks. 



2.4 Tests on Our Images 

In this example, the inspection of the front part of a given vehicle is considered (Fig. 

2. (a)). A corresponding empty reference scan from the same model is used for regis-

tration (from a different car, Fig. 2. (b)). Major visual differences are easily identified 

at the rear-view mirrors, front wheels, the gearbox, the steering wheel, a few liquid 

tanks and the battery. Fig. 2. represents the reference and template images after pose 

estimation (rigid registration, see paragraph 3.4 for further details). Two methods are 

tested in this part: B-spline registration and Thirion’s demons method. 

Fig. 3. shows some results obtained via the demons method with two different 

smoothing parameters and a multi-level approach. Note that green and pink colors de-

pict respectively the differences originating from the moving template T and image R 

under inspection (as defined in section 1). 

 

Fig. 2. (a) Empty reference of a vehicle front part; (b) Front part under inspection after pose es-

timation 

 

 
Fig. 3. Demons registration results (resulting Tfinal and overlay of Tfinal and R) with a smooth-

ing parameter of 0.5 (top) and 2 (bottom) 



B-spline registration is also tested with a multiscale approach and a “thin sheet of 

metal” smoothness penalty set to 0.01 and 0.1 (Fig. 4.).  

   

 

Fig. 4. B-spline registration results (resulting Tfinal and overlay of Tfinal and R) with a smooth-

ing parameter of 0.01 (top) and 0.1 (bottom) 

Besides computational cost considerations (B-spline registration can be significantly 

time-consuming), these standard methods do not achieve accurate registration for the 

particular case addressed here. See Fig. 10. for the resulting SSD distances of each 

method. In fact, the vehicle’s rigidity along with the mechanical process behind the 

non-rigid deformation have to be taken into account. The idea is to simplify the opti-

mization problem by moving from a 2-dimensional to a one-dimensional scheme. More 

particularly, the displacement field has to be constrained to the longitudinal direction 

and must remain uniform along the car’s width. The next section outlines the motiva-

tions and numerical aspects of our method. 

3 Registering with a One-Dimensional Optimization Scheme 

3.1 Introduction to Our Registration Problem 

In HCVL X-ray imaging systems, an inspected vehicle is trailed by a conveyor facility 

via rollers pushing on its back wheels (Fig. 5.). The conveyor speed is meant to be 

constant and fixed to 12 m/min. Though, the car often rolls off the trailer equipment as 

a result of shocks between the conveyor rollers and the wheels. The vehicle speed un-

dergoes disturbances affecting the scanning process: a slowdown (resp. acceleration) 



implies a local “over-sampling” (resp. “sub-sampling”) in specific regions of the car 

(see Fig. 1.).        

   

   

Fig. 5. (a) HCVL scanning system; (b) The conveyor rollers (in yellow) applying a pushing 

force on the rear wheels  

Let’s consider two X-ray images of the same car model (not necessarily the same 

vehicle): we assume that pose estimation has already been performed such that both 

images were linearly registered through a rigid transform. We formulate two strong 

hypothesis: 

 

 Hypothesis 1: A columnwise-constant deformation. We make the reasona-

ble assumption that the field of displacement is uniform along each column. 

In fact, the car is scanned with a constant sampling rate while entering the 

X-ray beam line so each column of the resulting image corresponds to a 

lateral cut of the vehicle scan at a given time (Fig. 6.). Thus, any speed 

disturbance would affect each separate column in a uniform fashion. 

 

 Hypothesis 2: The deformation direction is perpendicular to the X-ray 

beam line (the vertical component of 𝒖 is null). This assumption is an ac-

curate approximation since the car can hardly strive from the conveyor dur-

ing scanning (Fig. 6.). 

 

Fig. 6. Top-view description of the HCVL system 



3.2 Method Outline 

Let’s formulate the 1D optimization problem. Given two images R and T, pose esti-

mation is performed by applying a rigid transform on T. For notation simplification, we 

keep using T to designate the moving image following this pre-processing warping. 

 

 We define x and y as the horizontal and vertical coordinates of  𝒙 ∈  Ω: 

 𝒙 =  (𝑥, 𝑦) (2) 

Similarly, the displacement field:  

 𝒖 =  (𝑢𝑥(𝑥, 𝑦), 𝑢𝑦(𝑥, 𝑦)) (3) 

Hypothesis 1 implies that 

 𝑢𝑥(𝑥, 𝑦) =  𝑢𝑥(𝑥)  (4) 

And Hypothesis 2 yields 

 𝑢𝑦(𝑥, 𝑦) = 0  (5) 

Eventually, combining (5) and (4) gives: 

 𝒖 =  (𝑢𝑥(𝑥), 0). (6) 

With an SSD distance and a regularizer of the form: 𝑆(𝒖) =
1

2
‖∇𝑢‖2

2, (1) becomes: 

 Find 𝒖 minimizing 𝐽(𝒖) = 
1

2
‖𝑻(𝒖) −  𝑹‖2

2 + 
1

2
𝛼‖∇𝒖‖2

2 (7) 

On the basis of (6), (7) turns to a one-dimensional optimization problem that can be 

solved via simple descent techniques. 

3.3 Numerical Resolution 

For a given column index x, (7) is equivalent to: 

 Find 𝑢𝑥(𝑥) minimizing 

 𝐽(𝑢𝑥(𝑥)) = 
1

2
‖𝑻(𝑢𝑥(𝑥)) −  𝑹‖

2

2
+ 

1

2
𝛼 ‖

∂𝑢𝑥(𝑥)

∂𝑥
‖

2

2

 (8) 

 

A first-degree descent scheme would be relevant for this 1D optimization problem 

(low complexity). We resort to the gradient descent method, in combination Armijo’s 

backtracking line search method [16]. We evolve the following equation with Dirichlet 

boundary conditions: 

 
𝜕𝑢𝑥(𝑥)

𝜕𝑡
= −∇𝐽(𝑢𝑥(𝑥)) 𝑓𝑜𝑟 𝑥 ∈ Ω ∖ 𝜕Ω 𝑤𝑖𝑡ℎ 𝑢𝑥(𝑥) = 0 𝑓𝑜𝑟 𝑥 ∈ 𝜕Ω (9) 



The gradient of 𝐽(𝑢𝑥(𝑥)) is computed from (8): 

 ∇𝐽(𝑢𝑥(𝑥)) = 
𝜕𝑻(𝑥+𝑢𝑥(𝑥))

𝜕𝑢𝑥
(𝑻(𝑥 + 𝑢𝑥(𝑥)) −  𝑹(𝑥)) −  α

∂2𝑢𝑥(𝑥)

∂𝑥2   (10) 

By abuse of notation: 𝑻(𝑥 + 𝑢𝑥(𝑥)) corresponds to the column of 𝑻at 𝑥 + 𝑢𝑥(𝑥).  

We note 𝑋 = 𝑥 + 𝑢𝑥(𝑥) such that 
𝜕𝑻(𝑥+𝑢𝑥(𝑥))

𝜕𝑢𝑥
=  

𝜕𝑻(𝑥+𝑢𝑥(𝑥))

𝜕X
, referring to the gradient 

of 𝑻 at 𝑥 + 𝑢𝑥(𝑥). We get the final expression: 

 ∇𝐽(𝑢𝑥(𝑥)) = 
𝜕𝑻(𝑥+𝑢𝑥(𝑥))

𝜕𝑋
(𝑻(𝑥 + 𝑢𝑥(𝑥)) −  𝑹(𝑥)) −  α

∂2𝑢𝑥(𝑥)

∂𝑥2  (11) 

A multi-scale approach is used to speed up the registration process and in order to 

avoid convergence at local minima. Thereby, the displacement 𝑢𝑥
(𝑝) obtained at level 

p gives a strong initialization for the displacement estimate 𝑢𝑥
(𝑝−1) for the finer level 

p – 1. The number of levels is fixed to 𝑙 = 4. 

Empirically, a smoothing parameter set to α = 0.5 for all scales yields accurate and 

stable results. The stopping criterion is analogous to the method described in section 

2.3 with a chosen threshold 𝜖 = 1. 

At the end, an estimate of 𝑻 transformed via the optimal displacement field u* is 

calculated using linear or cubic interpolation (both techniques give similar results in 

our case).  

3.4 Experimental Results on Scan Images 

Our method is applied on the example of section 2.4. Fig 7. displays T and R prior to 

rigid registration. In a first stage, a rigid transform is automatically computed using 

SURF [18] feature points matching and RANSAC filtering [19]. The transform applied 

on T gives a pose estimation between both images. See Fig. 8. for a visual description 

of alignment before and after pose estimation. This pre-processing step is often neces-

sary to rectify slight differences of car positioning or geometry variations between sep-

arate X-ray systems (at different sites). 

 

Fig. 7. (a) Empty reference of a vehicle front part; (b) Front part under inspection  



 

Fig. 8. (a) Overlay of both images before pose estimation; (b) Overlay following pose estima-

tion by rigid registration 

Our multiscale one-dimensional minimization scheme yields the following image 

Tfinal with the corresponding columnwise-constant displacement field u*(Fig. 9.). 

 

 

Fig. 9.  (a) Resulting image; (b) Displacement field; (c) Overlay of R and Tfinal 

After reaching convergence to global minima of the objective function (8), the resulting 

alignment shows the vanishing of initial major differences: the mirrors as well as the 

battery or the steering wheel align perfectly (Fig. 9.). Obviously, our method achieves 

the lowest SSD cost in comparison with the different methods tested (Fig. 10.). 



 

Fig. 10. SSD distances reached for each method (with its corresponding smoothing parameter) 

4 Conclusion 

This paper addresses the registration problem of top-view X-ray scans from two dif-

ferent vehicles of the same model. It especially aims at dealing with non-linear defor-

mations induced by possible speed variations of the vehicle during scanning. 

A simple and intuitive solution is described: in a first stage, a pose estimation be-

tween both scans is performed. Then, assuming that the field of displacement is 

columnwise-constant and parallel to the car’s motion, a one-dimensional optimization 

scheme is formulated. It is solved by well-known descent techniques in combination 

with Armijo’s backtracking method and a multiscale approach. Both visual and numer-

ical results presented in this paper demonstrate the necessity for our method as well as 

its high performances in terms of registration accuracy.  
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