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Abstract

A common approach in fingerprint matching algorithms
consists of minimizing a similarity measure between feature
vectors of both images, over a set of linear transformations
of one image to the other. In this work we propose the thin-
plate spline as a more accurate model for the geometric
transformations that arise in fingerprint images. In addi-
tion we show how such a model can be integrated into a
matching algorithm by means of a two-step iterative min-
imization with auxiliary variables. Such a method allows
to correct many of the false pairings of minutiae commonly
found by matching algorithms based on linear transforms.

1. Introduction

Forensic experts [10, 7, 6, 9] usually look for a suffi-
cient number of matching minutiae (i.e. branching points
in the ridge structure of a fingerprint) in order to determine
whether two fingerprint images correspond to the same per-
son. Automatic matching algorithms roughly follow the
same procedure, according to the dominant approaches re-
ported in the literature [3, 14, 4, 18, 13, 11, 12]. The main
difficulties for automating this task are still related to three
aspects:

1. Fingerprint images are usually very noisy, which
makes the minutiae detection task very difficult. Re-
cent reports [17, 1] on the performance of minutia de-
tection algorithms show a false negative rate ranging
between 2% and 35% and a false positive rate ranging
between 4% and 20%.

2. Hence matching algorithms have to deal with partial
(due to false negatives) and uncertain (due to false pos-

itives) information. In addition the correspondence be-
tween minutia points in both images is not known.

3. Finally, the main difficulty concerns the geometric dis-
tortion between several images of the same fingerprint.
This distortion is not necessarily linear, since the skin
can be deformed in a more or less elastic manner.

Despite the importance of this last observation most clas-
sical techniques for fingerprint matching [3, 14, 18] are
based on a rigid deformation model. In fact, the most com-
mon approach for obtaining a similarity measure between
two fingerprints, consists in defining a suitable distance
measure between two sets of minutiae, and then minimiz-
ing this distance over all possible rigid transformations and
possibly certain rescalings.1 Only recently [13, 11] did we
know of certain attempts to consider fingerprint matching
algorithms which rely on a non-rigid deformation model.
However, these algorithms use an elastic deformation model
only implicitly, since the non-rigid part of the deforma-
tion is found by a learning algorithm which imposes certain
smoothness to the warping function.

Here we deal with the deformation model explicity and
show the validity of a thin-plate energy as a model of the
kind of deformations that are present in fingerprint images
(section 2). We also show how such a model can be used
to automatically detect point correspondences more accu-
rately, when compared to rigid transformations (section 4).
Finally we present an algorithm to decompose the possi-
bly non-convex minimization into a series of easy-to-solve
quadratic minimization problems (section 5), and we give
several directions to further improve the proposed method
(section 6).

1Alternatively, certain authors considered rotation-, scale-, and/or
translation invariant distance measures between two sets of minutiae.
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2. Elastic matching with known point-
correspondences.

In order to validate the deformation model we shall pro-
pose, let us first consider a simplified matching problem,
where we assume that we are given complete and reliable
minutiae information. Consider the pair of fingerprint im-
ages shown in figures 1(a) and 1(b). They both correspond
to the same finger of the same person. A forensic expert has
marked the reliable minutiae in both images, as well as the
correspondences between these points whenever possible.
The images show a set of 40 corresponding minutiae that
were visible in both images.

Let’s denote by
���������	���
 ������������������������

the pairs of
corresponding minutiae. A valid deformation model should
reconstruct a plausible deformation � �"!$#&%('*)+%�'
which interpolates the point correspondences

������������,

, i.e.� �-� � 
 �.� ��0/ ���1�2����������� (1)

In our case we used the thin-plate spline model [16, 5, 2],
i.e., the interpolant � �4365�75�8�9 which minimizes the thin-plate
spline deformation energy::<;	=?> � � 
 � �@BADC ��EF� �HG 
?I EJ� �LK 
�
 (2)EF� � 
 � M(N 'O�N	P 'RQ ' I @ MSN '��N�P	N�T Q ' I MUN 'O�N�T '�Q ' (3)

The minimizer of equation (2) under the interpolation re-
striction (1) can be written in terms of the fundamental so-
lution V � P � T 
 �$WV � P ' I T ' 
 �XWV �ZY ' 
 �[Y '�\^]�_ ��Y ' 
 of the
biharmonic equation `F'LV �baHc�d�e dgf as:

� � P � T 
 � hjik �P T lm Ionqp (4)

where
hr�036s 7s 8O9 and

n �03�t 7t 8�9 are
@vu.w

and
@xu �

coefficient matrices, and
p ��� Vzy �������{� V(| 
 is an

� u �
column vector containing the values V � � V ��3 G K 9~} 3 G��Kg� 9 
 of
the fundamental solution translated to each data point point� � � 3 G �K�� 9 in the first image. The coefficients

h�� n
for the

interpolating minimizer are calculated by solving the linear
system of equations:� n ; I�� h ; �b� ;� ; n ; �[� (5)

where the matrices

�
,
�

and
�

are defined as:� ��� � � V ���	� } ��� 
 � if
���������

if
����� � (6)

� � i���k � P y T y� P ' T '...
...

...� P | T |
l����m �

(7)

� � M P � y P �' ����� P �|T �y T �' ����� T �| Q � (8)

where
� P � � T � 
 are the P	T coordinates of the minutia point

� �
,

and
� P �� � T �� 
 are the coordinates of the corresponding point�	��

in image 2. Finally the deformation energy
: � � 
 for the

minimizing interpolant can be calculated as:: � � 
 � n G � n ;G I�n K � n ;K (9)

Figure 1(c) shows the warped version of image 1, i.e.� yz� � and figure 1(d) shows a superposition of the warped
image 1 over the original image 2, i.e. y' ��� � y<� � 
UI � ' 
 .The latter shows that � correctly interpolates the non-linear
deformation since we can observe that the ridge structures
of both images coincide to a large extent.

For the sake of comparison, figure 1(e) shows the kind
of result that is obtained if � is restricted to be a rigid
deformation plus scaling. In this case the rigid transform� was computed in such a way that it respects the corre-
spondence between two special singularities that can be ex-
tracted with high reliability by automatic methods, namely
the core point (ridge ending in the center of the ridge struc-
ture) and the delta point (large-scale bifurcation point in the
lower-left corner).As it can be observed in figure 1(e), en-
forcing the correspondence between these two points results
in large errors in the position of minutia which are far away
from the core or the delta. In addition we can observe how
the ridge structures interfere with each other in the super-
posed image. This illustrates the need for an elastic defor-
mation model, as well as the validity of the proposed thin-
plate spline model.

3. Elastic matching with uncertain point-
correspondences.

As a first step towards the real problem (where point
correspondences are unknown), we shall consider here the
problem of uncertain point correspondences. Hence, rather
than minimizing the deformation energy (2) under the in-
terpolating restriction (1), we shall minimize the combined
energy:W:�;�=?> � � 
 � :�;	=�> � � 
?I�� |� ��� yJ� � ���	� 
 } � �� � '� � (10)
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(b) Image 2
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(c) Thin-plate warp with known correspon-
dences
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(d) Thin-plate warp with known correspon-
dences

Warped image 1 over image 2

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

(e) Linear warp

Warped image 1 over image 2
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(f) Thin-plate warp with uncertain correspon-
dences

Warped image 1 over image 2
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(g) Thin-plate warp with unknown correspon-
dences

Warped image 1 over image 2
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(h) Thin-plate warp with unknown correspon-
dences, 30% false negatives and 4% false pos-
itives

Figure 1. (a-b) Original images and their corresponding minutiae. (c) Image 1 warped by means
of a thin-plate spline, in such a way that minutiae coincide. (d) Superposition of the previous
warped image 1, with the original image 2. (e-h) Superposition of warped image 1 over image 2 for
different warps: (e) Rigid transform plus scaling, chosen to make core and delta points coincide;
(f) Thin plate spline, with relaxed interpolation restriction; (g) thin plate spline with unknown point
correspondences; (f) thin plate spline with unknown point correspondences, false positives and
false negatives.

37



where
�

is a certain Lagrange multiplier and
� �

is a measure
of the uncertainty of the point correspondence

�-�{���,�	�� 

.

Then, according to [15], the solution can be obtained in
the same manner as in the previous section, but replacing
the matrix

�
by
W� � � I y ��������	� _ � � 
 , and the resulting

minimal deformation energy becomesW:<;	=?> � � 
 � ��
�(� n G �� n ;G Ion K �� n ;K 
 (11)I ��� |��� y�� 5 c�� � f������� � �� �
In the absence of any information on the reliability of point
correspondences we set

� � � �
for all

�
. Figure 1(f)

shows the warp � that is obtained by minimizing (10) for� � �O� ���
. As it can be seen the result is more or less

“halfway” between the minimizer of
: ;�=?>

and the rigid
transformation. The largest errors occur in those regions
where the image is most deformed or the points were incor-
rectly positioned by the operator. Observe for instance the
two points near the core of the image. In image 1 they are
much far away than in image 2. While decreasing the first
term of the energy, an exact correspondence of these points
would highly increase the deformation energy.

4. Elastic matching with unknown point-
correspondences.

In general we do not know the exact point correspon-
dences. We only have a sequence

� � ��� y ��� ' ������� �,� | 

of minutiae in the first image, and a sequence

��� ��-�	�y �����' ������� �,�	� � 
 of minutiae in the second image. In such
a situation, we can search for a deformation function � of
minimal deformation energy (regularization term), such that
the distance between � �-� 
 and

���
is minimal (data fitting

term), i.e. we shall minimize:: � � 
 � :�;�=?> � � 
?I�� |� �^� y � � � �-�	� 
�
 (12)

� �! 
 � "�� �$#�%��� y e�&�&�& e � �  } � �� � 
 (13)

The data-fitting potential
�

is a function
"

of the distance
from the deformed point

 J� � �-� � 
 to the closest data point� ��
. For simplicity we used here

"��(' 
 �*) ' ' ' , but we may
consider e.g. the more robust

"��(' 
 � �$#�% �(+(� ) ' ' ' 
 in order
to reduce the effect of outliers, and reduce the computation
time as well (since operations become more local).

Before we explain how the minimization of (12) is
solved, let us first show some results. In a first simple case
(see figure 1(g)), we assume there are no false positives and
no false negatives. Both sequences

�
and
���

only contain
true information, but the algorithm has to find the corre-
spondences

���������	�� � 
 .
This correspondence is considered to be given by the �, _ �-#�%

in equation (13). In fact, if
� � � �-��� 
�
 �."�� � � ���	� 
 } �	�� � � 
(i.e. if

���� � is the closest data point to � �-� � 
 ), then we con-
sider that the match

��� � ������ � 
 was found by the algorithm.
In this example it turns out that minimization of (12) by
the method that will be explained in the next section,
yields only 1 incorrect match among the 34 available pairs,
whereas the rigid transformation shown in figure 1(e) yields
6 incorrect matchings.

As a second example we consider a more realistic situa-
tion, where we removed 30% of the minutiae of each image
independently (i.e. 11 out of 34), and added 4% of false
minutiae in each image (i.e. 1 minutia). This leaves 17
correct pairs of minutia in common, i.e. only half of the
pairs. The resulting transformation is shown in figure 1(h).
In this case 15 out of the 17 available pairs were matched
correctly, but we observe a total of 9 false matches: 2 in-
correctly matched pairs, 2 false matches due to the false
minutiae, and 5 false matches due to the fact that a match is
enforced even for those minutiae of image 1 which do not
have a corresponding minutia in image 2. In section 6 we
propose several ways to improve this preformance.

5. Two-step iterative algorithm.

The energy to be minimized in equation (12) may be
non-convex and extremely complex. Hence, we shall solve
the optimization problem, by means of an iterative two-step
algorithm, where each step is a convex and much simpler to
solve optimization problem.

Let / �S��� be the minutiae to be fitted in image 2, and
�

the minutiae in image 1. The purpose is to find a function� with low deformation energy, such that each transformed
minutia from image 1 0 � � � ��� � 
 lies close to some minutia/ � � in image 2. Let us rewrite equation (12) in terms of /
and 0 as

: � 0 
 � : ;	=�> � 0 
(Ib��� � � � 0 � 
 where the data-
fitting potential

�
depends on / �o��� as defined in equation

(13); and
:<;�=?> � 0 
 � :�;	=�> � � �Le 1 
 as defined in (12) being� �Le 1 the thin-plate spline interpolant such that � ��� 
 � 0 .

We now introduce an auxiliary variable 2 as follows::43�5�6 � 0 � 2 
 � : ;	=?> � 0 
 I � @ � � � 0 � } 2 � � ' (14)I � � � � y � 2 � 

Then, as shown in [8] minimizing

: � 0 
 is equivalent to
minimizing

:73�5�6
first on 2 and then on 0 , and both min-

imization problems become convex, provided
� y can be

properly chosen. In our case, since
� �! 
 �8"��('��( �� / 
�
 is

defined as a certain function
"

of the distance to the data
points / , it suffices to define

� y �( 
 �8" y �('��( �� / 
�
 , where" y can under certain hypothesis be expressed in terms of
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the conjugate function of
� G �' } " � P 
�
 , which in our case

becomes
" y �!' 
 � )) � y � �' .

The alternate minimization property described above
justifies the following two-step algorithm:

0. Initialization. 2 d � 0 d ��� �-� 

, �
�q�

. Here
�

is
a rigid transformation plus a scaling which maps the
corresponding core and delta points as explained at the
end of section 2, and in figure 1(e).

1. Data fitting: 2���� y � �, _ �$#�%	� : 3 5 6 � 0
� � 2 

2. Regularization: 0���� y � �, _ �$#�% 1 : 3�5�6 � 0 � 2���� y 

3. Iterate steps 1 and 2, incrementing � until conver-

gence.

Since the first term of
: 3�5�6

does not depend on 2 , the min-
imization in step 1 is equivalent to minimizing over 2 :: y � 0 � 2 
 � � � � �@ � 0 � } 2 � � ' I � y � 2 � 
�
 (15)

which is easy to solve, since it is piecewise quadratic on 2 ,
with one piece for each Voronoi cell of the set of points / .
Hence, a very efficient algorithm can be written.
Similarly, since the last term of

: 3�5�6
does not depend on 0 ,

the minimization in step 2 is equivalent to minimizing over0 : : ' � 0 � 2 
 � :�;�=?> � 0 
?I � @ � � � 0 � } 2 � � ' (16)

which is exactly the problem we solved in section 3.
Over the iterations we observe that very often false

matches found in step 1, are corrected in the next iteration,
thanks to the regularization in step 2. After a certain amount
of iterations (usually less than 10 in our experiments) the
process converges to a stable matching, and consequently0 remains stable. False matchings remaining in this final
state, most often confuse minutiae which are very close to
each other, which permits to keep the false match without
incrementing too much the deformation energy. In this ex-
ample the number of false matches decreases from 6 in the
first iteration, to 3 in the third iteration, 2 in the fifth and 1
after the seventh iteration.

6. Summary and Discussion.

In this work we showed the suitability of the thin-plate
spline model as a way to represent the kind of deformations
that can be observed between different samples of the same
fingerprint. In addition, we showed how such a deforma-
tion model can be effectively used, in order to improve the
performance of fingerprint matching algorithms, most often

based on rigid transformations.
Since this is only possible at the cost of a computationally
more expensive procedure, the proposed method is only in-
tended as a last-stage precise matching algorithm, that may
be used to safely reduce a candidate list previously gener-
ated by other algorithms which impose simpler geometric
constraints.

Even though the proposed algorithm performs well in
the absence of noisy data, in a realistic situation (where
there is a large number of false positives and false nega-
tives) the estimated deformation is still far from the correct
one, but still better than a rigid transformation. In order to
improve this performance many complementary directions
can be followed:
Adapting the data fitting potential

�
to ensure a one-to-one

partial mapping between / and 0 . The main difficulty may
be related to the existence of the corresponding potential� y , to be used in the two-step iterative algorithm.
Using a richer feature space to avoid incorrect minutia pair-
ings. In addition to the spatial position currently used,
feature detection algorithms can produce more information
like ridge orientation, curvature, width, minutia type, ridge
count between pairs of minutiae, local image quality, etc.
Weighted matching. The weight

� �
introduced in equation

(10) can be chosen as a function of local image quality as
proposed by [12]. These authors obtained significant im-
provements with respect to the non-weighted version, but
did not include an elastic deformation model.
Incremental processing. Instead of treating all minutiae at
once, we can accept point matches and compute the defor-
mation in an incremental manner, by processing the data
points in a spiral fashion around the core point, as proposed
in [13, 11]. Thus they exploit the higher reliability of the
correspondence between core points. Consequently each
accepted match is most likely sure, and no extra-iterations
are needed to undo false matches.
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