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Abstract. Recovery of 3-D data with simple parametric models has beenthe subject of many studies over the last ten years. Many have used thenotion of superquadrics, introduced for graphics in [4]. It appears, how-ever, that although superquadrics can describe a wide variety of forms,they are too simple to recover and describe complex shapes.This paper describes a method to �t to 3-D points and then track a para-metric deformable surface. We suppose that a 3-D image has been seg-mented to get a set of 3-D points. A �rst estimate consists of our versionof a superquadric �t with global tapering. We then apply the technique offree-form deformations, as introduced by [9] in computer graphics to re-�ne the estimate. We present experimental results with real 3-D medicalimages, where the original points are laid on an iso-surface. This is alsoapplied to give e�cient tracking of the deformation of the myocardium1 IntroductionOver the last ten years, many surface reconstruction problems have been formu-lated as the minimization of an energy function corresponding to a model of thesurface. Using deformable models and templates, the extraction of a shape is ob-tained through an energy composed of an internal regularization term and an ex-ternal attraction potential (data term), illustrated for example in [13, 6, 10, 12].Since the relevant surfaces in medical images are usually smooth, the use ofsuch models is often very e�cient for locating surface boundaries of organs andstructures, and for the subsequant tracking of these shapes in a time sequence.The advantage of deformable templates like superquadrics is their small num-ber of parameters to represent a shape. However, if superquadric shapes givea good global approximation to a surface, the set of shapes described by su-perquadrics is too limited to approximate precisely complex surfaces. Thereforethey were coupled with a deformable model in [12] to take into account localdeformations.? CEREMADE, U.R.A. CNRS 749, Université Paris IX- Dauphine, Place du Marechalde Lattre de Tassigny 75775 Paris CEDEX 16, France



The contribution of this work is twofold. First, we propose an algorithm for�tting data with a superquadric, based on [10] with some variations. Second, weimprove the shape extraction by introducing the use of free-form deformations(FFD), as introduced by [9] in computer graphics. The idea is to put our previoussurface, here a superquadric, in a rubber-like box and then to deform this box bymoving its control points. We solve an inverse problem to �nd the set of controlpoints which minimize the error in the displacement �eld on the whole object.FFD has also been successfully used by [11] to match anatomical 3-D surfaces.We show example results for 3-D medical images of the myocardium wherethe data set is an iso-surface. We also show an e�cient tracking of the deforma-tion of the myocardium.2 Superquadric FittingThis class of objects was introduced to computer graphics by A. Barr ([4]) andis an extension to 3-D of the superellipse. Their �rst use in computer graphicsand in vision is due to Pentland ([8]), followed by Bajcsy ([10]) and later byTerzopoulos and Metaxas ( [12]). A more complete description of Superquadricsand their use in Surface Reconstruction can be found in [3].2.1 De�nition of SuperquadricsSuperquadrics form a family of implicit surfaces obtained by extension of thefamiliar set of quadrics. They are obtained by spherical product (see [4]) of two2-D curves. The superellipsoid is the spherical product of the superellipse withitself. For a complete de�nition, see [2].2.2 Our Superquadric FittingIn our applications, the original data is a 3-D medical image which represents,for example, the myocardium or the head area. Interesting features can eitherbe edges extracted from the data, corresponding to a potential (gradient), or aniso-surface. We want to approximate this surface by a superellipsoid.To �t a superquadric to a set of data points, we presented in [2] a revisedversion of Solina and Bajcsy's Model of a superquadric �t. After initialization ofthe surface by an ellipsoid de�ned by the moments of inertia of the data, theymade least squares minimization the inside-outside function F for:E(A) = NXi=1 [(1� F (ai; �j ; '; �;  ; t))]2 : (1)We improved this approach by modifying the initialization, introducing globaltapering and using Conjugate Gradient Descent.3 Free-Form DeformationsThe previous �t gives a �rst approximation to the surface, but it is not su�cientlyclose to the data. The superquadric is correctly oriented and the three axes ofinertia already have the right size. The problem is that the set of shapes described



by superquadrics is too limited to describe complexmedical objects, in particularthe myocardium or brain. We conclude that we need a more complex model.In [1], we applied to surface �tting a tool called Free-Form Deformations(FFD) developed in computer graphics (see [9, 7]). This is a 3D-space deforma-tion and consists of including a surface in a box and deforming it as a 3D solid.Our choice was guided by the fact that we wanted to have a simple global modelat the end of the process.3.1 De�nitionFFD deforms solid geometric models in a free-form manner. It is independent ofthe nature of the object to be deformed. An analogy is to consider a rubber boxin which the object is situated. Control points are placed on a regular 3D grid inthe box. To deform the object, control points are moved, and the object followsaccordingly. In graphics and CADs, FFD are used to design complex shapes bysuccessively moving control points of the box to some place and thus retrievinga global deformation of the object.The forward algorithm used for graphics is based on trivariate Bernsteinpolynomials, and divided into two steps:1. Computation of the local coordinates of the object points in the frame de�nedby the set of control points.2. Displacement of the control points and estimation of the new position of theobject.See [1] for more details.3.2 The Inverse Problem : A two-step Iterative AlgorithmTo improve the precision of the initial superquadric �t to the data, the su-perquadric is embedded in a parallelepiped box and a displacement �eld betweenthe data and the model points is computed.The FFD algorithm presented in the previous section can be summarisedup like this: displacement of the control points permits the computation of adisplacementmap for any point. Here, we deal with the inverse problem.What we�rst determine is a displacement �eld on points of our surface. This displacement�eld joins a point of the model to the closest data point. The problem is then to�nd the displacement of the control points which minimizes the error betweenthe displacement �eld produced by the FFD and the given one.First Step : Computation of the displacement �eld. We need to asso-ciate with each point on the superquadric a data point M . The distance map iscomputed using a KD-tree algorithm (see [14] for example). As explained in [2],instead of taking the closest point on the data, we make it the other way :� First the distance map to the superellipsoid is computed. We thus �nd foreach data point the closest point on the superellipsoid.� Since some points on the superellipsoid have not been reached, a displace-ment value is computed by interpolation.



Second Step : Displacement of the control points. Wewant to �nd the newposition of the control points of our 3D box that best recovers the displacement�eld obtained in the previous step. For more details, see [1].Iterative Algorithm: Since after the control points have moved, we have anew position on the surface, the displacement �eld also changes, and we need toiterate these two steps to improve the quality of the approximation. This makesour algorithm somewhat resemble to the two-steps formulation of the B-splinessnakes using auxiliary variables (see [5]), but a di�erence here is that we havea 3D deformation using 3D Bernstein trivariate polynomials for our 2D surfaceembedded in the 3D box. We now give a description of the algorithm :� We begin with P0 as the regularly spaced control point box; X0 = BP0 rep-resents the set of points on the parameterization of the initial superellipsoid.� We then iterate the following steps :Step 1 : Displacement Field Computation : Xan = Xn + �XnStep 2 : Control Points Pn+1 Computation by Minimization of kBP�Xank2Xn+1 = BPn+1Test: computation of the least-square error jjXn+1 �Xnjj3.3 Including Regularization in the Inverse ProblemAs shown in �gure 1, the control points box may be very irregular. In conse-quence, it is unstable to study the evolution of these control points in a sequenceof images. In [11], the authors deal with a similar problem and introduce m-thorder stabilizers. In order to control explicitly the regularity of the box, we add aregularization term into the minimization of the second step. The minimizationcriterion now becomes :kBP �Xank2 + � NPXj=1Xj0 kPj � Pj0k2; (2)where j0 corresponds to the neighbours of P . The second term is an internalenergy corresponding to the insertion of zero-length springs between controlpoints. This has a regularizing e�ect on the box to an extent controlled by theweight �. This regularization term can be also written kDPk2 where D is amatrix which represents a discretized derivative of the control points position.We show results of this regularizing e�ect on the box in �gure 2 to compare tothe previous �gure 1. One drawback of the regularization is that the accuracy ofthe approximation decreases when the regularizing e�ect increases (see table 1).4 Experimental ResultsWe present some results obtained from applying the two-step algorithm to iso-surfaces extracted from medical data, followed by tracking results.



Fig. 1. Left: chaotic 5x5x5 box and the corresponding model. Right: the modelcompared to the original data.Regularization weight Least-square Error0.0001 0.0150650.001 0.0159350.01 0.0174890.1 0.021123Table 1. Least-square Error between original data and parametric model as afunction of regularization weight.4.1 Medical Data: Left Ventricle of the MyocardiumIn the following examples, the left ventricle of a myocardium was extracted froma time sequence of 3D SPECT images. Figure 3 was obtained with a 5 � 5 � 5box, the iterated algorithm and resolution using Singular Value Decomposition.These data are each composed of 6000 points, and the model is de�ned eachtime by 11 parameters for the superellipsoid and 5 � 5 � 5 3D points for thecontrol points box, that is less than 130 3D points. The information is reducedby a factor of 48.



Fig. 2. Regularizing e�ect. Top left: � = 0:0001. Top right: � = 0:001. Bottomleft: � = 0:01. Bottom right: � = 0:1.4.2 Tracking and detection of pathologyFigure 4 shows the result of the algorithm on the time sequence of the left ventri-cle. The model at time t0 was computed using the corresponding superellipsoid,but the models at time tn were computed using the previous ones (at timetn�1). One basic application, having a time sequence of 3D data represented byparametric models, is to compute the displacement of each point on the surfaceduring the sequence.For the left ventricle, this modelling can be e�cient for thelocalization of pathological zones: for such zones, surface points have a smalldisplacement, corresponding to necrosed areas on the ventricle.5 ConclusionWe presented a new approach to shape reconstruction applied to 3-D medicaldata. It is based on a �rst approximation giving the best �t with a superquadric



Fig. 3. Left: from top left to bottom right: left ventricle and the �nal result after1, 10 and 30 iterations with a 5x5x5 box. Right: Least-square Error betweenoriginal data and parametric model as a function of the number of iterations.

Fig. 4. Tracking the left ventricle with a 5x5x5 box. Top: the models. Bottom:the data.
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