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Unité de recherche INRIA Sophia-Antipolis

2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)
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Un modèle paramétrique déformable pourreprésenter des données 3D non structuréesRésumé : Représenter des données 3D non structurées par des modèles dé-formables a été le sujet de nombreux travaux lors de ces dix dernières années. Enparticulier, pour l'interprétation d'images médicales, les modèles déformables sontutiles pour disposer d'une représentation précise des structures anatomiques.Néanmoins, les modèles déformables généraux nécessitent la résolution de grands sys-tèmes linéaires lorsque l'on traite des images 3D de �ne résolution. L'avantage desmodèles paramétriques déformables comme les superquadriques est le petit nombrede paramètres pour décrire une forme ainsi qu'une meilleure robustesse en présencede bruit ou de données éparses. De plus, en ajoutant un nombre raisonnable deparamètres, les déformations de forme libre permettent d'obtenir une représentationplus précise et un champ de déformation volumique.Cet article introduit un tel modèle pour représenter des points 3D non structurésavec une surface paramétrique déformable basée sur l'ajustement d'une superqua-drique suivi par une déformation de forme libre pour décrire le ventricule gauchecardiaque. Nous présentons les détails mathématiques et algorithmiques de la mé-thode, ainsi que trois études expérimentales sur des images médicales de types divers.L'extension de la méthode pour suivre des structures anatomiques dans des imagesspatio-temporelles (données 4D) sera présenté dans un prochain article [9].Mots-clé : Modèles paramétriques, modèles déformables, superquadriques,splines 3D, déformations de forme libre, régularisation, reconstruction de surfaces.



31 IntroductionIn many computer vision and image understanding problems, it is importantto �t a deformable model to unstructured 3D data. In particular, in thelarge domain of medical image understanding, one often needs to solve �ttingproblems, in order to make surface reconstruction and get a precise compactrepresentation of anatomical structures. In this article, we introduce a parame-tric deformable model to �t unstructured 3D data. Although our model maybe used for surface �tting and reconstruction problems involving other typesof images, we are mainly concerned with applications for medical images, inparticular for the heart analysis.The extraction and representation of the left ventricular wall is an importanttopic, because cardiovascular diseases are still the �rst cause of mortality indevelopped countries. Medical image analysis can help the diagnosis of suchdiseases by assessing a number of quantitative and objective numerical parame-ters describing the behavior of the cardiac system. Several imaging techniquesproduce temporal series of three-dimensional description of the heart, i.e. 4D(3D+T) images. Among them, gated MRI, ultrasound images and nuclearmedicine images; also, the DSR (Dynamic Spatial Reconstructor), a fast CT-scanner developped at the Mayo Clinic, used to produce such 4D images.Because it is characteristic of the good health of the heart, the left ventriclemotion and deformation has been extensively studied by medical image pro-cessing groups as well as hospitals. Since its creation in 1989, our group haspioneered work in the use of deformable models to extract the left ventricle[4, 21, 5, 20, 23, 6, 3, 44, 13]. Other groups as well have also made va-rious contributions to understanding the complex deformation of the ventricle[2, 43, 1, 42, 18, 51].Over the last ten years, many �tting problems have been formulated as theminimization of an energy functional corresponding to a model of the surface[32, 14, 38, 57, 23, 40, 27]. Although previous approaches based on general de-formable surfaces give satisfactory results, they involve large linear systems tosolve, in particular when dealing with high resolution 3D images. This is whywe investigate in this article the introduction of adequate parametric modelsto describe surfaces in 3D images.The advantage of parametric deformable templates, like superquadrics or hy-



4perquadrics [60, 53, 35], is their small number of parameters to represent ashape. However, if superquadric shapes give a good global approximation to asurface, the set of shapes described by superquadrics is too limited to approxi-mate precisely complex surfaces. In [58, 19], di�erent approaches are used tore�ne the initial approximation.In this article, we introduce a deformable superquadric model based on a su-perellipsoidal �t followed by a free form deformation (FFD) to describe theleft ventricle. We therefore use the a priori information that the shape of theleft ventricle ressembles an ellipsoid deformed by a smooth transformation,and limit strongly the number of parameters necessary for this representation.We also increase the robustness of the �t in the presence of noise or sparsedata points. Other approaches for the segmentation of the left ventricle usingparametric deformable models include [58, 59, 45].After a description of the parametric model in Section 2, we explicit the de-tails of our �tting algorithm, both for the superellipsoid model and for theFFD computation (Section 3). We then present two ways of controlling ex-plicitly the regularity of the model (Section 4). Finally we show in Section5 three experimental studies which demonstrate the e�ectiveness of this ap-proach to capture the 3D shape of the left ventricle in a various number of 3Dimages, with a reduced number of parameters. The temporal tracking of theseparameters will be described in a companion article [9].2 Fitting 3D data with a superquadricSuperquadrics have been de�ned by A. Barr [11]. They are an extension of thequadrics family, based on the already old notion of superellipse [30]. In the �eldof computer graphics and CAD/CAM, this new family of parametric shapeshas been widely used. In computer vision, their �rst use is due to A. Pentland[47], followed by many other authors [7, 16, 52, 28, 29, 48, 53, 33, 41, 34].As for ordinary quadrics, there are four kinds of superquadrics (provided thatone considers torus as a special quadric): superellipsoid, superhyperboloid withone or two sheets, supertorus. In the following, we will only consider the caseof superellipsoids. Indeed, the family of surfaces described by superellipsoids isthe most adapted for the representation of the anatomical structures in which



5we are interested, and equations are very similar for the three other kinds ofsuperquadrics.We �rst recall the de�nition of superellipsoids, then we introduce a new para-meterization which gives a uniform distribution of points on the model surface.We will then describe the method to �t 3D data with these surfaces and givea geomtric interpretation of the criterion of �t.Additional details are presented in Appendix A.2.1 De�nition of superquadricsSuperquadrics form a family of implicit surfaces obtained by extension of usualquadrics. Superellipsoids are de�ned by the implicit equation:0@ � xa1� 2�2 + � ya2� 2�2! �2�1 + � za3� 2�11A �12 = 1: (1)The natural parameterization, coming from the spherical one, can be written:x(�; !) = 264 a1 cos�1 � cos�2 !a2 cos�1 � sin�2 !a3 sin�1 � 375 ; ( ��=2 � � � �=2�� � ! < � (2)The implicit equation of the superellipsoid permits to de�ne an inside-outsidefunction F : F (x; y; z) = 0@ � xa1� 2�2+ � ya2� 2�2! �2�1+ � za3� 2�11A �12 :Superquadrics are real mathematical solids. Therefore, the values of F de�ne3 distinct regions of the 3D space:8><>: if F (x; y; z) = 1 ; (x; y; z) is on the surface;if F (x; y; z) > 1 ; (x; y; z) is outside;if F (x; y; z) < 1 ; (x; y; z) is inside:
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Figure 1: Examples of superellipsoids: a wide variety of shapes.



72.2 Regular parameterizationThe previous parameterization (Eq. (2)) has the advantage, for CAD/CAMapplications, to supply more points in large curvature areas (see Figure 2).But, to �t a set of 3D points with a superellipsoid, it is better to have amore uniform distribution of the points on the surface. Vemuri and al. [59]presented a solution to this problem by the resolution of a di�erential equation.We propose a less expensive solution.Let us �rst consider the parameterization of a sphere in spherical coordinates:8><>: x = cos � cos! ; ��2 � � � �2y = cos � sin! ; �� � ! < �z = sin �By a constant step discretization grid of [��2 ; �2 ]� [�� ; �], the points on thesphere are regularly positioned. It is then enough to project this set of pointsfrom the sphere to the superellipsoid to get a more uniform distribution of thepoints on it.This is done in two steps:� From the sphere to the ellipsoid:xe = a1 x ; ye = a2 y ; ze = a3 z� From the ellipsoid to the superellipsoid:xs = � xe ; ys = � ye ; zs = � zeReplacing x, y and z by xs, ys and zs , in Eq. 1, we obtain an expression of� as a function of � and !:� = "�j cos! cos � j 2�2 + j sin! cos � j 2�2 � �2�1 + j sin � j 2�1 #� �12We then obtain a new parameterization of the superellipsoid by the computa-tion of �; xs, ys and zs for each value of the grid on the domain [��2 ; �2 ]�[�� ; �].The points are then regularly spaced on the surface (see Figure 2). Remarkthat the computation is more costly than for the natural parameterization: 2additions, 3multiplications and 1 power for each point. However we now consi-der this parameterization of superellipsoids, to get a more uniform distributionof the points on the surface.
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Figure 2: Left: curvature-dependent parameterization. Right: uniform para-meterization.2.3 FitThe use of superquadrics for the analysis of scenes in computer vision was�rst introduced by Pentland [47]. He proposed a heuristic approach based ona search over the whole parameter space for the best value of the goodness-of-�t criteria. Since this approach is computationally very expensive, laterauthors prefered iterative algorithms, in particular, Solina and Bajcsy haveused superellipsoids for the approximation of 3-D objects [7, 52, 53]. Our�tting algorithm is inspired by their work.Least squares minimization:Suppose that the data that we want to �t with the superellipsoid are a set of3D points (xd; yd; zd); i = 1; : : : ; N . The goal of the algorithm is to change theeleven parameters to �nd the values for which most of the 3D points are closeto the surface of the model. In the general case, there will not exist a set ofparameters for which the model perfectly �ts to the data, because the shapes



9which we are interested in are more complex than superellipsoids. Therefore,the problem has to be formulated as a least-squares problem. Now, a pointon the surface of the superellipsoid satis�es bF = 1 (this function correspondsto the inside-outside function F after a rigid transform, see Appendix A),therefore we can search for the minimum of the following energy:E(A) = NXi=1 h1� bF (xd; yd; zd; a1; a2; a3; �1; �2; '; �;  ; t)i2 : (3)The derivatives of E with respect to the eleven parameters of the superellipsoidcan be explicitly computed. The minimum of the energy is computed byusing the algorithm of multidimensional conjugate gradient method [49]. Thismethod localizes the minimum of a function only with the computation of its�rst derivatives, and insures a fast convergence. Figure 3 represents the result

Figure 3: Left: Synthetic 3D data. Right: Fit with a superellipsoid.of the �t of a superellipsoid on a synthetic set of 3D points (three crossingsuperquadrics deformed by a global tapering, see [12]).



102.4 Geometric interpretationThe exact computation of the Euclidean distance between a 3D point and asurface is very expensive and usually an approximation is computed by useof iterative �lters [15, 26]. In this section, we detail two analytic expressionsof the approximation of the distance between a point and an implicit surface.The �rst one provides a geometric interpretation of the least-squares criterionwhich is used to �t the data with a superellipsoid.
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Figure 4: Left: Approximation of the Euclidean distance between a point andthe superellipsoid. Right: Two ways to compute the closest data point to M .� Intrinsic approximation:Let us consider a superellipsoid in its intrinsic local frame (Eqs. (2) and(1)). Let M = (x; y; z) be a data point. The line joining the center Oof the local frame and M intersects the superellipsoid surface at M0 =(xM0 ; yM0 ; zM0) (see �gure 4). We want to calculate the distance kM0M k.Since O, M0 and M are on a same line, we can write : ��!OM0 = ���!OMwith � > 0. Therefore we have (xM0 ; yM0; zM0) = (�x; � y; � z), and sinceF (�x; � y; � z) = � F (x; y; z), with F (M0) = 1, we obtain the value of



11�: � = 1F (x; y; z) :We then deduce the following:8>>>>>><>>>>>>: kM0Mk = j1� �j kOMk= �����F (x; y; z) � 1F (x; y; z) ����� kOMkkM0Mk = j1��� j kOM0k= jF (x; y; z) � 1j kOM0kAnd: (F � 1)2 =  kM0M kk OM0 k !2 =  k OM kk OM0 k � 1!2:This gives a geometric interpretation of the least-squares criteria as anintrinsic homothetic characteristic. This approximation is always greaterthan the exact Euclidean distance d = kMP k, as one can see in Figure 4.� First order approximation:We also have an approximation of d when the data point M is close toits projection P on the superellipsoid.d � j F (M) � 1 jk rF (M) k (4)It is also possible to de�ne a more precise approximation that is boundedas shows Taubin [56], but it is computationally more expensive.3 Re�nement of the �t with free form defor-mationsAfter the �t with a superellipsoid, we have a parametric representation of the3D data. The model is correctly oriented with respect to axes of inertia of thedata, and the 3 axes already have the good size. But it is not close enough tothe data, because the set of shapes described by superellipsoids is too limited



12for the description of complex structures such as the anatomical ones, e.g. thecardiac ventricle.So we have to re�ne this representation. We decided to associate to the super-ellipsoid model a global volumetric deformation called free form deformation(FFD). It is a tool devoted to the deformation of solid geometric models ina free-form manner. FFDs can also deform all kinds of surfacic primitives:planes, implicit surfaces, quadrics, superquadrics.The main interest of FFDs is that the resulting deformation of the object isjust de�ned by a small number of points, instead of the displacement of everymodel point. This typical feature will allow us to represent complex 3D datasets by parametric models de�ned by a few parameters.In the next three sections, 1. we explicit the de�nition of FFDs, 2. we ex-plain how to use them to re�ne the superellipsoid representation by solving aninverse problem, 3. we �nally present an iterative two-step algorithm.3.1 De�nition of free form deformationsFFDs were introduced by Segerberg and Parry [50] in computer graphics. Ananalogy, to understand FFDs, is to consider a rubber-like box in which theobject that we want to deform is embedded. To deform the object, one justneeds to deform the box, and the object follows in an way similar to an elasticparallelepiped the volumetric deformation of the box. FFDs became verypopular in the �eld of CAD/CAM, essentially because the object deforms in avery intuitive way with respect to the deformation transmitted to the box.More precisely, FFDs are an application from IR3 to IR3, de�ned by the tensorproduct of trivariate Bernstein polynomials. The use of IR3 to IR3 applicationsalready appears in a paper from A. Barr [12] on speci�c regular deformations,namely for twisting, bending and tapering geometric solids.The principle of FFDs is as follows: the object to be deformed is embedded ina 3D box. Inside this box, a volumetric grid of points is de�ned, which linksthe box to the object (by the previously de�ned polynomial which de�nes thedeformation function). The box is then deformed by the displacement of itslattice, and the deformation is transmitted to the object with the deformationfunction (see Figure 5).Several extensions of FFDs were published. In particular, Coquillart [24, 25]
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Figure 5: Free form deformations in computer graphics. Top left: objectembedded in the initial box of control points. Top right: initial box. Bottomleft: deformed box. Bottom right: resulting deformed object in the deformedbox.



14replaced the trivariate Bernstein polynomials (associated to Bezier curves) bycubic B-splines to de�ne the deformation functions, and mainly expanded thenotion of parallelepipedic box to free form grids of control points; that permitsto be closer to the object to be deformed. Let us quote also Griessmair et al.[31], Chang et al. [17], who propose a generalized De Casteljau algorithm tocompute the model deformed by an FFD, and Lamousin et al. [39] who useNURBS (non uniform rationnal B-splines) as deformation functions.We decided to use the original de�nition of FFDs [50]. The motivation of thischoice is essentially practical. Actually, the use of Bernstein polynomials asdeformation functions, and the use of parallelepipedic boxes to de�ne grids ofcontrol points insures a fast computation of FFDs and gives good results forthe representation of medical 3D data.The FFD formulation is divided into two steps:1. Computation of the local coordinates of the object points in the framede�ned by the box of control points.2. Displacement of the control points and estimation of the new position ofthe deformed object.The corresponding equations are presented in Appendix B. An importantcharacteristic of FFDs is that a parametric surface remains parametric afterdeformation. A complete description of FFDs can be found in [50] and [46].Figure 5 is an illustration of FFDs.3.2 Solving the inverse problemThe superellipsoid �t provides a �rst parametric approximation of the set of3D data, which is often a crude approximation of the original data points set.We want to use FFDs to re�ne the representation of the data we obtained withthe superellipsoid. The main interest of FFDs is that the resulting deformationof the object is just de�ned by the position of the deformed box, instead ofthe displacement of every model point. This typical feature will allow us torepresent complex 3D data sets by a few parameters, and we will be able toreach compression ratios of the order of 50.Solving the inverse problem will allow us to deform the superellipsoid with



15respect to the data. Hsu et al [37] deal with a simpli�ed version of this problemin the �eld of CAD/CAM. Their problem was to be able to directly manipulatepoints of a model deformed by FFDs.3.2.1 Computation of the deformation functionFirst, we need to de�ne a parallelepipedic box which contains the original su-perellipsoid. To estimate the size and orientation of this box, we use 6 of the 11parameters which characterize the superellipsoid. The sizes a1; a2; a3 accordingto the 3 axes of inertia de�ne the size of the box, and its orientation is givenby the coe�cients of the rigid transform '; �;  ; tx; ty; tz of the superellipsoid.We then create the volumetric grid of (l + 1)(m+ 1)(n + 1) control points inthe box. Eq. (17) can be rewritten:8><>: x(Pijk) = a1(1� 2 il);y(Pijk) = a2(�1 + 2 jm);z(Pijk) = a3(1� 2 kn);if we choose as the local frame origin, the point X0 with coordinates(a1;�a2; a3). The application of the rigid transform �nally leads to the correctbox.Eq. (18) of Appendix B, which links control points Pijk to model points X,can be written in a matrix form:X = BP ; (5)where B is the deformation matrix ND�NP (ND: number of points on thesuperellipsoid, NP : number of control points = (l+1)(m+1)(n+1)), P is amatrix NP � 3 which contains coordinates of the control points Pijk, and Xa matrix ND � 3 with coordinates of the model points.The grid of control points being de�ned, it is su�cient to compute the localcoordinates of the superellipsoid points to get the deformation matrix B.Actually Eq. (5) corresponds to three separate linear systems, one for eachcoordinate. Since the matrix of the three systems is the same, we will fromnow on consider that this equation stands for the �rst coordinate of points (Xand P column vectors).



163.2.2 Evaluation of a displacement �eld between the superellipsoidand the dataWe need to evaluate a displacement �eld between the superellipsoid and thedata (we suppose again it is a set of 3D points). Figure 4 represents an over-simpli�ed section of the approximation of data D by a superellipsoid S. Topoint M , we want to associate its closest point on D. There are two candi-dates, P and P 0. To get the best approximation of the data D, it is better toassociateM to P . This choice is still valid for other kinds of data, in the sensethat data will always have a more complex shape than their approximation bya superellipsoid.A usual technique consists in the computation of the data distance map, andthen, for each superellipsoid point, search its closest point on D. In this case,all the displacement vectors will be directed towards the normal vectors to thedata. Thus M will be associated to P 0.On the other hand, if we compute the distance map of the superellipsoid, and,for each data point, search its closest point on S, then the displacement vectorswill be directed towards the normal vectors to S, and M associated to P . Butsome points of the superellipsoid may not be assigned to a closest point. Inthat case, a displacement vector is computed by interpolation.The distance map is computed using an algorithm based on KD-trees (see forexample [61]).3.2.3 Deformation of the box of control pointsWe now want to deform the superellipsoid toward the data, by deforming thebox of control points.If we write �X for the displacement �eld previously computed, the problem wehave to solve is equivalent to the resolution of the linear system (X + �X) =B(P + �P ), which means, using Eq. (5):�X = B�P ; (6)where �P is the variation of the position of control points.As we said at the beginning of section 3, our goal is to represent data of impor-tant size by a parametric deformable model that will be compactly described.This is why the linear system (6) will always be over-determined: the number
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Figure 6: From the superellipsoid to the �nal model. Left block: syntheticdata. Right block: medical data. For each block: Top left: data. Top right:superellipsoid �t and initial box of control points. Bottom left: displacement�eld between data and the superellipsoid. Bottom right: �nal model afterminimization of the displacement �eld.



18ND of superellipsoid points is always much larger than the number NP ofcontrol points. Therefore there is no exact solution for this problem. It isnevertheless possible to �nd the best solution in a least-squares sense. So wewant to solve the problem:minP kBP �Xk2 � min�P kB�P � �Xk2 (7)We use a minimization algorithm based on the Singular Value Decomposition(SVD) of matrix B.3.3 Iterative two-step algorithmThe resolution of problem (7) leads to a new box of control points, and there-fore, by the application of the deformation matrix (Eq. (5)), to a representa-tion model of the data which is more accurate than the initial superellipsoid.Then one can �nd again a displacement �eld between this model and the data,and solve again problem (7). Finally, to represent 3D data with a parametricdeformable model, we use an iterative two-step algorithm:� Let P 0 be the parallelepipedic box of control points; X0 = BP 0 repre-sents the set of points of the initial superellipsoid.� We iterate the following two steps:Step 1 : Computation of the displacement �eld �Xn such as:Xan =Xn + �XnStep 2 : Computation of the control points P n+1 by minimizationof kBP �Xank2Computation of the deformed model: Xn+1 = BP n+1Stop test: computation of the least-squares errorkXn+1 �XnkThis algorithm is similar to the formulation of the B-splines snakes with auxi-liary variables (see [22]). An essential feature of this approach is that we usea volumetric deformation to deform a surface shape.
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Figure 7: Displacement �eld of the synthetic example. Left: between thesuperellipsoid and the data. Right: between the �nal model (box of size 5 �5� 5) and the data.



20Figure 6 (left block) is a detailed example of the complete algorithm applied onsynthetic data. Figure 7 represents the associated displacement �elds betweenthe model and the data, before and after FFDs. Figure 6 (right block) is adetailed example of the complete algorithm applied to medical data. Remarkthat the �nal model is totally de�ned by the following parameters:� 11 parameters to describe the superellipsoid �tted to the 3D data.� NP control points to describe the volumetric deformation applied to theinitial model.From a practical point of view, the number of data points varies between 5.000and 20.000, and we use boxes of size 5�5�5, which means 125 control points.So the representation of those data by the model allows a compression ratiobetween 40 and 150.3.4 Reconstruction from sparse dataUsing a parametric model to represent 3D data permits to increase the robust-ness of the �t in the presence of sparse data. Figures 8 and 9 show the power ofthe model to retrieve a shape using only sparse data. The �rst image was ge-nerated by intersection of the data showed in Figure 6 (right block) with threeorthogonal planes (600 points vs. 6000 points). This is an image that couldhave been generated by three ultrasound images with di�erent directions. Thesecond image was generated by a uniform subsampling of the same data (900points vs. 6000 points). This uniform grid of sparse 3D points could be issuedfrom tagged MRI. The shape constraint of the model enables to reconstruct acomplete surface which is similar to the model computed from the completedata. With a parametric model, there is a strong global regularity, contraryto general deformable models.4 Regularization of the modelAs shown in the upper left image of �gure 10, the control points box may bevery irregular. So it becomes di�cult to infer quantitative informations onthe model deformation from the con�guration of those control points. It the
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Figure 8: Reconstruction from sparse data (three orthogonal planes). Left:data. Right: �nal model (box of size 5� 5� 5).
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Figure 9: Reconstruction from sparse data (uniform subsampling of 6). Left:data. Right: �nal model (box of size 5� 5� 5).



23reason why we will try to explicitly control the regularity of the deformation.We study two possible approachs:1. Control the norm of the control points displacement with the SingularValue Decomposition of the deformation matrix B.2. Add a regularizing term in the least-squares criterion (7).FFDs have also been used to solve some matching problems by Szeliski andLavallee [54, 55]. To impose a priori regularity constraints on the deformationparameters, they use m-order stabilizers.4.1 Using the singular value decompositionThe linear system (Eq. (5)) is solved using Singular Value Decomposition [49].This decomposition can be written:B = U :W :V T ; (8)where U and V are orthogonal matrix, and W is diagonal. It can be shownthat matrix V :W�1:UT is the pseudoinverse of B. The elements of W arethe nonvanishing singular values of B.By computing the pseudoinverse of B using only the largest singular values(the largest elements ofW ), we control the norm of the solution of (5). Resultsof this control are shown in �gure 10 with a 5 � 5 � 5 box. Figure 11 showsthe e�ect of this control on the approximation accuracy.4.2 Using a regularizing termBy adding a regularizing term, the minimization criterion becomes:kBP �Xank2 + � NPXj=1Xj0 kPj � Pj0k2; (9)where j 0 corresponds to the neighbours of P . The second term is an internalenergy corresponding to the insertion of zero-length springs between controlpoints. This has a regularizing e�ect on the box to an extent controlled by the
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Figure 10: Regularization with SVD (from left to right and top to bottom, thenumber of diagonal terms is decreasing). The model size changes between theexamples are due only to rescaling, the real size is the same).
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Figure 11: Left: Approximation error between the models and the data, witha decreasing number of diagonal terms. Right: Deformation of the box ofcontrol points, with a decreasing number of diagonal terms.
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Figure 12: Norm of the control points box deformation versus least-squares ap-proximation error between the models and the data. The 2 curves correspondto a regularisation with SVD or with a regularizing term.



27weight �. This regularization term can be also written kDPk2 where D is amatrix which represents a discretized derivative of the control points position.Figure 12 represents the compared e�ects of the two regularisations. Moreprecisely, we represent for each of the two methods the correlation between theleast-squares approximation error and the norm of the control points box defor-mation. This �gure shows that the two regularisation methods are equivalent.



285 Application to the representation of 3D me-dical dataWe present in this section applications of the algorithm on 3D cardiac images.Those images have been obtained with nuclear medecine (SPECT images) andvolumetric scanner X (Dynamic Spatial Reconstructor - Mayo Clinic).The SPECT images (Single Photon Emission Computed Tomography) are ob-tained by the measure of the electromagnetic radiation coming from radioactiveisotopes injected in the human body. This kind of images permits to get infor-mations about the metabolic behavior of organs. There are functional images.The SPECT MIBI image (with corresponds to a new myocardial perfusiontracer, technium 99m MIBI) is a volume of 64� 64� 64 voxels. The SPECTimage is a volume of size 64� 64� 21.The DSR image has a very good resolution (98�100�110 for a voxel of 0.926mm3). It was obtained by injection of a contrast product in the ventricle,which allows to distinguish clearly the cavity.The 3D original data are visualized as a series of 2D cross-sections (accordingto the Z axis) on Figures 13 and 14.
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Figure 13: 3D images of the left ventricle (order of cross-sections: from leftto right and from top to bottom). Top: SPECT MIBI - SOPHA Medical.Bottom: SPECT - FOCUS Medical.
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Figure 14: 3D image of the left ventricle (order of cross-sections: from left toright and from top to bottom). (Scanner X - DSR).



31Morphological segmentation of the dataIn order to get a set of 3D points which corresponds to the anatomical structurethat we want to study (epicardium or endocardium or midwall of the cardiacleft ventricle), and therefore �t our model on this set of points, we have tosegment the original 3D data. As one can visually remark on Figures 13 and14, this is not an easy task. The SPECT images are very noisy, and, on theDSR image, the segmentation of the external wall of the ventricle (epicardium)cannot be done with a simple thresholding.To obtain an accurate and robust segmentation, we must combine threshol-ding with mathematical morphology and connected components analysis (as inHoehne [36]). We �rst choose a threshold which grossly separates the ventricle(high values in SPECT and DSR images) from the rest of the image. Then wechoose the largest connected component in the resulting binary image, and per-form a equal number of erosions and dilations (morphological closings). Thislast operation is necessary to bridge little gaps (in particular for the epicardiumon the upper part of the DSR image) and smooth the overall segmentation.Finally, the extraction of an isosurface from that last image provides the setof 3D points that we need as input for the complete reconstruction algorithm.Results of those operations are presented on Figures 15, 16 and 17. For acorrect estimation of the quality of those segmentations, we superimposed thesegmented surface on the image (we present cross-sections along the Z axis).Fit of the modelWe applied on those data points sets a parametric model de�ned by a box ofcontrol points of size 5�5�5, and the 11 parameters which describe the initialsuperellipsoid. We used the iterative two-step algorithm detailled above (seesection (3.3)), with 30 iterations. The results are presented on Figures 15, 16and 18 (cross-sections along the Z axis).An important characteristic of FFDs is their volumetric aspect: each spacepoint is submitted to the deformation coming from the trivariate tensor pro-duct of 3 Bezier curves. Therefore, it is possible to reconstruct several surfacessimultaneously with the deformable parametric model that we presented. Ourmodel then gives a natural estimation of the deformation of any point includedin the volume between the two surfaces.
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Figure 15: Segmentation and representation of the epicardium (external wallof the ventricle) for the 3D image of the left ventricle (SPECT MIBI). Top:isosurface superimposed to the image. Bottom: reconstruction by the model.
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Figure 16: Segmentation and representation of the epicardium (external wall ofthe ventricle)for the 3D image of the left ventricle (SPECT - FOCUS Medical).Top: isosurface superimposed to the image. Bottom: reconstruction by themodel.
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Figure 17: Segmentation of the epicardium and the endocardium (external andinternal walls of the ventricle for the 3D image of the left ventricle (Scanner X- DSR).
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Figure 18: Reconstruction of the epicardium and the endocardium by themodel. The 2 surfaces are reconstructed separately.
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Figure 19: Simultaneous reconstruction of the epicardium and the endocar-dium by a single model.



37From the segmented original image 17, we �tted separately 2 superellipsoids,then computed the respective displacement �elds on the endocardium and theepicardium. We used a single box of control points to deform simultaneouslythe 2 models. The result is presented on Figure 19. One can remark that theendocardium reconstruction is not as good as on Figure 18, when the modelswere computed separately. This is because the amplitudes of the displacementvectors for the epicardium are much larger than for the endocardium. The-refore, the 3D deformation function tends to smooth the internal wall of theventricle. On the other hand, we now have a single volumetric deformationto measure the global position of both the epicardium and endocardium sur-faces. The use of non uniform grids of control points (see works of Szeliski andLavallee [54, 55]) would yield to a better precision for each model.Visualization of the data and model surfacesThe corresponding surfaces of the previous images are shown in this section.Figure 20 shows three di�erent views of the SPECT MIBI data and of the �gure15. Figure 21 corresponds to the SPECT data and to Figure 16. Figures 22(two di�erent views) and 23 correspond to the DSR data and respectively toFigures 18 and 19.CompressionThe isosurfaces obtained by morphological segmentation are composed respec-tively of 6000 (SPECT MIBI, Figure 20), 1000 (SPECT, Figure 21) and 20.000(DSR, Figure 22) 3D points.With the representation of those data by a parametric model de�ned by 1303D points, we reduce the information which is needed for the description of theventricles by a ratio of 46, 7.7 and 77 respectively for SPECT MIBI, SPECTand DSR data. Note that for the simultaneous computation of one model forthe epicardium and endocardium (DSR), we get a compression ratio of 154.The two diagrams of �gure 24 represent the evolution of the least-squares er-ror kBP �Xk versus the number of iterations as well as the evolution of thedeformation of the box of control points kP n+1 � P nk (each curve representsa di�erent volume of data).
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Figure 20: Left: isosurface from the segmentation of SPECT MIBI data(6000 points). Right: representation by the parametric model (de�ned by130 points). Compression ratio: 46. (3 view points)
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Figure 21: Left: isosurface from the segmentation of SPECT data (1000points). Right: representation by the parametric model (de�ned by 130points). Compression ratio: 7.7.
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Figure 22: Left: isosurfaces (endocardium and epicardium) from the segmen-tation of DSR data (10.000 points for each surface). Right: representation by2 parametric models computed separately (each model de�ned by 130 points).Compression ratio: 77. (2 view points)
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Figure 23: Left: isosurfaces (endocardium and epicardium) from the segmen-tation of DSR data (10.000 points for each surface). Right: simultaneousrepresentation of the 2 surfaces by a single model (de�ned by 130 points).Compression ratio: 154.
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Figure 24: Left: Evolution of the least-squares approximation error betweendata and the models versus the number of iterations (the 4 curves correspondto 4 di�erent models). Right: Evolution of the deformation of the box ofcontrol points versus the number of iterations (the 4 curves correspond to 4di�erent models).



436 ConclusionWe presented a new approach to shape reconstruction applied to unstructu-red 3D data. It is based on a �rst approximation giving the best �t with asuperquadric model. This is followed by a two-step algorithm for re�ning thedetails of the previous shape by making use of free-form deformations. Thedata are a set of points in a 3-D image, and the closest point to data is usedfor the de�nition of a displacement �eld. We also presented two methods tocontrol the regularity of the control points box de�ning the free-form deforma-tions, using singular value decomposition or adding a regularizing term in theprevious algorithm. The main advantage of this approach is the compactnessof the description of a complex shape, and also the robustness of the �t evenin the presence of outliers or sparse data..Experimental results have been shown for a various number of 3D cardiacimages to capture the 3D shape of the left ventricle.Future work will study the use of this compact and robust model for the dy-namic analysis of 4D temporal series of 3D images of the beating heart. Thiswill be presented in a companion paper [9].AcknowledgmentsWe would like to thank Serge Benayoun, Alexis Gourdon and Jérôme De-clerck who provided us with substantial help through fruitful discussions andGrégoire Malandain for his judicious remarks about segmentation with mor-phological operators. Thanks to Dr. R. Robb and D. Hanson, BiomedicalImaging Resource, Mayo Foundation/Clinic, to Sopha Medical and to FocusMedical for the data. This work was partially supported by Digital EquipmentCorporation.



44A Additional details about superquadricsA.1 De�nitionSuperquadrics are obtained by the spherical product (see [11]) of two 2D curves.The superellipsoid is the spherical product of the superellipse with itself. Thecurve de�ned by the implicit equation:�xa� 2� + �yb� 2� = 1 (10)is a superellipse. A natural parameterization is:( x = a cos� � ; �� � � < �y = b sin� �For simpli�cation in the formulation in the above equation and the followings,the powers of the cos; sin and tan functions are to take in the following sense:u� = sign(u) j u j�= u j u j��1In the implicit equation, powers 2� means:u 2� = (u2) 1� =j u j 2� :The � coe�cient controls the squareness of the curves: courbes :� � small, the shape is close to a square;� � = 1, it is a circle;� � = 2 the shape has �at bevel;� � large, the shape is pinched.The spherical product of these curves gives a uniform mathematical formula-tion of the family of superquadrics.Remark : Parameters � and ! correspond to the latitude and longitude ofvector x in spherical components; parameters a1, a2 and a3 de�ne the sizeof the superellipsoid along x, y and z axes; �1 and �2 de�ne the shape of thesuperquadric along latitude and longitude. Some exemples are presented �gure1.



45A.2 Rigid transformAll the equations of the previous section are de�ned in a intrinsic local framewith the center of the superellipsoid as origin. To �t the superellipsoid on thedata, we must be able to position it anywhere in space, that means rewritethose equations in a general frame RO.A homogeneous rigid transform T is de�ned by its matrix:T = " R t0 1 # ;where R is a 3�3 rotation matrix and t a 3�1 translation vector. We note xand x the position vectors respectively in the object frame and in frame RO.We have then: x = R x+ t;x = Rt (x� t);since the inverse R�1 is equal to Rt.We choose the 3 Euler angles ', � and  to represent a rotation in IR3. Thenew inside-outside function is obtained by replacing x by T�1 (x) in 1:bF (x) = F (T�1 (x)): (11)Function bF now depends on 11 parameters: (a1; a2; a3; �1; �2; '; �;  ; tx; ty; tz).We use this function to �t the data with the superellipsoid.A.3 Initialization of the �tIt is a two-step algorithm. The �rst step consists in the initialization of theparametric surface from the 3D data points set:The initial superquadric is an ellipsoid (parameters �1 and �2 equal to 1). It iscentered at the center of gravity of the data set. Its orientation is de�ned bythe moments of inertia of the data, computed from the matrix of second ordercentered moments M :M = 1N NXi=1 264 (yi � y)2 + (zi � z)2 �(yi � y)(xi � x) �(zi � z)(xi � x)�(xi � x)(yi � y) (xi � x)2 + (zi � z)2 �(zi � z)(yi � y)�(xi � x)(zi � z) �(yi � y)(zi � z) (xi � x)2 + (yi � y)2 375 :(12)



46The center of gravity and the 3 axes of inertia de�ne the new frame of theobject. To compute the size of the three axes, we compare the matrix of anellipsoid surface J and M after diagonalization. The form of J is:J = �3 264 a22 + a23 0 00 a23 + a21 00 0 a21 + a22 375 ; (13)where a, b and c are the sizes of the axes and � is the mass (here 1). Hence,if �1, �2 and �3 are the eigen values of M , the sizes of the axes are computedas follows: 8>><>>: a21 = 32�(�2 + �3 � �1);a22 = 32�(�1 + �3 � �2);a23 = 32�(�1 + �2 � �3): (14)B De�nition of FFDsThe FFD formulation is divided into two steps:1. Computation of the local coordinates of the object points in the framede�ned by the box of control points. We de�ne a coordinate system inthe local frame associated to the parallelepipedic box in which the objectto be deformed is embedded. The origin of the frame is a vertex X0 ofthe box, and the axes of this frame are the 3 edges (S;T ;U ) of thebox coming from X0. Every 3D point X has (s; t; u) coordinates in thissystem such as: X = X0 + sS + tT + uU ; (15)where s, t, u are given by:s = S � (X �X0)S � S ; t = T � (X �X0)T � T ; u = U � (X �X0)U � U ; (16)Remark that X is inside the box i� s; t and u are in [0; 1].We then generate a grid of (l + 1)(m + 1)(n + 1) control points in thebox by setting : Pijk = X0 + il S + jm T + kn U : (17)



47The object is linked to the grid of control points by a deformation func-tion de�ned as a tensor product of trivariate Bernstein polynomials (po-lynomials associated to Bezier curves). The position X of an arbitrarypoint is evaluated by the computation of its local coordinates (s; t; u),and of the trivariate vector polynomial:X = lXi=0 mXj=0 nXk=0 C il CjmCkn (1�s)l�isi (1� t)m�jtj (1�u)n�kukPijk: (18)2. Displacement of the control points and estimation of the new positionof the deformed object. The deformation of the object is speci�ed bymoving the control points Pijk from their latticial position to a newposition P �ijk. The position of a point X of the deformed object is thencomputed with the previous vector polynomial:X� = lXi=0 mXj=0 nXk=0C ilCjmCkn : (1�s)l�isi(1�t)m�jtj(1�u)n�kukP �ijk: (19)References[1] A. Amini and J. Duncan. Bending and stretching models for lv wall motionanalysis from curves and surfaces. In Proceedings Image and Vision Computing,volume 10, pages 418�430, August 1992.[2] A. Amini, R. Owen, P. Anandan, and J. Duncan. Non-rigid motion models fortracking the left ventricular wall. Lecture notes in computer science: Informa-tion processing in medical images, pages 343�357, 1991. Springer-Verlag.[3] N. Ayache. Computer vision, virtual reality and robotics in medecine. Imageand Vision Computing, August 1995.[4] N. Ayache, J.D. Boissonnat, E. Brunet, L. Cohen, J.P. Chièze, B. Geiger,O. Monga, J.M. Rocchisani, and P. Sander. Building highly structured vo-lume representations in 3D medical images. In Computer Aided Radiology,June 1989. Berlin, West-Germany.[5] N. Ayache, J.D. Boissonnat, L. Cohen, B. Geiger, O. Monga, J. Levy-Vehel,and P. Sander. Steps toward the automatic interpretation of 3D images. NATOASI Series on 3D Imaging in Medicine, F 60:107�120, 1990.
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