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Abstract

Recovery of 3-D data with simple parametric mod-
els has been the subject of many studies over the last
ten years. Many have used the notion of superquadrics
introduced for graphics in [Bar81]. Different improve-
ments were introduced to make the model a better rep-
resentation of the data [BG87, FLW389, SB90, TM91].

This paper describes a two-steps method to fit a
parametric deformable surface to 3-D points. We sup-
pose that a 3-D image has been segmented to get a set
of 3-D points. The first step consists in our version
of a superquadric fit with global tapering, similar to
the method proposed in [BG87]. We then make use
of the technique of free-form deformations, as intro-
duced by [SP86] in computer graphics. We present ex-
peritmental results with synthetic and real 3-D medical
1mages.

1 Introduction

Over the last ten years many surface reconstruction
problems have been formulated by the minimization of
an energy corresponding to a model of the surface. Us-
ing deformable models and templates, the extraction
of a shape is obtained through an energy composed
of an internal regularization term and an external at-
traction potential (data term), illustrated for exam-
ple in |Ter88, TWK88, CC93, YHC93, SB90, TM91|.
Since the relevant surfaces in medical images are usu-
ally smooth, the use of such models is often very ef-
ficient for locating surface boundaries of organs and
structures, and then tracking of these shapesin a time
sequence.

The advantage of deformable templates like su-
perquadrics is their small number of parameters to
represent a shape. However, if superquadric shapes
give a good approximation of a shape, they are not
sufficient to describe more complex surfaces. There-
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fore they were coupled with a deformable model in
[TM91] to take into account local deformations.

In our work, starting with superquadric models, we
present an improvement to refine the shape making
use of the technique of free-form deformations, as in-
troduced by [SP86] in computer graphics. Since this
deformation is also defined by a small number of pa-
rameters, the previous advantage of representing a
shape with few parameters remains.

The original contribution of this work is twofold.
First we present our algorithm for fitting data with a
superquadric, based on [SB90] with some variations.

We then improve the shape extraction by introduc-
ing the use of free-form deformations (FFD). The idea
is to put our previous surface, here a superquadric, in
a rubber-like box. On this box are disposed nodes,
called control points, on a regular 3D grid. We then
deform the object just by moving these points and de-
form the whole box using interpolation by trivariate
Bernstein polynomials. In graphics and CADs, FFD
are used to design shapes by moving a point of the ob-
ject to some place and retrieving a global deformation
of the object. By successive applications of this defor-
mation, a complex shape can be obtained easily. Here,
we use this approach for deformation of some points
on the superquadric that are to far from data. Since
we limit the number of control points to be small, we
have to solve an inverse problem [HHK92], that is to
recover a box of control points corresponding to a dis-
placement field. This field is computed by comparison
between the iso-surface and the superquadric obtained
in the first step.

We show results for examples in synthetic images
and 3-D medical images of the myocardium.

The paper is organized as follows. We begin by
a mathematical description of superquadrics (Sec-
tion 2.1) and then review fitting methods with su-
perquadrics (Section 2.2) including our algorithm



(Section 2.3). In Section 3, we give the main ideas
of free-form deformations followed by illustrations of
our method to medical data.

2 Data Fitting Using Superquadrics

This class of objects have been introduced by
A. Barr [Bar81| for computer graphics and is an ex-
tension to 3-D of the superellipse [Gar65]. Their first
use in computer graphics and in vision is due to Pent-
land [Pen87|, followed by Bajcsy [BS87| and later by
Terzopoulos and Metaxas [TM91].

There are four kinds of superquadrics but we’ll
study only the case for superellipsoids. After giving
their definition we will see how they can be parame-
terized and deformed.

2.1 Definition of superquadric surfaces

Superquadrics form a family of implicit surfaces ob-
tained by extension of usual quadrics. They are ob-
tained by spherical product [Bar81] of two 2-D curves.
The superellipsoid is the spherical product of the su-
perellipse with itself, we give now his implicit equation
followed by a parameterization:
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equation and the following, the powers of the cos,sin
and tan functions are to take in the following sense:
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However in the implicit equation where we have pow-
ers 2/e, this means

uZ/e — (UZ)I/G :l ” |2/e‘/

the two coefficients control the squareness of curves:

€ is small, the shape is close to a square;
€ = 1 we have a circle;
€ = 2 the shape has flat bevel;

€ is larger the shape is pinched.

We now give the equations and parameterization of
superellipsoids. The implicit equation is:
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Parameterization as a spherical product of two su-
perellipses:
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2.1.1 Remarks

1. Parameters 77 and w correspond to the latitude
and longitude of vector  in spherical compo-
nents; parameters a1, a2 and a3 define the size
of the superquadric along z, ¥y and z axes; €; and
€5 define the shape of the superquadric along lat-
itude and longitude.

2. The implicit equation of the superellipsoid per-
mits to define an inside-outside function F"

rows = ()% () +(2)7)

The values of F' define 3 regions of the space:

if F(z,y,z) = 1, (w,y,z)1s on the surface,
if F(x,y,z) > 1, (x,y,2)is outside,
if F(z,y,2) < 1, (z,y,z)is inside.

2.1.2 Regular Parameterization

The parameterizations of the previous sections sup-
ply more points in large curvature areas (see figure
2). To fit a 3-D object, we may wish a more regular
and uniform parameterization. We now give such a
parameterization.

Let us consider the parameterization of a sphere in
spherical coordinates:

= cosqcosw — 5 <n<§
y = cosmsinw —m<w<w
z = sin7y
By a constant step discretization grid of [-Z, ] x

[-7, 7], the points on the sphere are regularly posi-
tioned. We then use this set of points on the sphere
to define a new discretization of the superellipsoid by
projection. This is done in two steps:

e From the sphere to the ellipsoid:

Te=01T ; Ye=02Y ; Ze=2032

e From the ellipsoid to the superellipsoid:

Ls=pPTe | Ys=PYe 3 Z2Zs=P2Ze



Replacing =, y and z by =4, ys and z, , in equation 1,
we obtain an expression of p as a function of 7 and w:
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We obtain our parameterization of the superellipsoid
by calculation of p and then zg, ys and z, for each
value of the grid on the domain [-F , 7] x[—7,7]|. The
points are then regularly spaced on the surface (see fig-
ure 2). Remark that computation is at more cost than
the previous parameterization (2): 2 additions, 3 mul-
tiplications and 1 power for each point. However we
now consider this parameterization of superellipsoids,

to have a more regular grid on the surface.

2.1.3 Frame change

Equations of the previous section are defined in a local
frame with the center of the superellipsoid as origin.
We will need the formulation in a general frame R¢ in
the following. We define a homogeneous rigid trans-
form T by its matrix:

r-[51].

where R is a 3 x3 rotation matrix and ¢ a 3x 1 trans-
lation vector. We note @ and & the position vectors
respectively in the object frame and in frame Ro. We
have then:

Rz +t,
z = R'(z-1).

Q:

since the inverse R~! is equal to R'.

We choose the 3 Euler angles ¢, 6 and 1 to repre-
sent a rotation in IR>. The new function of position is
obtained by replacing transform 7T in 1:

F(z)=F(T7 (2)). (3)

Function ﬁ, which will be wused in the min-
imization algorithms depends on 11 parameters:
(a1,az,a3,€1,€2,0,0,9,t5,ty.t.).

2.2 Previous work

2.2.1 Pentland’s Approach

The use of superquadrics for analysis of scenes in com-
puter vision was first introduced by Pentland [Pen87].
He proposed a heuristic approach by search over
the whole parameter space for the best value of the
goodness-of-fit criteria. Since this approach is compu-
tationally too expensive, later authors preferred iter-
ative algorithms.

2.2.2 Solina and Bajcsy’s Model

F. Solina and R. Bajcsy [SB90] have used superellip-
soids for approximation of 3-D objects. They used the
parameterization defined in equation 2. They min-
imized a least square energy defined by the inside-
outside function. The data is a set of points which
correspond to the description of a 3-D object.

Here are the main steps of their approach:

¢ Initialization of the surface:

The initial superquadric is an ellipsoid (parame-
ters €; and ez equal to 1). It is centered at the
center of gravity of the data set. Its orientation
is defined by the moments of inertia of the data.
This define the new frame of the object. The ini-
tial size of the three axes is also roughly estimated
from data.

o Least squares minimization:
Since we want the data to position on the su-
perquadric surface and this surface is defined by
its inside-outside function F = 1 (see equstion 3),
the criteria used for minimization with respect to
the 11 parameters of Fis:
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Since derivatives of E can be computed, the min-
imization is done using the Levenberg-Marquardt
[PFTV89] method for non-linear least squares.
To overcome some problem due to self occlusion,
they modified the criteria to be:

N

E4=Y [\/m (1 — Flai, ;. 0.6, dv,t))r .

i=1

This adds that among the possible minimizing
surface we choose the one with smaller volume.

¢ Global deformations:

A. Barr [Bar84| studied the deformation of su-
perquadrics. F. Solina and R. Bajcsy intro-
duced some global deformations (pinching, tor-
sion, modelization of cavity) in their model to
extend the variety of possible shapes. These
deformations are defined by only 4 parameters
which are added to the previous set of parame-
ters. Function F depends then on 15 parame-
ters. These deformations has to be composed in
a precise order.



2.2.3 Terzopoulos and Metaxas’ Model

Terzopoulos and Metaxas [TM91] add to the previous
global deformation the possibility of local deforma-
tion of the superquadric model. The local deforma-
tion is done on a given parametric representation of
the superquadric and satisfies the minimization of a
physically-based deformable model. They minimize a
local potential at the same time with respect to global
parameters of superquadrics and local deformation.
These deformable superquadrics are no more simple
parametric models but are in fact deformable models
with some kind of memory of shape.

Since we wish to keep a small number of parameters
we will not make use of this kind of ideas and that is
why we give only a short description.

Instead we will introduce (in section 3) the use
of Free Form Deformations [SP86] used in Computer
Graphics.

2.3 Description of our Method

In our applications, the original data is a 3-D med-
ical image which represents for example the myocard
or the head area. Interesting features can be either
edges extracted from this data which form a set of
surfaces, or an iso-surface. We want to approximate
one of these surfaces by a superellipsoid.

To fit a superquadric on a set of data points, we use
the algorithm developed in [SB90|, with some tech-
nical improvements. Before we detail these improve-
ments, we will focus on the notion of distance between
a point and a surface (or a set of data points).

2.3.1 Distance between a point and a surface

The exact computation of the Euclidean distance at
each point is very expensive and usually an approx-
imation is used computed by use of iterative filters
[Bor84, Dan80]. We now give two analytic expressions
of an approximation of the distance between a point
and an implicit surface.

¢ Intrinsic approximation:

Let us consider a superellipsoid in its local intrin-
sic frame (equations 2, 1). Let M = (z,y,z) be a
data point. The line joining the center O of the
local frame and M intersects the superellipsoid
surface at My = (2, Y- 20, ) (see Figure 3).

We want to calculate the distance || MM |.
Since O, My and M are on a same line, we

—_— —_—
can write OMy, = pOM with ¢ > 0. So

we have (za1,,Ynm,,20M,) = (pox, ppy, ppz). Since
we have: F(pz,py,pz) = p F(z,y,z), with

F(Mu) = 1, we obtain the value of p:
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We then deduce the following:
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This gives a geometric interpretation of the crite-
ria used in [SB90] as a intrinsic homothetic char-
acteristic, but it is not a distance. On figure 3,
we easily see that || MoM || is greater that the
Euclidean distance: d =|| M P]|.

e First order approximation:
We also have an approximation of d when the
data point M is close to its projection on the su-
perquadric P.
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It is possible to define a more precise approxima-
tion that is bounded as shows Taubin [Tau93],
but it is computationally expensive.

2.3.2 Solina and Bajcsy’s Model revisited

As the initialization of the superquadric, we still use
the matrix of second order centered moments M to
evaluate the orientation (see section 2.2.2). But to
compute the size of the three axes, we compare the
matrix of an ellipsoid surface J and M after diagonal-
ization. The form of J is:

’ b2 + 2 0 0
J:% 0  +a®> 0 |, (6)
0 0 a’4?

where a, b and ¢ are the sizes of the axes and p is the
mass (here 1). Hence, if A1, A2 and A3 are the eigen
values of M, the sizes of the axes are computed as
follow:

= %(A2+>\3_/\1)a
0 = (A4 A= A, (7)
= 5 (A + A= Ag);

M



The criteria used for minimization is the same as equa-
tion 4, but minimization is done using the Conju-
gate Gradient Method in Multidimensions [PFTV89),
which is an astute algorithm to find the minimum of a
function only with the computation of first derivates.
This method ensures a fast convergence. We also take
into account one type of global deformation: a taper-
ing among the three axes. This can be expressed in a
matrix form:

Xiap = T X,
with:
fy)f(z) 0 0
T= 0 fl@)fz) 0
0 0 f(=)fy)

Figure 5 represents the result of this fit to a my-

ocardium.

3 Free-Form Deformations to Improve
the Fit

We now have a first approximation of the iso-
surface. The superquadric is correctly oriented and
has already the good size for the three axes of inertia.
The problem is that the range of shapes described by
superquadrics is really too limited to describe complex
medical objects, like myocardium or brain. We need to
make the model more complex. This idea is not new,
it has raised different solutions, like adding a spline
energy or the decomposition of the displacement in a
wavelets basis [TM91, VR92].

We decided to use a tool developed in computer
graphics [SP86, Coq90| called Free-Form Deforma-
tions (FFD). Our choice was guided by the fact that
we wanted to dispose of a simple global model at the
end of the process. In [TM91] for example, the model
is made of global and local information.

In this section, we first present the FFD as intro-
duced by [SP86], then we explain how we use this
tool in the context of computer vision. Our method is
based on a work presented in [HHK92].

3.1 Definition

The FFD is a tool devoted to the deformation of
solid geometric models in a free-form manner. It is in-
dependent of the nature of the object to be deformed.
An analogy for FFD is to consider a box in which the
object is captured. On each face of the box are dis-
posed points on a regular grid. To deform the object,
you just need to move the points, called control points,
on the box, and the object follows in an intuitively way
the deformation of the box.

The algorithm is based on trivariate Bernstein poly-
nomials, and divided in two steps:

1. Computation of the local coordinates of the ob-
ject points in the system defined by the box of
control points.

2. Displacement of the control points and estimation
of the new position of the object.

Let’s explain in detail those two steps:

1. First we need a box in which the object is em-
bedded. We define a local coordinate system by
choosing a vertex on the box and his three edges.
Any point X has (s,¢,u) coordinates in this sys-
tem such that:

X = Xo+s85+tT+uU,

where Xg is the vertex and s, ¢, u are given by:

T x U(X — Xo)

S xU(X - Xo)
TxU-S T

SxU.-T

S x T(X — X())
SxT-U
with §, T and U be the three other vertex joined
to X(].
We also generate a grid of (I + 1)(m + 1)(n + 1)
control points on the box by setting:

U =

P = Xo+:8+~T+-U.
l m n

2. The deformation of the object is specified by mov-
ing the control points from their latticial position
and evaluating the new position for any point X
with the vector-valued trivariate Bernstein poly-
nomial:

I m n
Xnew = ZZZ (C]'C,IHC’], (8)

=0 j=0 k=0
(1—s8) """ (1 =)™t (1 - u)”fkukP,-jk) .

Xinew 1s the vector of the displaced point ex-
pressed in Cartesian coordinates.

An important characteristic of FFD is that a paramet-
ric surface is still parametric after deformation, simply
obtained by composition. For more details about the
definition of FFD, see [SP86]. As we said, FFD is a
tool developed for computer graphics. In the next sec-
tion, we show how to use it to improve the result of
the fit of complex 3D shapes with superquadrics.



3.2 The Inverse Problem

The algorithm presented in the previous section can
be summed up like this: displacement of the control
points permits to compute a displacement map for any
space point. Here, the problem is reversed. What we
have are the data points and the superquadric result-
ing from the fit presented in section 2. To improve the
precision of the fit, the superquadric is embedded in
a parallelepiped box and a displacement field between
the data and the model points is computed. Then we
want to find the displacement of the control points
that corresponds to this field, that is to resolve the
inverse problem. This question has been tackled in
[HHK92], still in computer graphics, to get the FFD
easier to manipulate. Contrary to them, we will still
use Bernstein polynomials because we are looking for
a global model with few parameters, that means in
concrete terms that the size of the box will ever be
less than or equal to 5x5x5.

3.2.1 Computation of the displacement field

We need for each point on the superquadric a vector
whose norm is the distance to the data. If we con-
sider the figure 6 and suppose the isosurface above
corresponds to the superellipsoid and the other to the
data, it is easy to see that we want to find the vec-
tor M P; which is orthogonal to the superellipsoid,
instead of M P, thus avoiding the case: data points
never reached.
The computation breaks up in 2 parts:

1. The distance map of the superellipsoid is com-
puted using the algorithm of Danielsson [Dan80)].
Then, for each data point, we find his closest point
on the superellipsoid.

2. After this step, some points on the ellipsoid
haven’t been reached. A displacement value is
attributed by interpolation; that means, for each
non-valued point, we search his 4 valued neigh-
bors on the superellipsoid, and compute the av-
erage of the displacement values.

3.2.2 Displacement of the control points

We want to find the new position of control points
that recover the displacement field we obtained in the
previous section. That means we have to resolve equa-
tion 9, where the unknown are P;j;. This equation
can be written in a matrix form:

X = BP, (9)

where B is NP x ND (N P: number of control points,
ND: number of displaced points from the superellip-
soid). Actually equation 9 is separable in three in-
dependent linear systems according to points coordi-
nates. We will now consider the case for the first co-
ordinate z, that means X and P will represent the
z-coordinate of the considered points.

In our case, because we are looking for a global
model with relatively few parameters, NP is al-
ways less than N D, that means the problem is over-
determined and there is no solution. However one
can find the best “compromise" solution in the least
squares sense, using different algorithms. We will
present results for two of them [PFTV89]:

e Direct solution of the normal equations associated
to the linear least-squares problem.

e Direct solution of the linear least-squares problem
with the Singular Value Decomposition.

Normal equations: The normal equations associ-
ated to equation 9 are: BTX (BTB) P. This
square linear system is solved by the Conjugate Gra-
dient Method, and the solution can be written:

P = (B'B)"'BTX. (10)

Singular Value Decomposition: SVD is based on
the following theorem of linear algebra: any M x N
matrix B whose number of rows M is greater than or
equal to its number of columns N, can be written as
the product of an M x N column-orthogonal matrix
U, an N x N diagonal matrix W with positive or zero
elements, and the transpose of an N x N orthogonal
matrix V. This can be written as: B = U. W.V. It
follows immediately that the inverse of B is:

B! = V.[diag(1/w;).U".

A problem can appear if one of the w;’s is zero. But,
actually, SVD explicitly constructs orthonormal bases
for the nullspace and range of a matrix, thus it’s
enough to replace 1/w; by zero if w; = 0 to pick
the solution with the smallest length [PFTV89]. Ap-
plication of this theorem to equation 9 induces to this
solution for P:

P = V.[diag(1/w;).UT.X. (11)
4 Results

We present in this section some results obtained
by application of the two-steps algorithm described
in the previous sections. The original isosurfaces are
extracted either from synthetic or medical data.



Synthetic Data: This example shows clearly that
superquadric fit is not sufficient to recover complex
shapes. It also demonstrate the powerful capabilities
of FFD analysis. Another important fact is that, as
we already mentionned, a parametric surface being de-
formed by FFD remains parametric, even after some
iterations, like in this example.

Medical Data: Myocardium We now present
three medical cases. All myocardia are extracted from
the same time sequence. Figure 10 was obtained with
a 4x4x4 box and resolution by Conjugate Gradient
Method. The two others results were obtained with a
5x5x5 box and resolution by Singular Value Decompo-
sition. In that case, the quality of fit is much better,
however the resulting box is much larger than the one
in 10. This comes from the global nature of Bernstein
polynomials, and it can be improved by using splines
or other piecewise polynomials. Those data are each
composed of 6000 points, and the model is defined
each time by 11 parameters for the superellipsoid and
5xbx5 3D points for the control points box, that is
only less than 130 3D points.

Figure 1: Different types of superquadrics.

Figure 2: Two types of parameterization: regular and
curvature-dependent

Figure 3: Intersection of line OM and surface




Figure 6: Displacement vectors between the model
and the data

Figure 4: Distances between 2 isosurfaces

Figure 5: A myocardium fitted by a tapered su-
perquadric.

Figure 7: An example of displacement field.



Figure 8: A cross, the initial sphere, and two iterations
with a 5x5x5 box.

Figure 10: A myocardium, the fitted superellipsoid
embedded in the control points box (4x4x4), and the
final result.

Figure 9: The displacement field before and after FFD

analysis .
Figure 11: Another myocardium fitted with a 5x5x5

box.



Figure 12: A third one, still fitted with a 5x5x5 box.

5 Conclusion

We have presented a new approach for shape recon-
struction applied to 3-D medical data. It is based on a
first step giving the best fit with a superquadric model.
This is followed by a second step for refining the de-
tails of the previous shape by making use of free-form
deformations. In both steps the data is an iso-surface
obtained from a 3-D image, and an attraction poten-
tial defined by the distance to the closest data point
is used for energy minimization in the first step and
definition of the displacement field in the second step.

The interesting aspect of this approach is that it
gives a description of a complex shape with ouly a
small number of parameters.

We gave examples of results for synthetic images
and 3-D medical images of the myocardium. Our cur-
rent goal 1s to use this approach for automatic shape
tracking in a time sequence of images.
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