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AbstractRecovery of 3-D data with simple parametric mod-els has been the subject of many studies over the lastten years. Many have used the notion of superquadricsintroduced for graphics in [Bar81]. Di�erent improve-ments were introduced to make the model a better rep-resentation of the data [BG87, FLW89, SB90, TM91].This paper describes a two-steps method to �t aparametric deformable surface to 3-D points. We sup-pose that a 3-D image has been segmented to get a setof 3-D points. The �rst step consists in our versionof a superquadric �t with global tapering, similar tothe method proposed in [BG87]. We then make useof the technique of free-form deformations, as intro-duced by [SP86] in computer graphics. We present ex-perimental results with synthetic and real 3-D medicalimages.1 IntroductionOver the last ten years many surface reconstructionproblems have been formulated by the minimization ofan energy corresponding to a model of the surface. Us-ing deformable models and templates, the extractionof a shape is obtained through an energy composedof an internal regularization term and an external at-traction potential (data term), illustrated for exam-ple in [Ter88, TWK88, CC93, YHC93, SB90, TM91].Since the relevant surfaces in medical images are usu-ally smooth, the use of such models is often very ef-�cient for locating surface boundaries of organs andstructures, and then tracking of these shapes in a timesequence.The advantage of deformable templates like su-perquadrics is their small number of parameters torepresent a shape. However, if superquadric shapesgive a good approximation of a shape, they are notsu�cient to describe more complex surfaces. There-

fore they were coupled with a deformable model in[TM91] to take into account local deformations.In our work, starting with superquadric models, wepresent an improvement to re�ne the shape makinguse of the technique of free-form deformations, as in-troduced by [SP86] in computer graphics. Since thisdeformation is also de�ned by a small number of pa-rameters, the previous advantage of representing ashape with few parameters remains.The original contribution of this work is twofold.First we present our algorithm for �tting data with asuperquadric, based on [SB90] with some variations.We then improve the shape extraction by introduc-ing the use of free-form deformations (FFD). The ideais to put our previous surface, here a superquadric, ina rubber-like box. On this box are disposed nodes,called control points, on a regular 3D grid. We thendeform the object just by moving these points and de-form the whole box using interpolation by trivariateBernstein polynomials. In graphics and CADs, FFDare used to design shapes by moving a point of the ob-ject to some place and retrieving a global deformationof the object. By successive applications of this defor-mation, a complex shape can be obtained easily. Here,we use this approach for deformation of some pointson the superquadric that are to far from data. Sincewe limit the number of control points to be small, wehave to solve an inverse problem [HHK92], that is torecover a box of control points corresponding to a dis-placement �eld. This �eld is computed by comparisonbetween the iso-surface and the superquadric obtainedin the �rst step.We show results for examples in synthetic imagesand 3-D medical images of the myocardium.The paper is organized as follows. We begin bya mathematical description of superquadrics (Sec-tion 2.1) and then review �tting methods with su-perquadrics (Section 2.2) including our algorithm



(Section 2.3). In Section 3, we give the main ideasof free-form deformations followed by illustrations ofour method to medical data.2 Data Fitting Using SuperquadricsThis class of objects have been introduced byA. Barr [Bar81] for computer graphics and is an ex-tension to 3-D of the superellipse [Gar65]. Their �rstuse in computer graphics and in vision is due to Pent-land [Pen87], followed by Bajcsy [BS87] and later byTerzopoulos and Metaxas [TM91].There are four kinds of superquadrics but we'llstudy only the case for superellipsoids. After givingtheir de�nition we will see how they can be parame-terized and deformed.2.1 De�nition of superquadric surfacesSuperquadrics form a family of implicit surfaces ob-tained by extension of usual quadrics. They are ob-tained by spherical product [Bar81] of two 2-D curves.The superellipsoid is the spherical product of the su-perellipse with itself, we give now his implicit equationfollowed by a parameterization:�xa� 2� + �yb� 2� = 1:� x = a cos� � ; �� � � < �y = b sin� �For simpli�cation in the formulation in the aboveequation and the following, the powers of the cos; sinand tan functions are to take in the following sense:u� = sign(u) j u j�= u j u j��1However in the implicit equation where we have pow-ers 2=�, this meansu2=� = (u2)1=� =j u j2=�;the two coe�cients control the squareness of curves:� � is small, the shape is close to a square;� � = 1 we have a circle;� � = 2 the shape has �at bevel;� � is larger the shape is pinched.We now give the equations and parameterization ofsuperellipsoids. The implicit equation is:0@ � xa1� 2�2 + � ya2� 2�2! �2�1 +� za3� 2�11A �12 = 1: (1)

Parameterization as a spherical product of two su-perellipses:x(�; !) = � cos�1 �a3 sin�1 � �
 � a1 cos�2 !a2 sin�2 ! �= 24 a1 cos�1 � cos�2 !a2 cos�1 � sin�2 !a3 sin�1 � 35 ; � ��2 � � � �2�� � ! < � (2)2.1.1 Remarks1. Parameters � and ! correspond to the latitudeand longitude of vector x in spherical compo-nents; parameters a1, a2 and a3 de�ne the sizeof the superquadric along x, y and z axes; �1 and�2 de�ne the shape of the superquadric along lat-itude and longitude.2. The implicit equation of the superellipsoid per-mits to de�ne an inside-outside function F :F (x; y; z) =  �� xa1 � 2�2+ � ya2 � 2�2� �2�1+ � za3� 2�1! �12 :The values of F de�ne 3 regions of the space:8<: if F (x; y; z) = 1 ; (x; y; z) is on the surface;if F (x; y; z) > 1 ; (x; y; z) is outside;if F (x; y; z) < 1 ; (x; y; z) is inside:2.1.2 Regular ParameterizationThe parameterizations of the previous sections sup-ply more points in large curvature areas (see �gure2). To �t a 3-D object, we may wish a more regularand uniform parameterization. We now give such aparameterization.Let us consider the parameterization of a sphere inspherical coordinates:8<: x = cos� cos! � �2 � � � �2y = cos� sin! � � � ! < �z = sin �By a constant step discretization grid of [��2 ; �2 ] �[�� ; �], the points on the sphere are regularly posi-tioned. We then use this set of points on the sphereto de�ne a new discretization of the superellipsoid byprojection. This is done in two steps:� From the sphere to the ellipsoid:xe = a1 x ; ye = a2 y ; ze = a3 z� From the ellipsoid to the superellipsoid:xs = � xe ; ys = � ye ; zs = � ze



Replacing x, y and z by xs, ys and zs , in equation 1,we obtain an expression of � as a function of � and !:� = ��j cos! cos � j 2�2 + j sin! cos � j 2�2 � �2�1 + j sin � j 2�1 �� �12We obtain our parameterization of the superellipsoidby calculation of � and then xs, ys and zs for eachvalue of the grid on the domain [��2 ; �2 ]�[�� ; �]. Thepoints are then regularly spaced on the surface (see �g-ure 2). Remark that computation is at more cost thanthe previous parameterization (2): 2 additions, 3 mul-tiplications and 1 power for each point. However wenow consider this parameterization of superellipsoids,to have a more regular grid on the surface.2.1.3 Frame changeEquations of the previous section are de�ned in a localframe with the center of the superellipsoid as origin.We will need the formulation in a general frame RO inthe following. We de�ne a homogeneous rigid trans-form T by its matrix:T = � R t0 1 � ;where R is a 3�3 rotation matrix and t a 3�1 trans-lation vector. We note x and x the position vectorsrespectively in the object frame and in frame RO. Wehave then: x = R x + t;x = Rt (x � t):since the inverse R�1 is equal to Rt.We choose the 3 Euler angles ', � and  to repre-sent a rotation in IR3. The new function of position isobtained by replacing transform T in 1:bF (x) = F (T�1 (x)): (3)Function bF , which will be used in the min-imization algorithms depends on 11 parameters:(a1; a2; a3; �1; �2; '; �;  ; tx ; ty ; tz).2.2 Previous work2.2.1 Pentland's ApproachThe use of superquadrics for analysis of scenes in com-puter vision was �rst introduced by Pentland [Pen87].He proposed a heuristic approach by search overthe whole parameter space for the best value of thegoodness-of-�t criteria. Since this approach is compu-tationally too expensive, later authors preferred iter-ative algorithms.

2.2.2 Solina and Bajcsy's ModelF. Solina and R. Bajcsy [SB90] have used superellip-soids for approximation of 3-D objects. They used theparameterization de�ned in equation 2. They min-imized a least square energy de�ned by the inside-outside function. The data is a set of points whichcorrespond to the description of a 3-D object.Here are the main steps of their approach:� Initialization of the surface:The initial superquadric is an ellipsoid (parame-ters �1 and �2 equal to 1). It is centered at thecenter of gravity of the data set. Its orientationis de�ned by the moments of inertia of the data.This de�ne the new frame of the object. The ini-tial size of the three axes is also roughly estimatedfrom data.� Least squares minimization:Since we want the data to position on the su-perquadric surface and this surface is de�ned byits inside-outside function bF = 1 (see equstion 3),the criteria used for minimization with respect tothe 11 parameters of bF is:E(A) = NXi=1 h1� bF (a1; a2; a3; �1; �2; '; �;  ; t)i2 :(4)Since derivatives of E can be computed, the min-imization is done using the Levenberg-Marquardt[PFTV89] method for non-linear least squares.To overcome some problem due to self occlusion,they modi�ed the criteria to be:bE(A) = NXi=1 hpa1 a2 a3 �1� bF (ai; �j ; '; �;  ; t)�i2 :This adds that among the possible minimizingsurface we choose the one with smaller volume.� Global deformations:A. Barr [Bar84] studied the deformation of su-perquadrics. F. Solina and R. Bajcsy intro-duced some global deformations (pinching, tor-sion, modelization of cavity) in their model toextend the variety of possible shapes. Thesedeformations are de�ned by only 4 parameterswhich are added to the previous set of parame-ters. Function bF depends then on 15 parame-ters. These deformations has to be composed ina precise order.



2.2.3 Terzopoulos and Metaxas' ModelTerzopoulos and Metaxas [TM91] add to the previousglobal deformation the possibility of local deforma-tion of the superquadric model. The local deforma-tion is done on a given parametric representation ofthe superquadric and satis�es the minimization of aphysically-based deformable model. They minimize alocal potential at the same time with respect to globalparameters of superquadrics and local deformation.These deformable superquadrics are no more simpleparametric models but are in fact deformable modelswith some kind of memory of shape.Since we wish to keep a small number of parameterswe will not make use of this kind of ideas and that iswhy we give only a short description.Instead we will introduce (in section 3) the useof Free Form Deformations [SP86] used in ComputerGraphics.2.3 Description of our MethodIn our applications, the original data is a 3-D med-ical image which represents for example the myocardor the head area. Interesting features can be eitheredges extracted from this data which form a set ofsurfaces, or an iso-surface. We want to approximateone of these surfaces by a superellipsoid.To �t a superquadric on a set of data points, we usethe algorithm developed in [SB90], with some tech-nical improvements. Before we detail these improve-ments, we will focus on the notion of distance betweena point and a surface (or a set of data points).2.3.1 Distance between a point and a surfaceThe exact computation of the Euclidean distance ateach point is very expensive and usually an approx-imation is used computed by use of iterative �lters[Bor84, Dan80]. We now give two analytic expressionsof an approximation of the distance between a pointand an implicit surface.� Intrinsic approximation:Let us consider a superellipsoid in its local intrin-sic frame (equations 2, 1). LetM = (x; y; z) be adata point. The line joining the center O of thelocal frame and M intersects the superellipsoidsurface at M0 = (xM0 ; yM0 ; zM0) (see Figure 3).We want to calculate the distance k M0M k.Since O, M0 and M are on a same line, wecan write ��!OM0 = ���!OM with � > 0. Sowe have (xM0 ; yM0 ; zM0) = (�x; � y; � z). Sincewe have: F (�x; � y; � z) = � F (x; y; z), with

F (M0) = 1, we obtain the value of �:� = 1F (x; y; z) :We then deduce the following:8>>>><>>>>: kM0Mk = j1 � �j kOMk= ����F (x; y; z)� 1F (x; y; z) ���� kOMkkM0Mk = j 1��� j kOM0k= jF (x; y; z) � 1j kOM0kAnd:(F � 1)2 = �kM0M kk OM0 k �2 = � k OM kk OM0 k � 1�2:This gives a geometric interpretation of the crite-ria used in [SB90] as a intrinsic homothetic char-acteristic, but it is not a distance. On �gure 3,we easily see that k M0M k is greater that theEuclidean distance: d = kMP k.� First order approximation:We also have an approximation of d when thedata point M is close to its projection on the su-perquadric P . d � j F (M)� 1 jk rF (M) k (5)It is possible to de�ne a more precise approxima-tion that is bounded as shows Taubin [Tau93],but it is computationally expensive.2.3.2 Solina and Bajcsy's Model revisitedAs the initialization of the superquadric, we still usethe matrix of second order centered moments M toevaluate the orientation (see section 2.2.2). But tocompute the size of the three axes, we compare thematrix of an ellipsoid surface J andM after diagonal-ization. The form of J is:J = �3 24 b2 + c2 0 00 c2 + a2 00 0 a2 + b2 35 ; (6)where a, b and c are the sizes of the axes and � is themass (here 1). Hence, if �1, �2 and �3 are the eigenvalues of M , the sizes of the axes are computed asfollow: 8<: a2 = 32� (�2 + �3 � �1);b2 = 32� (�1 + �3 � �2);c2 = 32� (�1 + �2 � �3); (7)



The criteria used for minimization is the same as equa-tion 4, but minimization is done using the Conju-gate Gradient Method in Multidimensions [PFTV89],which is an astute algorithm to �nd the minimum of afunction only with the computation of �rst derivates.This method ensures a fast convergence. We also takeinto account one type of global deformation: a taper-ing among the three axes. This can be expressed in amatrix form: Xtap = T :X ;with:T = 0@ f(y)f(z) 0 00 f(x)f(z) 00 0 f(x)f(y) 1A :Figure 5 represents the result of this �t to a my-ocardium.3 Free-Form Deformations to Improvethe FitWe now have a �rst approximation of the iso-surface. The superquadric is correctly oriented andhas already the good size for the three axes of inertia.The problem is that the range of shapes described bysuperquadrics is really too limited to describe complexmedical objects, like myocardium or brain. We need tomake the model more complex. This idea is not new,it has raised di�erent solutions, like adding a splineenergy or the decomposition of the displacement in awavelets basis [TM91, VR92].We decided to use a tool developed in computergraphics [SP86, Coq90] called Free-Form Deforma-tions (FFD). Our choice was guided by the fact thatwe wanted to dispose of a simple global model at theend of the process. In [TM91] for example, the modelis made of global and local information.In this section, we �rst present the FFD as intro-duced by [SP86], then we explain how we use thistool in the context of computer vision. Our method isbased on a work presented in [HHK92].3.1 De�nitionThe FFD is a tool devoted to the deformation ofsolid geometric models in a free-form manner. It is in-dependent of the nature of the object to be deformed.An analogy for FFD is to consider a box in which theobject is captured. On each face of the box are dis-posed points on a regular grid. To deform the object,you just need to move the points, called control points,on the box, and the object follows in an intuitively waythe deformation of the box.The algorithm is based on trivariate Bernstein poly-nomials, and divided in two steps:

1. Computation of the local coordinates of the ob-ject points in the system de�ned by the box ofcontrol points.2. Displacement of the control points and estimationof the new position of the object.Let's explain in detail those two steps:1. First we need a box in which the object is em-bedded. We de�ne a local coordinate system bychoosing a vertex on the box and his three edges.Any point X has (s; t; u) coordinates in this sys-tem such that:X = X0 + sS + tT + uU ;where X0 is the vertex and s, t, u are given by:s = T �U (X �X0)T �U � S ; t = S �U (X �X0)S �U � T ;u = S � T (X �X0)S � T �U ;with S, T and U be the three other vertex joinedto X0.We also generate a grid of (l + 1)(m+ 1)(n+ 1)control points on the box by setting:Pijk = X0 + il S + jm T + kn U :2. The deformation of the object is speci�ed by mov-ing the control points from their latticial positionand evaluating the new position for any point Xwith the vector-valued trivariate Bernstein poly-nomial:Xnew = lXi=0 mXj=0 nXk=0 �CilCjmCkn (8)(1� s)l�isi(1� t)m�jtj(1� u)n�kukPijk� :Xnew is the vector of the displaced point ex-pressed in Cartesian coordinates.An important characteristic of FFD is that a paramet-ric surface is still parametric after deformation, simplyobtained by composition. For more details about thede�nition of FFD, see [SP86]. As we said, FFD is atool developed for computer graphics. In the next sec-tion, we show how to use it to improve the result ofthe �t of complex 3D shapes with superquadrics.



3.2 The Inverse ProblemThe algorithm presented in the previous section canbe summed up like this: displacement of the controlpoints permits to compute a displacementmap for anyspace point. Here, the problem is reversed. What wehave are the data points and the superquadric result-ing from the �t presented in section 2. To improve theprecision of the �t, the superquadric is embedded ina parallelepiped box and a displacement �eld betweenthe data and the model points is computed. Then wewant to �nd the displacement of the control pointsthat corresponds to this �eld, that is to resolve theinverse problem. This question has been tackled in[HHK92], still in computer graphics, to get the FFDeasier to manipulate. Contrary to them, we will stilluse Bernstein polynomials because we are looking fora global model with few parameters, that means inconcrete terms that the size of the box will ever beless than or equal to 5x5x5.3.2.1 Computation of the displacement �eldWe need for each point on the superquadric a vectorwhose norm is the distance to the data. If we con-sider the �gure 6 and suppose the isosurface abovecorresponds to the superellipsoid and the other to thedata, it is easy to see that we want to �nd the vec-tor MP1 which is orthogonal to the superellipsoid,instead of MP , thus avoiding the case: data pointsnever reached.The computation breaks up in 2 parts:1. The distance map of the superellipsoid is com-puted using the algorithm of Danielsson [Dan80].Then, for each data point, we �nd his closest pointon the superellipsoid.2. After this step, some points on the ellipsoidhaven't been reached. A displacement value isattributed by interpolation; that means, for eachnon-valued point, we search his 4 valued neigh-bors on the superellipsoid, and compute the av-erage of the displacement values.3.2.2 Displacement of the control pointsWe want to �nd the new position of control pointsthat recover the displacement �eld we obtained in theprevious section. That means we have to resolve equa-tion 9, where the unknown are Pijk. This equationcan be written in a matrix form:X = BP ; (9)

whereB is NP �ND (NP : number of control points,ND: number of displaced points from the superellip-soid). Actually equation 9 is separable in three in-dependent linear systems according to points coordi-nates. We will now consider the case for the �rst co-ordinate x, that means X and P will represent thex-coordinate of the considered points.In our case, because we are looking for a globalmodel with relatively few parameters, NP is al-ways less than ND, that means the problem is over-determined and there is no solution. However onecan �nd the best �compromise" solution in the leastsquares sense, using di�erent algorithms. We willpresent results for two of them [PFTV89]:� Direct solution of the normal equations associatedto the linear least-squares problem.� Direct solution of the linear least-squares problemwith the Singular Value Decomposition.Normal equations: The normal equations associ-ated to equation 9 are: BTX = (BTB)P . Thissquare linear system is solved by the Conjugate Gra-dient Method, and the solution can be written:P = (BTB)�1BT X : (10)Singular Value Decomposition: SVD is based onthe following theorem of linear algebra: any M � Nmatrix B whose number of rowsM is greater than orequal to its number of columns N , can be written asthe product of an M � N column-orthogonal matrixU , an N�N diagonal matrixW with positive or zeroelements, and the transpose of an N � N orthogonalmatrix V . This can be written as: B = U :W :V . Itfollows immediately that the inverse of B is:B�1 = V :[diag(1=wj)]:UT :A problem can appear if one of the wj 's is zero. But,actually, SVD explicitly constructs orthonormal basesfor the nullspace and range of a matrix, thus it'senough to replace 1=wj by zero if wj = 0 to pickthe solution with the smallest length [PFTV89]. Ap-plication of this theorem to equation 9 induces to thissolution for P :P = V :[diag(1=wj)]:UT :X : (11)4 ResultsWe present in this section some results obtainedby application of the two-steps algorithm describedin the previous sections. The original isosurfaces areextracted either from synthetic or medical data.



Synthetic Data: This example shows clearly thatsuperquadric �t is not su�cient to recover complexshapes. It also demonstrate the powerful capabilitiesof FFD analysis. Another important fact is that, aswe already mentionned, a parametric surface being de-formed by FFD remains parametric, even after someiterations, like in this example.Medical Data: Myocardium We now presentthree medical cases. All myocardia are extracted fromthe same time sequence. Figure 10 was obtained witha 4x4x4 box and resolution by Conjugate GradientMethod. The two others results were obtained with a5x5x5 box and resolution by Singular Value Decompo-sition. In that case, the quality of �t is much better,however the resulting box is much larger than the onein 10. This comes from the global nature of Bernsteinpolynomials, and it can be improved by using splinesor other piecewise polynomials. Those data are eachcomposed of 6000 points, and the model is de�nedeach time by 11 parameters for the superellipsoid and5x5x5 3D points for the control points box, that isonly less than 130 3D points.

Figure 1: Di�erent types of superquadrics.

Figure 2: Two types of parameterization: regular andcurvature-dependent
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Figure 4: Distances between 2 isosurfaces

Figure 5: A myocardium �tted by a tapered su-perquadric.
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Figure 6: Displacement vectors between the modeland the data

Figure 7: An example of displacement �eld.



Figure 8: A cross, the initial sphere, and two iterationswith a 5x5x5 box.

Figure 9: The displacement �eld before and after FFDanalysis .

Figure 10: A myocardium, the �tted superellipsoidembedded in the control points box (4x4x4), and the�nal result.

Figure 11: Another myocardium �tted with a 5x5x5box.



Figure 12: A third one, still �tted with a 5x5x5 box.5 ConclusionWe have presented a new approach for shape recon-struction applied to 3-D medical data. It is based on a�rst step giving the best �t with a superquadricmodel.This is followed by a second step for re�ning the de-tails of the previous shape by making use of free-formdeformations. In both steps the data is an iso-surfaceobtained from a 3-D image, and an attraction poten-tial de�ned by the distance to the closest data pointis used for energy minimization in the �rst step andde�nition of the displacement �eld in the second step.The interesting aspect of this approach is that itgives a description of a complex shape with only asmall number of parameters.We gave examples of results for synthetic imagesand 3-D medical images of the myocardium. Our cur-rent goal is to use this approach for automatic shapetracking in a time sequence of images.AcknowledgmentsWe would like to thank Grégoire Malandain andAlexis Gourdon who provided us a substantial helpat the time of enriching discussions. We thank alsoSerge Benayoun for his judicious remarks. This workwas partially supported by Digital Equipment Corpo-ration.References[Bar81] A.H. Barr. Superquadrics and angle-preserving deformations. IEEE ComputerGraphics Applications, 1:11�23, 1981.[Bar84] A.H. Barr. Global and local deformationsof solid primitives. ACM Computer Graph-ics, 18(3):21�30, 1984.
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