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AbstractThis paper describes a method to �t and track surfaces.We suppose that we have already extracted from a 3-D im-age some data de�ned by a set of points. The �tting stepmakes use of a superquadric model and solves an inverseproblem for free-form deformations. This is then used fortracking surfaces in a time sequence of 3D images. Wepresent di�erent approaches to track surfaces in a sequenceof 3D images. From the tracking, we deduce a estimationof motion and visualize a velocity map. This method isapplied to 2 sequences of di�erent kinds of medical imagesto track the cardiac left ventricle.1 IntroductionThe analysis of cardiac deformations has given riseto a large amount of research in medical image under-standing. Indeed, cardiovascular diseases are the �rstcause of mortality in developed countries. Variousimaging techniques make it possible to get dynamicsequences of 3D images, that is 3D+T. The temporalresolution of these techniques is good enough to ob-tain a su�cient number of images between the musclecontraction (systole) and dilatation (diastole). Theseimages are perfectly adapted to study the behavior ofthe cardiac system since they visualize how the heartwalls deform. Processing these images opens numer-ous �elds of applications, like the detection and anal-ysis of pathologies.Since it is characteristic of the good health of theheart, the left ventricle motion and deformation hasbeen extensively studied by medical image process-ing groups as well as hospitals. Since its creation in1989, our group has pioneered work in the use of de-formable models to extract the left ventricle ([4, 2]).Other groups as well have also made various contri-butions to understanding the complex deformation ofthe ventricle [6, 7, 5].Over the last ten years, many surface reconstructionproblems have been formulated as the minimizationof an energy function corresponding to a model of thesurface. Although previous approaches based on gen-eral deformable surfaces [4] give satisfactory results,they involve large linear systems to solve and heavy

structures. This is why the parametric model pre-sented here works better when dealing with a hugeamount of data like a sequence of 3D images. The ad-vantage of parametric deformable templates like su-perquadrics or hyperquadrics is their small numberof parameters to represent a shape. However, if su-perquadric shapes give a good global approximation toa surface, the set of shapes described by superquadricsis too limited to approximate precisely complex sur-faces. In [3], an implicit approach is used to re�ne theinitial approximation. In a previous paper [1], we in-troduced a deformable superquadric model based on asuperquadric �t followed by a Free Form Deformation(FFD).After a brief review of the parametric model in section2, we present in section 3 di�erent approaches to usethis model to track surfaces in a sequence of 3D im-ages. We then show in section 4 experimental resultsfor an e�cient tracking of the deformation of the leftventricle in di�erent kinds of 3D medical images.2 Parametric Model to Fit unstruc-trured 3D data pointsIn this section, we sketch the deformablemodel thatwe use for e�cient tracking of the cardiac left ventri-cle. For more details and references on the completealgorithm, see [1]. First we �t 3D data with a superel-lipsoid, and then we re�ne this crude approximationusing Free Form Deformations (FFD).2.1 Fit 3D data with superquadricsSuperquadrics form a family of implicit surfaces ob-tained by extension of conventional quadrics. Superel-lipsoids are de�ned by the implicit equation:0@ � xa1� 2�2 +� ya2� 2�2! �2�1 + � za3� 2�11A �12 = 1: (1)Suppose that the data we want to �t with the superel-lipsoid are a set of 3D points (xd; yd; zd); i = 1; � � � ; N .We seek for the minimum of the following energy:E(A) = NXi=1 [1� F (xd; yd; zd; a1; a2; a3; �1; �2)]2 ; (2)



where F is the function de�ned by equation (1).2.2 Re�nement of the �t with FFDWe now have a parametric representation of the 3Ddata. We have to re�ne this representation. We usea global volumetric deformation called FFD. This isa tool devoted to the deformation of solid geometricmodels in a free-form manner. The main interest ofFFD is that the resulting deformation of the object isjust de�ned by a small number of points. This typicalfeature allows us to represent voluminous 3D data bymodels de�ned by a small number of parameters.2.3 De�nition of FFDAs an analogy, to understand FFD, consider a rub-ber box in which the object we want to deform is em-bedded. Control points are disposed on a regular vol-umetric grid in the box. The object follows in an waysimilar to a piece of �exible plastic the volumetric de-formation of the box. The object points are linkedto the box by:X = BP , where B is the deforma-tion matrix ND�NP (ND: number of points on thesuperellipsoid, NP : number of control points), P isa matrix NP � 3 which contains coordinates of thecontrol points Pijk, and X is a matrix ND � 3 withcoordinates of the model points. The elements of Bare made of the tensor product of trivariate Bernsteinpolynomials. The deformation of the object is speci-�ed by moving the control points Pijk from their lat-tice positions. The position of a point of the deformedobject is then computed with the previous relation.2.4 The inverse problemWe use FFD to re�ne the representation of the datawith the superellipsoid. Therefore we need to solve theinverse problem: �rst compute a displacement �eldbetween the superellipsoid and the data, and then,after having put the superellipsoid in a 3D box, searchthe deformation of this box which will best minimizethe displacement �eld.2.5 Iterative algorithmTo represent 3D data with the previous parametricdeformable model, we use an iterative two-step algo-rithm:� Let P 0 be the parallelepiped box of controlpoints; X0 = BP 0 represents the set of pointsof the initial superellipsoid.� We iterate the following two steps:Step 1 : Computation of the displacement �eld �Xnsuch as: Xan = Xn + �XnStep 2 : Computation of the control points P n+1 byminimization of kBP �Xank2Computation of the deformed model:Xn+1 = BP n+1Stop test: least-squares error kXn+1 �XnkAn essential feature of this approach is that we usea volumetric deformation to deform a surfacic shape.

Figure 1:A is a detailled example of the complete al-gorithm. In practice, we use boxes of size 5 � 5 � 5with data composed of around 6.000 points. So weget a compression ratio of 50. Results are presentedin �gure 1:B.3 Dynamic Tracking of the ventriclewith the Parametric ModelThe parametric deformable model presented in theprevious section allows us to represent a large numberof unstructured 3D data points by a small number ofparameters. On cardiac images, we obtain a compres-sion rate of about 50 [1]. We now apply this model totrack the left ventricle in various kinds of cardiac im-ages. We �rst explain the chosen method to analyse atime sequence and then show examples on 2 sequences.Finally we use the parametric representation to inferquantitative information on the deformation.3.1 Dealing with a time sequenceGeneral deformable models usually need an initial-ization that is close enough to the solution. This iswell suited for tracking in medical images since the de-formation between two images is small and the modelcan start with the solution in the previous image asinitialization for the current one. Deformable contourshave been used for tracking boundaries since their in-troduction by Kass, Witkin and Terzopoulos [8]. Thiswas applied to spatial tracking of ventricle boundaryin successive cross sections of a 3D MR image in [4],in view of 3D reconstruction from a sequence of 2Dmodels. With our parametric deformable model, theinitialization is made automatically through the su-perquadric �t (see section 2.1), and then re�ned bythe FFD. It is thus possible to make the reconstruc-tion of each data set independently. However, havinga previous re�ned model permits us to get increasingprecision in the reconstruction. This leads to threepossible approaches for tracking that are presented in�gure 2.3.2 Independent RepresentationThis �rst approach consists of applying to each 3Dimage the complete model described so far. The ad-vantage is that to de�ne the model at time n, we donot need previous model information but only the su-perellipsoid and the control point box for this data.However this approach does not make use of the factthat the result at time n is close to the one alreadycomputed at time n � 1. This means that there is notemporal processing but a successive computation ofstatic frames.3.3 Recursive RepresentationThis method is a real temporal tracking. The com-plete model is applied only to the data of the �rst im-age, and then for time n, the model is obtained fromthe one at time n� 1. This means that the shape ob-tained at time n � 1 is itself put into a control pointbox instead of a superellipsoid in section 2.2. It re-sults that the surface at time n is obtained from thesuperellipsoid at time 1 iteratively deformed by thesequence of the n �rst control point boxes. This hasthe advantage of being more and more precise when



time increases since an accumulation of boxes allowsthe reconstruction of more complex shapes. However,since all previous boxes are needed to reconstruct thedata at time n, this may be a di�culty when dealingwith a long sequence of images.3.4 Independent Representation with areference deformationThe third approach is a trade-o� between the twoprevious ones. The complete model is applied only tothe data of the �rst image, and then for time n, themodel is obtained from the one at time 1. This meansthat the �rst reconstruction at time 1 is considered asa reference deformation of the superellipsoid. At timen, this reference shape is put into a control point boxlike in section 2.2. It results that the surface at time nis obtained from the superellipsoid at time 1, followedby two deformations de�ned by the reference controlpoint box and the current box. This has the advan-tage of both previous approaches. The approximationis more precise, being the iteration of two boxes andeach data set can be retrieved from only one box andthe �rst box and superellipsoid parameters. This isthus independent of the length of the time sequence.Since in practical applications, this method is as pre-cise as the second one (using the iterative e�ect of nboxes), as shown in �gure 3, this is the one we havechosen for the results presented in the next section.4 Application to the LV Wall Trackingin spatio-temporal data 3D+TWe present in this section applications of the al-gorithm on 3D medical data stemming from cardiacimagery. The data have been obtained from 2 kindsof acquisition: nuclear medecine (SPECT image) andvolumetric X-ray scanner (Dynamic Spatial Recon-structor - Mayo Clinic). A �rst problem to deal withis the segmentation of the data, in order to get a set of3D points which corresponds to the structure we wantto study (the cardiac left ventricle). We used morpho-logical operators to segment the images, and extractan isosurface from the resulting binary images to getthe sets of 3D points that we need for the reconstruc-tion algorithm. The SPECT MIBI image is a volumeof 64 � 64 � 64 voxels. The DSR image is an imagewith very good resolution (98� 100� 110 for a voxelof 0.926 mm3).We present the results of tracking of the left ventri-cle in 2 time sequences (successive time frames in acardiac cycle) of 3D images:Nuclear medicine data (SPECT MIBI) Thissequence is composed of 8 frames. Figure 4:A showsthe dynamic sequence on a cross section, with the seg-mented and reconstructed surfaces superimposed onthe grey level image. The model is de�ned by a 5�5�5box. Figure 4:B represents the same result for 3D ren-dering of the surface.Scanner data (DSR) This sequence is composedof 18 time frames. Figure 5 shows the dynamic se-quence on a cross section, with the segmented epi-cardium and endocardium surfaces superimposed on

the grey level image. It also shows the reconstructionof these two surfaces using either one or two models.Using only one model means that the two surfaces areput in a same control points box, and the minimisa-tion of equation (2.3) is done simultaneously on theunion of both displacement �elds. This shows thatour model can handle the deformation of many con-nected components at the same time by merging therespective displacement constraints. This makes nodi�culty since we have a 3D box which de�nes a re-ally 3D deformation.4.1 MotionThe reconstruction and representation of a time se-quence of surfaces by a sequence of parametric modelspermits one to visualize the estimation of the deforma-tion in time. This �ow �eld can then be used to extractcharacteristic parameters and give a diagnostic inter-pretation for the patient. Such a set of parameters isobtained in [6] to quantify the left ventricle deforma-tion. These parameters are similar to those used bythe cardiologist for diagnosis. With the same goal inmind, we use our sequence of models to extract thetime trajectory of each point of the surface during acardiac cycle. The approximation we make is that fora point in a frame, its position in the next frame isthe closest point to the current data. This hypothesisis valid in the case of small deformation, which meansthat the time step is not too large. Note also that theinitial superellipsoid match allows us to have a globalregistration which is then re�ned.4.1.1 TrajectoriesListing the successive positions of a point of the re-constructed surface model along the time sequence,we obtain the trajectory followed by this point. Fig-ure 6 shows the trajectories of the node points betweenthe diastole and the systole. These are represented onfour di�erent viewpoints to appreciate better the mo-tion. It can be seen, especially on the upper and lowerviews, that the model makes explicit the characteristictwist component of the motion. This torsion could bequanti�ed to detect some pathologies of the ventricle.4.1.2 Range of the displacementsThe pointwise tracking of the deformation permits togive an evaluation of the velocity �eld during the se-quence. The visualization of these displacements bydi�erent colors, according to their range, on the sur-face shows up clearly areas on the ventricle where thedeformation is weak. This vizualisation could be usedto allow the localization of pathologies like infarctedregions.5 ConclusionWe presented a new approach to shape reconstruc-tion and tracking applied to 3-D medical data. It isbased on a parametric deformable model that give acompact representation of a set of points in a 3-D im-age, by reconstruction of the displacement �eld be-tween the data and model. Three approaches werepresented to use this model in order to track e�cientlythe left ventricle wall in a sequence of 3D images dur-ing a cardiac cycle. The deformation �eld extracted
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Figure 1: A: From the superellipsoid to the �nalmodel. Top left: data. Top right: superellipsoid �tand initial box of control points. Bottom left: dis-placement �eld between data and the superellipsoid.Bottom right: �nal model after minimization of thedisplacement �eld. B: Segmentation and representa-tion of the epicardium (external wall of the ventricle)for the 3D image of the left ventricle (SPECT MIBI).Top: isosurface superimposed to the image. Bottom:reconstruction by the model.
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Figure 2: Three di�erent approaches to deal with atemporal sequence. 1 : Data reconstruction at eachtime step using the superquadric and FFD �t. 2 :Data reconstruction at time step n using only the FFDfrom the model found at time n � 1. 3 : Data recon-struction at time step n using only the FFD from themodel found at time 1.

Figure 3: Dealing with a time sequence. Time evo-lution of the least square error between the data andmodel for 8 frames. The three curves correspond tothe three approaches. The larger error is obtainedwith the approach 1.
Figure 4: A: Segmentation and representation of theepicardium (external wall of the ventricle) for a timesequence 3D+T of the left ventricle during the cardiaccycle (SPECT MIBI); visualisation of a cross section.Top : isosurface superimposed on the image. Bottom :reconstruction by the model. B: Time sequence ofthe epicardium. On the left : isosurface obtained bydata segmentation SPECT MIBI (6000 points). Onthe right : representation by the parametric model(130 parameters).



Figure 5: Segmentation and representation of the epi-cardium and endocardium for a time sequence 3D+Tof the left ventricle during the cardiac cycle (ScannerDSR); visualisation of a cross section. Top : the twoisosurfaces superimposed on the image. Middle : re-construction by two separate models. Bottom : simul-taneous reconstruction of both surfaces by one model.

Figure 6: Trajectories of the model points during acardiac cycle from 4 viewpoints. The two surfaces rep-resent the models at end of diastole (dilatation) andsystole (contraction).

Figure 7: Range of the displacements of the modelpoints during a cardiac cycle (light areas correspondto weak deformations).


