November 19-21, 1995

Tracking medical 3D data
with a parametric deformable model

Eric BARDINET! | Laurent D. COHEN?, Nicholas AYACHE!
LINRIA, B.P. 93 - 06902 Sophia Antipolis CEDEX, France.

2 CEREMADE, U.R.A. CNRS 749, Université Paris IX - Dauphine, France.
Email: bard@sophia.inria.fr

Abstract

Thas paper describes a method to fit and track surfaces.
We suppose that we have already extracted from a 3-D im-
age some data defined by a set of points. The fitting step
makes use of a superquadric model and solves an inverse
problem for free-form deformations. This is then used for
tracking surfaces in a time sequence of 3D images. We
present different approaches to track surfaces in a sequence
of 3D 1mages. From the tracking, we deduce a estimation
of motion and visualize a velocity map. This method is
applied to 2 sequences of different kinds of medical images
to track the cardiac left ventricle.

1 Introduction

The analysis of cardiac deformations has given rise
to a large amount of research in medical image under-
standing. Indeed, cardiovascular diseases are the first
cause of mortality in developed countries. Various
imaging techniques make it possible to get dynamic
sequences of 3D images, that is 3D+T. The temporal
resolution of these techniques is good enough to ob-
tain a sufficient number of images between the muscle
contraction (systole) and dilatation (diastole). These
images are perfectly adapted to study the behavior of
the cardiac system since they visualize how the heart
walls deform. Processing these images opens numer-
ous fields of applications, like the detection and anal-
ysis of pathologies.

Since it is characteristic of the good health of the
heart, the left ventricle motion and deformation has
been extensively studied by medical image process-
ing groups as well as hospitals. Since its creation in
1989, our group has pioneered work in the use of de-
formable models to extract the left ventricle (|4, 2]).
Other groups as well have also made various contri-
butions to understanding the complex deformation of
the ventricle [6, 7, 5].

Over the last ten years, many surface reconstruction
problems have been formulated as the minimization
of an energy function corresponding to a model of the
surface. Although previous approaches based on gen-
eral deformable surfaces |4] give satisfactory results,
they involve large linear systems to solve and heavy

structures. This is why the parametric model pre-
sented here works better when dealing with a huge
amount of data like a sequence of 3D images. The ad-
vantage of parametric deformable templates like su-
perquadrics or hyperquadrics is their small number
of parameters to represent a shape. However, if su-
perquadric shapes give a good global approximation to
a surface, the set of shapes described by superquadrics
is too limited to approximate precisely complex sur-
faces. In [3], an implicit approach is used to refine the
initial approximation. In a previous paper [1]|, we in-
troduced a deformable superquadric model based on a
superquadric fit followed by a Free Form Deformation
(FFD).

After a brief review of the parametric model in section
2, we present in section 3 different approaches to use
this model to track surfaces in a sequence of 3D im-
ages. We then show in section 4 experimental results
for an efficient tracking of the deformation of the left
ventricle in different kinds of 3D medical images.

2 Parametric Model to Fit unstruc-
trured 3D data points

In this section, we sketch the deformable model that
we use for efficient tracking of the cardiac left ventri-
cle. For more details and references on the complete
algorithm, see [1]. First we fit 3D data with a superel-
lipsoid, and then we refine this crude approximation
using Free Form Deformations (FFD).

2.1 Fit 3D data with superquadrics

Superquadrics form a family of implicit surfaces ob-
tained by extension of conventional quadrics. Superel-
lipsoids are defined by the implicit equation:
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Suppose that the data we want to fit with the superel-
lipsoid are a set of 3D poiuts (z4, ya, z¢),¢ = 1,---, N.
We seek for the minimum of the following energy:
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Step 1:| Computation of the displacement field 6X,

Step 2:| Computation of the control points P,y by

where F' is the function defined by equation (1).
2.2 Refinement of the fit with FFD

We now have a parametric representation of the 3D
data. We have to refine this representation. We use
a global volumetric deformation called FFD. This is
a tool devoted to the deformation of solid geometric
models in a free-form manner. The main interest of
FFD is that the resulting deformation of the object is
just defined by a small number of points. This typical
feature allows us to represent voluminous 3D data by
models defined by a small number of parameters.

2.3 Definition of FFD

As an analogy, to understand FFD, consider a rub-
ber box in which the object we want to deform is em-
bedded. Control points are disposed on a regular vol-
umetric grid in the box. The object follows in an way
similar to a piece of flexible plastic the volumetric de-
formation of the box. The object points are linked
to the box by:X = BP, where B is the deforma-
tion matrix ND x NP (N D: number of points on the
superellipsoid, N P: number of control points), P is
a matrix NP x 3 which contains coordinates of the
control points P;jr, and X is a matrix ND x 3 with
coordinates of the model points. The elements of B
are made of the tensor product of trivariate Bernstein
polynomials. The deformation of the object is speci-
fied by moving the control points P;jx from their lat-
tice positions. The position of a point of the deformed
object is then computed with the previous relation.

2.4 The inverse problem

We use FFD to refine the representation of the data
with the superellipsoid. Therefore we need to solve the
inverse problem: first compute a displacement field
between the superellipsoid and the data, and then,
after having put the superellipsoid in a 3D box, search
the deformation of this box which will best minimize
the displacement field.

2.5 Iterative algorithm

To represent 3D data with the previous parametric
deformable model, we use an iterative two-step algo-
rithm:

e Let Py be the parallelepiped box of control
points; Xo = BP, represents the set of points
of the initial superellipsoid.

o We iterate the following two steps:

such as: X0 =X, +6X,

minimization of || BP — X ||?

Computation of the deformed model:

Xn+1 = BP71+1
Stop test: least-squares error || X 41 — X ||

An essential feature of this approach is that we use
a volumetric deformation to deform a surfacic shape.

Figure 1: A is a detailled example of the complete al-

gorithm. In practice, we use boxes of size 5 X 5 x 5

with data composed of around 6.000 points. So we

get a compression ratio of 50. Results are presented

in figure 1:B.

3 Dynamic Tracking of the ventricle
with the Parametric Model

The parametric deformable model presented in the
previous section allows us to represent a large number
of unstructured 3D data points by a small number of
parameters. On cardiac images, we obtain a compres-
sion rate of about 50 [1]. We now apply this model to
track the left ventricle in various kinds of cardiac im-
ages. We first explain the chosen method to analyse a
time sequence and then show examples on 2 sequences.
Finally we use the parametric representation to infer
quantitative information on the deformation.

3.1 Dealing with a time sequence

General deformable models usually need an initial-
ization that is close enough to the solution. This is
well suited for tracking in medical images since the de-
formation between two images is small and the model
can start with the solution in the previous image as
initialization for the current one. Deformable contours
have been used for tracking boundaries since their in-
troduction by Kass, Witkin and Terzopoulos [8]. This
was applied to spatial tracking of ventricle boundary
in successive cross sections of a 3D MR image in [4],
in view of 3D reconstruction from a sequence of 2D
models. With our parametric deformable model, the
initialization is made automatically through the su-
perquadric fit (see section 2.1), and then refined by
the FFD. It is thus possible to make the reconstruc-
tion of each data set independently. However, having
a previous refined model permits us to get increasing
precision in the reconstruction. This leads to three
possible approaches for tracking that are presented in
figure 2.
3.2 Independent Representation

This first approach consists of applying to each 3D
image the complete model described so far. The ad-
vantage is that to define the model at time n, we do
not need previous model information but only the su-
perellipsoid and the control point box for this data.
However this approach does not make use of the fact
that the result at time n is close to the one already
computed at time n — 1. This means that there is no
temporal processing but a successive computation of
static frames.

3.3 Recursive Representation

This method is a real temporal tracking. The com-
plete model is applied only to the data of the first im-
age, and then for time n, the model is obtained from
the one at time n — 1. This means that the shape ob-
tained at time n — 1 is itself put into a control point
box instead of a superellipsoid in section 2.2. It re-
sults that the surface at time n is obtained from the
superellipsoid at time 1 iteratively deformed by the
sequence of the n first control point boxes. This has
the advantage of being more and more precise when



time increases since an accumulation of boxes allows
the reconstruction of more complex shapes. However,
since all previous boxes are needed to reconstruct the
data at time n, this may be a difficulty when dealing
with a long sequence of images.

3.4 Independent Representation with a
reference deformation

The third approach is a trade-off between the two
previous ones. The complete model is applied only to
the data of the first image, and then for time n, the
model is obtained from the one at time 1. This means
that the first reconstruction at time 1 is considered as
a reference deformation of the superellipsoid. At time
n, this reference shape is put into a control point box
like in section 2.2. It results that the surface at time n
is obtained from the superellipsoid at time 1, followed
by two deformations defined by the reference control
point box and the current box. This has the advan-
tage of both previous approaches. The approximation
is more precise, being the iteration of two boxes and
each data set can be retrieved from only one box and
the first box and superellipsoid parameters. This is
thus independent of the length of the time sequence.
Since in practical applications, this method is as pre-
cise as the second one (using the iterative effect of n
boxes), as shown in figure 3, this is the one we have
chosen for the results presented in the next section.

4 Application to the LV Wall Tracking
in spatio-temporal data 3D+T

We present in this section applications of the al-
gorithm on 3D medical data stemming from cardiac
imagery. The data have been obtained from 2 kinds
of acquisition: nuclear medecine (SPECT image) and
volumetric X-ray scanner (Dynamic Spatial Recon-
structor - Mayo Clinic). A first problem to deal with
is the segmentation of the data, in order to get a set of
3D points which corresponds to the structure we want
to study (the cardiac left ventricle). We used morpho-
logical operators to segment the images, and extract
an isosurface from the resulting binary images to get
the sets of 3D points that we need for the reconstruc-
tion algorithm. The SPECT MIBI image is a volume
of 64 x 64 x 64 voxels. The DSR image is an image
with very good resolution (98 x 100 x 110 for a voxel
of 0.926 mm?®).

We present the results of tracking of the left ventri-
cle in 2 time sequences (successive time frames in a
cardiac cycle) of 3D images:

Nuclear medicine data (SPECT MIBI) This
sequence is composed of 8 frames. Figure 4:A shows
the dynamic sequence on a cross section, with the seg-
mented and reconstructed surfaces superimposed on
the grey level image. The modelis defined by a 5x5%x5
box. Figure 4:B represents the same result for 3D ren-
dering of the surface.

Scanner data (DSR) This sequence is composed
of 18 time frames. Figure 5 shows the dynamic se-
quence on a cross section, with the segmented epi-
cardium and endocardium surfaces superimposed on

the grey level image. It also shows the reconstruction
of these two surfaces using either one or two models.
Using only one model means that the two surfaces are
put in a same control points box, and the minimisa-
tion of equation (2.3) is done simultaneously on the
union of both displacement fields. This shows that
our model can handle the deformation of many con-
nected components at the same time by merging the
respective displacement constraints. This makes no
difficulty since we have a 3D box which defines a re-
ally 3D deformation.

4.1 Motion

The reconstruction and representation of a time se-
quence of surfaces by a sequence of parametric models
permits one to visualize the estimation of the deforma-
tion in time. This flow field can then be used to extract
characteristic parameters and give a diagnostic inter-
pretation for the patient. Such a set of parameters is
obtained in [6] to quantify the left ventricle deforma-
tion. These parameters are similar to those used by
the cardiologist for diagnosis. With the same goal in
mind, we use our sequence of models to extract the
time trajectory of each point of the surface during a
cardiac cycle. The approximation we make is that for
a point in a frame, its position in the next frame is
the closest point to the current data. This hypothesis
is valid in the case of small deformation, which means
that the time step is not too large. Note also that the
initial superellipsoid match allows us to have a global
registration which is then refined.

4.1.1 Trajectories

Listing the successive positions of a point of the re-
constructed surface model along the time sequence,
we obtain the trajectory followed by this point. Fig-
ure 6 shows the trajectories of the node points between
the diastole and the systole. These are represented on
four different viewpoints to appreciate better the mo-
tion. It can be seen, especially on the upper and lower
views, that the model makes explicit the characteristic
twist component of the motion. This torsion could be
quantified to detect some pathologies of the ventricle.

4.1.2 Range of the displacements
The pointwise tracking of the deformation permits to
give an evaluation of the velocity field during the se-
quence. The visualization of these displacements by
different colors, according to their range, on the sur-
face shows up clearly areas on the ventricle where the
deformation is weak. This vizualisation could be used
to allow the localization of pathologies like infarcted
regions.
5 Conclusion

We presented a new approach to shape reconstruc-
tion and tracking applied to 3-D medical data. It is
based on a parametric deformable model that give a
compact representation of a set of points in a 3-D im-
age, by reconstruction of the displacement field be-
tween the data and model. Three approaches were
presented to use this model in order to track efficiently
the left ventricle wall in a sequence of 3D images dur-
ing a cardiac cycle. The deformation field extracted



permits to visualize clearly of high and low displace-
ments. This could be used to detect infarcted areas.
Experimental results have been shown for automatic
shape tracking in time sequences of 2 kinds of medical
images.
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Figure 1: A: From the superellipsoid to the final
model. Top left: data. Top right: superellipsoid fit
and initial box of control points. Bottom left: dis-
placement field between data and the superellipsoid.
Bottom right: final model after minimization of the
displacement field. B: Segmentation and representa-
tion of the epicardium (external wall of the ventricle)
for the 3D image of the left ventricle (SPECT MIBI).
Top: isosurface superimposed to the image. Bottom:
reconstruction by the model.



Figure 2: Three different approaches to deal with a
temporal sequence. 1 : Data reconstruction at each
time step using the superquadric and FFD fit. 2 :
Data reconstruction at time step n using ouly the FFD
from the model found at time n — 1. 3 : Data recon-
struction at time step n using only the FFD from the
model found at time 1.
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Figure 3: Dealing with a time sequence. Time evo-
lution of the least square error between the data and
model for 8 frames. The three curves correspond to
the three approaches. The larger error is obtained
with the approach 1.

Figure 4: A: Segmentation and representation of the
epicardium (external wall of the ventricle) for a time
sequence 3D+ T of the left ventricle during the cardiac
cycle (SPECT MIBI); visualisation of a cross section.
Top : isosurface superimposed on the image. Bottom :
reconstruction by the model. B: Time sequence of
the epicardium. On the left : isosurface obtained by
data segmentation SPECT MIBI (6000 points). On
the right : representation by the parametric model
(130 parameters).



Figure 5: Segmentation and representation of the epi-
cardium and endocardium for a time sequence 3D+T
of the left ventricle during the cardiac cycle (Scanner
DSR); visualisation of a cross section. Top : the two
1sosurfaces superimposed on the image. Middle : re-
construction by two separate models. Bottom : simul-

taneous reconstruction of both surfaces by one model.

Figure 6: Trajectories of the model points during a
cardiac cycle from 4 viewpoints. The two surfaces rep-
resent the models at end of diastole (dilatation) and
systole (contraction).
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Figure 7: Range of the displacements of the model
points during a cardiac cycle (light areas correspond
to weak deformations).




