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Abstract

Minimal path or geodesic methods have been widely applied to image analysis and
medical imaging [18]. However, traditional minimal path methods do not consider the
effect of the curvature. In this paper, we propose a novel curvature penalized minimal
path approach implemented via the anisotropic fast marching method and asymmetric
Finsler metrics. We study the weighted Euler’s elastica based geodesic energy and give
an approximation to this energy by an orientation-lifted Finsler metric so that the pro-
posed model can achieve a global minimum of this geodesic energy between the endpoint
and initial source point. We also introduce a method to simplify the initialization of the
proposed model. Experiments show that the proposed curvature penalized minimal path
model owns several advantages comparing to the existed state-of-the-art minimal path
models without curvature penalty both on synthetic and real images.

1 Introduction

The classical snake model [9] for boundary integration and curve extraction was proposed
by Kass et al. A snake is a parametrized curve C (locally) minimizing the energy functional:

Esnake(C) =
Z 1

0
w1kC0(t)k2 +w2kC00(t)k2 +P(C(t))dt, (1)

with appropriate boundary conditions at the endpoints t = 0,1. Parameters w1 and w2 relate
to the elasticity of and rigidity of the curve C, hence weight its internal forces. Importantly,
the second derivative kC00(t)k penalization amounts to a prior of low curvature. Potential
function P attracts the curve to image features, where by design it takes the lowest values.
Thus the active contour C is under control of the internal forces and image force. In [6, 7], the
authors added an extra balloon inflation force allowing a less demanding initialization and
in [24], the authors proposed a gradient vector field to control the curve evolution. The main
practical drawback of the snake model is that the curve optimization procedure is often stuck
at local minima of the energy functional, which makes results sensitive to curve initialization.
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Cohen and Kimmel proposed in [8] a geodesic or minimal path model, based on the
energy functional:

Egeo(C) =
Z 1

0
(w+P(C(t)))kC0(t)kdt. (2)

In contrast with classical snake energy (1), this first order model does not penalize the
second derivative of the curve C, despite the relevance of curvature for the applications.
Thanks to this simplification, a fast, reliable and globally optimal numerical method allows
to find the energy minimizing curve with prescribed endpoints; namely the fast marching
algorithm [20], based on the formalism of viscosity solutions to Eikonal Partial Differential
Equations (PDE). These mathematical and algorithmic guarantees have important practical
consequences, which allowed to deeply apply the minimal path model (2) and its extensions
to image analysis and medical imaging [18]. Li and Yezzi [12] proposed a radius-lifted
minimal path technique to extract the tubular boundaries and centrelines simultaneously.
Péchaud et al. [17] proposed an orientation and radius-lifted isotropic minimal path, embed-
ding the orientation information to the geodesic energy. All the mentioned methods above
are isotropic minimal path techniques, in which the potential P depends only on the posi-
tions. Benmansour and Cohen [3] proposed an anisotropic radius-lifted minimal path model
in which the potential P depends not only the positions but also the tangential directions
C0. This approach solves the shortcut problem that happens with the classical isotropic min-
imal path model. Chen et al. [4] proposed a region constrained minimal path model by
assuming that the geodesic should be included completely inside the constrained region, to
overcome the overlapping extraction problem. The keypoints method is a variant minimal
paths method [2] which will automatically add initial source points during the fast marching
front propagation and may easily apply to find a closed contour with only one given point.
Some authors [5, 10] improved this keypoints minimal path method with automatic stopping
criteria for open curves extraction.

Bekkers et al. [1] introduced a new geodesic model based on a sub-Riemannian metric
and PDE approach which is related to curvature regularization. Graph based curvature-
penalty models are well studied. Schoenemann et al. [19] proposed a curvature based glob-
ally optimal segmentation method by an extended graph representation and minimum ratio
cycles. Strandmark et al. [22] introduce a shortest path model with curvature and torsion, in
which the curve can be approximated by B-Splines. The path energy then can be minimized
by Dijkstra’s algorithm.

(a) (b) (c) (d)

Figure 1: Extraction results from different methods (see text).
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Motivation of using curvature penalty: minimal path methods are first order models (2),
which do not penalize second order derivatives, i.e. the curvature, and therefore do not en-
force the smoothness of the minimizing curve C. Hence those models cannot get good results
when extracting curves with gaps and high noise. The model chosen in this paper reintro-
duces curvature, in the form of weighted Euler elastica’s as studied by Mumford [16]. An
adequate numerical implementation, leveraging orientation lifting, asymmetric Finsler met-
rics and anisotropic fast marching, still allows to find the globally minimizing curves with
prescribed endpoints and tangents. We compare our model (red lines) with the classical min-
imal path [8] (cyan lines) and orientation-lifted minimal path [17] (blue lines) in Fig. 1. The
yellow dots are the initial positions and blue dots are the end positions. In Fig. 1(a), we show
the extraction results for a curvilinear structure with a big gap. Our model (red) smoothly
completes the structure, in contrast with the straight line completion with broken angles of
alternatives. Fig. 1(b) is an image with high noise, (c) is the result overlapped on the clean
original image from the proposed model and (d) is the result using [8], while the yellow line
indicates the groundtruth centreline. Curvature penalty thus allows both the completion of
large gaps in structures, and the resilience to high noises.

The paper is organized as follows: in Section 2, we briefly introduce the existing min-
imal path methods and the state-of-the-art anisotropic fast marching method with arbitrary
Finsler metric. We define Euler’s elastica geodesic energy in Section 3 and orientation-lifted
potential computation in Section 4. Numerical experiments are presented in Section 5.

2 Background

2.1 Minimal path model
The minimal path problem [18] is posed on a bounded domain W, and a metric F prescribing
norm Fx (potentially asymmetric) at each point x 2 W. We denote by ¡ the collection of
Lipschitz paths g : [0,1]! W, and we measure path length through the metric F :

lF (g) =
Z 1

0
Fg(t)(ġ(t))dt, (3)

where ġ(t) = d
dt g(t). The geodesic distance U(x) from a set of initial source points W , is the

minimal energy of any path joining x 2 W to W:

U(x) := min{lF (g); g 2 ¡, g(1) = x, g(0) 2W}. (4)

The function U , called the minimal action map, is the unique viscosity solution to an Eikonal
PDE, defined in terms of the dual metric F⇤. For all x 2 W one has U(x) = 0 if x 2W and
otherwise

F⇤
x (�—U(x)) = 1, where F⇤

x (u) = sup
v6=0

hu,vi
Fx(v)

. (5)

The metrics F considered in this paper combine a symmetric part, defined in terms of a
symmetric positive tensor field M, and an asymmetric part involving a vector field w:

Fx(u) :=
p

hu,M(x)ui�hw(x),ui. (6)

We require hw(x),M(x)�1w(x)i < 1 to ensure the metric positivity. Equation (6) defines a
Finsler metric in general, an anisotropic Riemannian metric if the vector field w is identically
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zero, and an isotropic metric if in addition the tensor field M is everywhere diagonal. The
fast marching method [20] solves the Eikonal PDE in the isotropic case. Efficient adaptations
to Riemannian and Finsler metrics are presented in [14] and [15] respectively.
Isotropic Case: if the tensor field is proportional to the identity matrix M(x)= (w+P(x))2Id ,
and if w = 0, then (3) becomes (2) the classical minimal path model [8] proposed by Cohen
and Kimmel.

The image domain W can be extended by product with abstract parameter spaces: W =
W⇥S1 ⇥R1, typically accounting for the orientation q 2 S1, or radius r 2R1 = [rmin,rmax]
of tubular structures present in the processed image. A lifted path g = (G,q ,r) has the length

l(g) =
Z 1

0
P(g(t))

q
kĠ(t)k2 + e|q̇(t)|2 +z |ṙ(t)|2 dt, (7)

corresponding (6) to the diagonal tensor field M(x) of entries P(x)2(1,1,e,z ). Li and
Yezzi [12] introduced the radii based model (e = 0) and used it to extract tubular struc-
ture centrelines and boundaries at the same time. Orientation lifting (e 6= 0) often improves
the results [17], but suffers from the fact that nothing in (7) constrains the path direction Ġ to
align with the tubular structure orientation q , a point which is addressed in this paper.
Anisotropic Riemannian case: non diagonal tensor fields M improve on isotropic minimal
path techniques by facilitating path propagation in specific directions, such as tangentially to
tubular structures present in the processed image [3, 5].
Finsler case: active contours based on Finsler measures of path length are applied in [13]
to image segmentation. Our approach differs by the choice of Finsler metric, the connection
with Euler elastica’s, and the use of a fast marching method for the Eikonal PDE instead of
the less efficient sweeping method.

2.2 Anisotropic Fast Marching Method with Arbitrary Finsler Metric
To solve the problem presented in (4) in the general case of an arbitrary Finsler asymmetric
metric F , a new fast marching method using anisotropic stencil refinement (FM-ASR) was
introduced by Mirebeau [15].

Numerical methods to compute the minimal action map U , see (4), introduce a discretiza-
tion grid Z of image domain W or extended domain W, and for each x 2 Z a small mesh S(x)
of a neighbourhood of x with vertices in Z. An approximation of U is given by the solution
of the following fixed point problem: find U : Z ! R such that (i) U(x) = 0 for all initial
points x 2W , and (ii) for all x 2 Z \W:

U(x) = min
y2∂S(x)

Fx(y� x)+ IS(x)U(y), (8)

where IS denotes piecewise linear interpolation on a mesh S. The expression (8) reflects the
fact that the minimal path gx,W , joining x to W , needs to cross the stencil boundary ∂S(x)
at least once at some point y; hence it is the concatenation of a small path joining x to y, of
approximate length Fx(y� x), and of gy, which energy is approximated by interpolation. A
striking fact is that this N-dimensional fixed point system, with N = #(Z), can be solved in a
single pass using the Fast Marching algorithm [23], provided the stencils S(x) satisfy some
geometric properties depending on the local Finsler metric Fx(·). An adaptive construction
of such stencils was introduced in [14, 15], which led to breakthrough improvements in terms
of computation time and accuracy for strongly anisotropic geodesic energy metrics, as in our
application. It relies on anisotropic stencil refinement, which combines in an optimal way
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the geometric structure given by the asymmetric Finsler metric, and the arithmetic structure
of the cartesian discretization grid.

3 Curvature Penalized Minimal Path model
Euler’s Elastica bending Energy: Following Mumford [16], we consider weighted Euler
elasticas, minimizing the following bending energy:

L(G) =
Z L

0

� 1
a(s)

+
1

b (s)
k2(s)

�
ds. (9)

L denotes the classical curve length (a free variable in our approach), s is the arc-length
parameter, and G : [0, L]!W is a curve with non-vanishing velocity vector. k is the curvature
and a , b are two positively weighted functions, usually related to the image information and
which will be defined in Section 4.

Our first step is to cast the elastica energy (9) in the form of path length with respect to a
degenerate Finsler metric. For that purpose, let S1 = [0,2p[ be the space of angles, with pe-
riodic boundary conditions, and for each angle q let~vq = (cosq ,sinq) be the corresponding
unit vector. For g = (G,q) 2 W⇥S1 and ġ = (Ġ, q̇) 2 R2 ⇥R we define

F•
g (ġ) :=

(
kĠk+ |q̇ |2/kĠk if Ġ is positively proportional with~vq ,

• otherwise.
(10)

Consider an curve G parametrized by arc-length, and its orientation lifting g = (G,q), with
Ġ(s) :=~vq(s). By assumption one has kĠ(s)k = 1, hence G̈(s) = k(s)Ġ(s)?, so that k(s) =
q̇(s) and Z L

0
(1+k2(s))ds =

Z L

0
F•

g(s)(ġ(s))ds. (11)

The weights a,b of (9) are easily taken into account, by modifying (10) appropriately. Note
also that, thanks to the homogeneity of F•

g (·), the right hand side of (11) is invariant under
reparametrizations of the lifted path g .

The degenerate metric F• is too singular to apply the fast marching algorithm directly,
hence we introduce a family tamings depending on a penalization parameter l � 1:

Fl
g (ġ) :=

q
l 2kĠk2 +2l |q̇ |2 � (l �1)h~vq , Ġi. (12)

Again, the weights a,b can easily be incorporated into the metric Fl . As l ! • one has

Fl
g (ġ) = lkĠk

s

1+
2|q̇ |2

lkĠk2 � (l �1)h~vq , Ġi

= lkĠk�1+
|q̇ |2

lkĠk2 +O(
1

l 2 )
�� (l �1)h~vq , Ġi

= kĠk+ |q̇ |2
kĠk +(l �1)(kĠk�h~vq , Ġi)+O(

1
l
),

which tends to F•
g (ġ) as l ! •. The metric Fl has precisely the required form (6), with a

diagonal tensor field M and a non-zero vector field w(g,q) :=~vq .

{Mumford} 1994
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The minimal action map Ul associated to the metric Fl , see (4), can be efficiently com-
puted with the fast marching method [15]. When the penalization parameter l is sufficiently
large, and the spatial and angular resolutions are sufficiently small, it approximates well the
limit action map U• associated to the degenerate metric F•, hence to Euler’s elastic energy.
In the future, we plan to present a more detailed mathematical convergence analysis. In
Section 4, we will give the computational method of the weighted functions a and b shown
in (9) by the optimally oriented flux filter [11].

4 Computation of Orientation-lifted Speed
Optimally Oriented Flux: used to extract the local geometry of the image, the oriented
flux [11] of an image I : W !R+, of dimension d = 2, is defined by the amount of the image
gradient projected along the orientation ~p flowing out from a 2D circle at point x̂ 2 W with
radius r:

f (x̂;r,~p) =
Z

∂Cr

(—(Gs ⇤ I)(x̂+ r~n) ·~p)(~p ·~n)ds , (13)

where Gs is a Gaussian with variance s and ~n is the outward unit normal vector along
∂Cr. ds is the infinitesimal length on the boundary of Cr. According to the divergence theory,
one has

f (x̂;r,~p) = ~pT ·Q(x̂,r) ·~p (14)

for some symmetric matrix Q(x̂,r) which can be expressed as:

Q(x̂,r) =
✓

∂xxG ∂xyG
∂yxG ∂yyG

◆
⇤ r ⇤ I(x̂) =

�
Fr ⇤ I

�
(x̂) (15)

(a) q = 0 (b) q = p
4 (c) q = p

2 (d) q = 3p
4 (e) q = p

Figure 2: Orientation-Lifted Speed with different orientations.

Computation of a and b presented in (9): let L1(x̂,r) and L2(x̂,r) be the eigenvalues of
matrix Q(x̂,r) and L1(x̂,r) � L2(x̂,r). Assume the grey levels inside the tubular structures
are darker than the background so that inside the tubular structure one has L1(x̂,r)� 0 and
L2(x̂,r)⇡ 0. Let rmax(x̂) be the optimal radius of the tubular structure at point x̂: rmax(x̂) =
argmax

r
L1(x̂,r). As shown in [3], the optimally oriented flux (OOF) is a steerable filter

with template ∂xx ⇤ r, which means that we can construct the orientation-lifted function
g : R2 ⇥S1 ! R as follows:

g(x̂,q) =

(
ĝ(x̂,q) if ĝ(x̂,q)> 0,
0 otherwise.

(16)

{Mirebeau} 2014{}
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ĝ(x̂,q) =
�
~uT

q Frmax~uq
�⇤ I(x̂) =~uT

q Q(x̂,rmax)~uq , (17)

where ~uq is an unit vector associated to q 2 S1. The function a : R2 ⇥ S1 ! R+ can be
expressed as:

a(x̂,q) = 1+µ g(x̂,q)
kgk•

. (18)

a(x̂,q) is the speed function which may have a large value when point x̂ is inside the vessel
and q follows the exact direction of the vessel at x̂. In Fig. 2 we show the function g in
different orientations q = {0, p

4 ,
p
2 ,

3p
4 , p}, in which the high grey level means a large

speed value. In this paper, we define

b = wa or b = h . (19)

where µ , w and h are three positive constants. µ controls the effects of the speed computed
from the images while w or h control the effects of the curvature penalty.

5 Experiments
Remark 1: in this section, we show some experimental results with comparison to the classi-
cal minimal path [8] which we call the Cohen-Kimmel model and the isotropic orientation-
lifted1 minimal path model ( orientation-lifted model) with the metric:

q
1

a2 (kĠk2 +bkq̇k2),
where b = 0.1 in all the experiments. In the following experiments, we use cyan, blue and
red lines to represent the extraction results from the Cohen-Kimmel model, the orientation-
lifted model and the proposed model respectively. The blue dots are the end positions while
the yellow dots are the initial positions. The green arrows indicate the initial and end direc-
tions which also need to be provided in our model. The orientation scale in the following
experiments is set to so =

2p
36 meaning that we have 36 different directions in the orientation

dimension.
Remark 2: We define the optimal orientation map D : R2 ! [0,p[ as:

D(x̂) = argmax
q

{g(x̂,q)} . (20)

D denotes the orientation or discrete orientation that maximizes the function g; in this way,
the user only needs to provide the endpoints of the path in the image, and orientations are
determined automatically. However, one still needs to choose between the opposite path di-
rections D(x̂) and D(x̂)+p . We also automatize this step, selecting the path which minimizes
the action map Ul , see Fig. 7 for details.

In Fig. 3(a), we show the geodesic path extraction results on the ’U’ shape with a short
bridge near the bottom of the object. The results of the Cohen-Kimmel model and the
orientation-lifted model prefer to choose a short path though the paths have very large cur-
vature somewhere. In contrast, the proposed model selects a longer but smoother path due
to the curvature penalty. In Fig. 3(b), we demonstrate the advantage of using an asymmetric
Finsler metric. The two given positions are very close to each other, making the Cohen-
Kimmel and the orientation-lifted models to choose a short way. The proposed model, indi-
cated by the red line, could choose a different path following the initial and end directions

1In contrast with the proposed elastica model (10), this model does not require Ġ and vq to be collinear.

{Cohen and Kimmel} 1997
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(a) (b)

Figure 3: Comparison results on synthetic images (see text).

(a) (b) (c) (d)

Figure 4: Comparison results on synthetic images (see text).

(shown as green arrows), though the extracted path has much longer curve length than the
results from the Cohen-Kimmel and the orientation-lifted models.

In Fig. 4(a) and (b), we demonstrate the results of the proposed model with the same
given end and initial positions but different directions indicated by the green arrows. It can
be seen that the proposed model could choose different paths according to different given
directions. Fig. 4(c) and (d) show the results from the Cohen-Kimmel and the orientation-
lifted models.

In Fig. 5, we show the compared results in the patch of a retinal image from the DRIVE
dataset [21]. (a) is the original image and (b) is the result from the proposed model. (c) is
the shortcut result with a small µ defined in (18). (d) is the result from the proposed model
with a small curvature penalty w defined in (19), a path with large curvature. (e) and (f) are
the results from the Cohen-Kimmel and the orientation-lifted models which are similar to
(d). In Fig. 6, we demonstrate the results with multi-endpoints and one initial source point.
(a) is the result from the proposed model which extracts the desired paths and (b-c) are the
results of the Cohen-Kimmel and the orientation-lifted models respectively, both of which
suffer from the shortcut problem.

In Fig. 7, we show an initialization method that needs only the initial and end positions to
be given. The function D in (20) will provide the optimal directions for each given position.

{Staal, Abr{á}moff, Niemeijer, Viergever, and Bram} 2004
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(a) (b) (c)

(d) (e) (f)

Figure 5: Extraction results in a retinal image patch (see text).

(a) (b) (c)

Figure 6: Extraction results in a retinal image patch (see text).

(a) (b) (c) (d)

Figure 7: Extraction results from the proposed model given only initial and end positions
(see text).

In Fig. 7(a-c), we show the two obtained paths indicated by cyan and red lines. The cyan
arrows indicate the end directions and corresponds to the cyan lines (the same to the red
arrows). In (d) we show the final results by removing the paths with larger minimal action
map values for each end positions and directions. The blue points are the given end positions
and the red arrows are the optimal directions for the corresponding end positions. Yellow
points are the given initial positions.



10 CHEN, MIREBEAU, COHEN : CURVATURE PENALIZED MINIMAL PATH

6 Conclusion
In this paper, we show the possibility of incorporating the curvature penalty to the minimal
path model via an orientation-lifted Finsler metric and a taming parameter l . The pro-
posed geodesic energy approximates the weighted Euler’s elastica bending energy. Solving
the corresponding orientation-lifted Eikonal equation by the state-of-the-art anisotropic fast
marching method, our model could determine globally minimizing curves. With the same
initial and end positions but different directions, our model could obtain different smooth
paths thanks to the asymmetric Finsler metric (Figure 4). When extracted curves are cross-
ing others, our model prefers to choose a smooth path while traditional minimal path models
which have removed the second derivative of the curve favour to choose a way with short
curve length, especially when the objected curvilinear structure has low grey level contrast
(Figures 5 and 6). Experiments show that our model indeed outperforms the traditional
models both on synthetic and real images.

In the future we would like to apply the proposed curvature penalized minimal path
model to automatically extract the road or vessel network. An interesting research is to
combining the keypoints-based minimal path technique and the proposed model for tubular
structure network extraction and objects segmentation.
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