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Abstract— In this paper, we propose a new interactive retinal
vessels extraction method with anisotropic fast marching (AFM)
based on the observation that one vessel may have the property
of local intensities consistency. Our goal is to extract both
the centrelines and boundaries between two given points.
The proposed method consists of two stages: the first stage
aims to finding the vessel centrelines using AFM and local
intensities consistency roughly, while the second stage is to
refine the centrelines from the previous stage using constrained
Riemannian metric based AFM, and get the boundaries of the
vessels simultaneously. Experiments show that results of our
method outperform the classical minimal path method [1].

I. INTRODUCTION

Retinal vessel extraction is a crucial task in retinal disease
diagnostics such as retinopathy of prematurity. However, it
remains a challenge to extract the accurate vessels interac-
tively from the retinal image due to its complex vessel topo-
logical structure, low contrast grey level and noise. Geodesic
or minimal path methods have been successfully applied to
line or tubular patterns extraction in various computer vision
and medical imaging tasks [2] since the seminal work by
Cohen and Kimmel [3], in which tubular structures, or object
edges are extracted as the form of geodesics or minimal
paths. This classic minimal path model can lead to finding the
global minimum with respect to a geodesic energy potential
P between two given endpoints. The geodesic potential or
metric can be isotropic [3] (P only depends on the pixel
position), or anisotropic in the sense that path length depends
on the path orientation as well [1]. Once this potential is
properly defined, Fast Marching (FM) methods [4] [5] are
the favoured methods to estimate geodesic distances, from
which minimal paths can be extracted.

Unfortunately, for the minimal path models mentioned
above, it is difficult to extract the centreline of the tubular
structure and the local width information or boundaries
simultaneously. In order to solve this drawback, Li and
Yezzi [6] proposed a variant minimal path technique, which
defines the potential domain Ω ∈ Rn+1, connected open
and bounded, as the product of spatial space Ω ∈ Rn with
a parameter space ]Rmin, Rmax[ denoting the vessel radius
dimension. Thus, each point in the extracted path by[6]
contains spatial position and the last dimension represents
the vessel thickness at this spatial point. Benmansour and
Cohen [1] proposed to use an anisotropic Riemannian metric
to avoid shortcuts problem suffered by the Li-Yezzi model.
In [1], the authors construct a multi-resolution Riemannian
metric guiding the AFM propagation in the domain Ω.
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For the interactive retinal vessel extraction, the anisotropic
Benmansour-Cohen (B-C) model [1] will suffer from short
branches combination problem(see Section II-C). Wei et
al. [7] proposed a curvature constrained FM method to
overcome this short branches combination problem. In [7]
the authors detect the curvature for each pixel in the FM
front. If the curvature of a pixel is larger than the given
threshold, this pixel will be frozen. However, this model can
only extract the centrelines of the vessels and heavily rely
on the curvature threshold.

In this paper, we propose a new minimal path based retinal
vessel extraction method. Our method is motivated by the
fact that the vessel may have local intensities consistency
especially for the vessels starting from the retinal optic disk.
Instead of using the grey level to compute the local intensities
consistency, we utilize the vesselness map calculated by
the image gradient. The proposed method can be divided
into two stages: in the first stage we construct a dynamic
Riemannian metric combining the vessel anisotropy and local
intensities consistency penalty. With the AFM, the rough
centreline of the vessel can be extracted avoiding the short
branches combination problem even for a long vessel. In the
second stage, the extracted centreline is taken as prior path
and a Riemannian metric in Ω with distance function defined
by the prior centreline is constructed.

The paper is organized as follows: in Section II, we briefly
introduce the minimal path, oriented flux based Riemannian
metric construction, AFM as well as the limitations of the
B-C model. In Section III we give details of the proposed
method. Experiments are shown in Section IV.

II. BACKGROUND

In this paper, we only consider the 2D vessel segmentation
so that one point x = (x̂, r) ∈ Ω ⊆ R2×]Rmin, Rmax[,
where x̂ ∈ Ω̂ (Ω̂ ⊂ R2) denotes the point position in spatial
dimensions and r ∈ ]Rmin, Rmax[ denotes the position in
radius dimension.

A. Minimal Path

Let = denote the collection of Lipschitz paths γ : [0, L]→
Ω. The weighted length through a geodesic energy potential
P can be formulated as follows:

lP(γ) :=

∫ L

0

P(γ(s), γ′(s)) ds (1)

where p is arc-length parameter and γ′ denotes the tangent
vector of path γ. The geodesic distance Up(x), or minimal



action map, is the minimal energy of any path joining a point
x ∈ Ω to a given initial point p:

Up(x) := min{lP(γ)|γ ∈ =, γ(L) = x, γ(0) = p}. (2)

The path Cp,x is called a minimal path if lP(Cp,x) =
min
γ
{lP(γ)| γ ∈ =}.

B. Riemannian Metric Construction

In this paper we utilize the optimal oriented flux [8] to
construct the Riemannian metric. The oriented flux of a
given image I : Ω̂ → R2, of dimension 2, is defined as the
amount of the image gradient projected along the orientation
~p flowing out from a 2D circle at point x with radius r:

f(x̂; r, ~p) =

∫
∂Cr

(∇(Gσ ∗ I)(x̂+ r~p) · ~p)(~p · ~n)ds (3)

where Gσ is a Gaussian with variance σ and ~n is the outward
unit normal vector along ∂Cr. ds is the infinitesimal length
on the boundary of Cr. According to the divergence theory,
one has f(x̂; r, ~p) = ~pT ·Q(x, r) ·~p for some symmetric ma-
trix Q(x, r) whose eigenvalues and eigenvectors we denote
by λi and vi, i = 1, 2 ( Suppose λ1 ≤ λ2). The symmetric
matrix Q(x, r) is defined by the oriented flux filter Fr as:

Q(x, r) =
(
I ∗ (Fr ·

1

r
)
)

(x, r) (4)

In this paper, the potential P(γ, γ′) is set as a quadratic form
with respect to a symmetric positive definite tensorM which
is a 3× 3 symmetric matrix:

P(γ, γ′) =
√
γ′(.)TM(γ(.))γ′(.) . (5)

As described in [1], we consider the anisotropy only in the
spatial dimensions. Thus M can be decomposed as follows:

M(x, r) =

(
M̃(x, r) 0

0 Pr(x, r)

)
. (6)

The anisotropic entry M̃(x, r), which is a 2× 2 symmetric
definite positive matrix, at point x = (x, r) can be con-
structed by the uint orientation vectors v1 and v2 as:

M̃(x) = eα·λ2(x)v1(x)v1(x)T + eα·λ1(x)v2(x)v2(x)T ,
(7)

The isotropic entry Pr(x) can be computed as:

Pr(x) = β exp
(
α
λ1(x) + λ2(x)

2

)
, (8)

where α controls the spatial anisotropic ratio defined as

µ = max
(x̂,r)∈Ω

√
exp

(
α · (λ2(x̂, r)− λ1(x̂, r))

)
while β controls the radius speed. For in-depth details we
refer to [1]. The minimal action map Up(x) can be solved by
AFM efficiently, which is a one-pass solver for the Eikonal
equation:

‖∇Up(x)‖M−1 = 1, Up(p) = 0. (9)

The FM methods for the minimal action map Up(x),
satisfying (9), introduce a discretization grid Z of Ω, and
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Fig. 1. Results from the B-C model [1]. (a) and (c) are original images
with initial point labeled as ‘+’ and endpoint labeled as ‘∗’. the cyan dashed
lines indicate the desired paths. (b) and (d) are wrong results of [1].

for each x ∈ Z a small mesh S(x) of a neighborhood of x
with vertices in Z (with the adequate modification if x is at
or near the boundary). An approximation of Up is given by
the solution of the following fixed point problem [5]: find
Up : Z → R such that (i) Up(p) = 0 for the initial point p,
and (ii) for all x ∈ Z \ p

Up(x) = min
y∈∂S(x)

P(x,y − x) + IS(x)Up(y), (10)

where IS(x) denotes piecewise linear interpolation on a mesh
S(x). IS(x) interpolates Up on S(x) [1], [5], [9].

C. Limitations of B-C Model In Retinal Vessels Extraction

The B-C model [1] minimizes the geodesic energy func-
tional formulated in (1) to obtain the minimal action map U
as defined in (2). Though this model has many advantages,
such as getting the centrelines and boundaries of tubular
structures simultaneously, easy incorporation of user inter-
vention and fast implementation, it may fall into failures due
to the short branches combination, when extracting tubular
structures crossing each other that are very common in retinal
vessel network.

In Fig. 1(b) and (d), the extracted path (green line) by
B-C model misses the desired vessel. Those mistakes are
mainly caused by the fact that the FM propagation with the
metric defined by Φ in (5) favours to choose a path with
minimal arrival time instead of the desired path. As shown
in Fig. 1(b) and (d), combining wrong bifurcations may
have smaller arrival time than combining the desired vessel
segments. In order to overcome this problem, we propose
a new minimal path method combining the vessel local
intensities consistency. With the local intensities consistency
penalty, the speed function is dynamically updated while
maintaining the vessel anisotropy.

III. PROPOSED METHOD

The proposed method can be divided into two stages:
1) roughly centrelines extraction with dynamic Riemannian
metric and 2D AFM. 2) Final centrelines and boundaries
extraction based on the results from the first stage and
2D+radius AFM.

A. Retinal Vessel Centrelines Extraction by Intensities Con-
sistency and dynamic Riemannian Metric

We define the 2D Riemannian metric M̃d using the opti-
mal oriented flux [8] and intensities consistency as follows:

M̃d(x̂) = (H · (eτλ̃2 ṽ1ṽ
T
1 + eτλ̃1 ṽ2ṽ

T
2 ))(x̂), (11)



Fig. 2. Centreline bias from the first stage(see text).

where x̂ ∈ Ω̂ ⊂ R2 and τ controls the anisotropic ratio. H
is the penalty of intensities consistency:

H(x̂) = Hd(x̂) +Hc(x̂), (12)

In order to define λ̃1, λ̃2, ṽ1, ṽ2, Hd and Hc, we firstly in-
troduce the optimal oriented flux [8] based vesselness Vness.
Recall that λ1 and λ2 are the two eigenvalues of Q presented
in (4) and for retinal vessels, one has λ2(x̂, ·)� λ1(x̂, ·) ≈ 0
if x̂ is inside the vessels. The Vesselness Vness and optimal
scale map Vscale can be defined as:

Vness(x̂) = max
r

{
λ2(x̂, r)

}
, (13)

Vscale(x̂) = arg max
r

{
λ2(x̂, r)

}
, (14)

λ̃1 and λ̃2 are the values of λ1 and λ2 at the optimal scales,
respectively. Also ṽ1 and ṽ2 are defined similarly to λ̃1 and
λ̃2. The optimal scale at point x̂ ∈ Ω̂ can be computed from
equation (14). Based on the definitions above, we now define
the penalty components Hc and Hd as:

Hc(x̂) = ehc×|Vness(x̂)−Vness(p̂)|, x̂, p̂ ∈ Ω, (15)

where hc is a positive constant and p̂ is the initial source
point provided by the user. Hd can be represented as

Hd(x̂) = ehd×|Vness(x̂)−Vness(ẑ)|, x̂, ẑ ∈ Ω, (16)

where ẑ is a point at the minimal path γx̂,p̂. In the following,
we consider a point ẑ as back-tracked point of x̂ if z ∈ γx̂,p̂.
Let γx̂,ẑ be a part of γx̂,p̂ and the length of γx̂,ẑ in pixel is
set to l (back-tracked length), then Hd(x̂) measures the local
intensities consistency along the minimal path γx̂,ẑ .

In contrast, Hc(x̂) only depends on the current point x̂
and the initial point p̂. Using (12), we can see that the FM
propagation will travel faster along the pixels which share
similar intensities with the back-tracked point and p̂.

The reason of using 2D FM instead of 2D+radius in the
first stage can be explained as: due to the inhomogeneities
of retinal vessel gray level and noises, the extracted minimal
paths using the proposed metric defined in (11) are not
always at the exact centrelines of the vessels. We show this
centreline bias in Fig. 2. In most parts of the vessels shown
in the second column of Fig. 2, the red dash lines are at the
exact centrelines of the vessels except two parts indicated by
red arrows in the 3rd and 4th columns. In order to get the
accurate extraction results, we have to refine the results from
the first stage. In this paper, for the second stage, only the
extracted centrelines are necessary.

Fig. 3. Demonstration of more results (see text).

B. Centrelines Refinement and Boundaries Extraction

In this section, the centrelines from the first stage can be
taken as the prior knowledges. The second stage relies on
the B-C model [1]. To overcome centreline bias problem of
the first stage, a novel constrained 2D+radius Riemannian
metric based on the prior centreline is constructed.

Suppose that the prior centreline obtained from the first
stage is denoted as a 2D curve ~. We introduce a constrained
function D~: Ω→ R+,Ω = Ω̂×]Rmin, Rmax[ as:

D~(x) =

{
1, if d~(x) ≤ T ;

+∞, else ,
(17)

where T is a positive constant and we have T = 4 in this
paper. d~: Ω→ R+ is a distance function:

d~(x̂, r) = min
x̂~∈~

‖x̂− x̂~‖2. (18)

where x = (x̂, r). Note that function D~ defines an offset
region R in the domain Ω, inside which the value of D~ is
1 and outside is +∞. Based on equations (6), (17) and (18),
we can construct the constrained Riemannian Metric for ~:

M~ =

((
D~ · M̃

)
0

0
(
D~ · Pr

)) . (19)

Equ. (19) is the proposed constrained Riemannian metric.
Based on this metric, the FM front will propagate only inside
the region defined by D~. And the extracted minimal path
is a global minimum of the following energy:

l(γ(s)) :=

∫ L

0

√
γ′T (s)M~(γ(s))γ′(s) ds (20)

The minimizer of energy (20) is a minimal path inside
the region R defined by the prior centreline. As the prior
centreline can avoid short branches combination problem
and will always choose the correct vessel because of the local
intensities consistency. The second stage can be considered
as a curve refinement procedure taking the prior centreline
as initial curve as shown in Fig. 2. In the second column of



Algorithm 1 FastMarchingLocalIntensitiesConsistency
Initialization:

For each point x̂ ∈ Ω̂, set Up̂(x̂)=+∞. Set V(x̂)=Trial.
Set U(p̂)=0.

Marching Loop:
1: Find x̂m, the Trial point which minimizes Up̂.
2: if x̂m= p̂e then
3: Track the minimal path γp̂e,p̂.
4: Stop the fast marching propagation.
5: end if
6: Tag x̂m as Accepted.
7: Find the back-tracked point ẑ of x̂m using path γx̂m,p̂.
8: for All ŷ such that x̂m ∈ S(ŷ) and V(ŷ) 6= Accepted

do
9: Calculate the metric M̃d(ŷ) using the back-tracked

point ẑ and (11), (15), (16).
10: Compute Unew(ŷ) using (10).
11: if Unew(ŷ) < U(ŷ) then
12: Set U(ŷ)← Unew(ŷ)
13: end if
14: end for

Fig. 2, the cyan solid lines are the results (only centreline is
shown) extracted by minimizing (20). We can see that they
are more accurate than the red dash lines obtained from the
first stage (see the 3rd and 4th columns for details). Thanks
to the original B-C method [1], we can extract the centrelines
and boundaries at the same time. We demonstrate more
results in Fig. 3: in the first column are the original images
and the centrelines from the first stage indicated by dash red
lines. The second column shows the results of our method
from the second stage, with cyan solid lines indicating
centrelines and red solid lines indicating boundaries. The last
column are the results from the B-C model. For the results
of our model, short branches combination problem has been
avoided even for a long vessel crossing another vessel with
strong contrast.

IV. EXPERIMENTS

A. Numerical Implementation

In this section, we discuss the numerical implementation
details using AFM method [5] for the first and second stages
respectively. In Algorithm 1 given only an initial point s,
once the fast marching front meets the endpoint pe, we
stop the propagation (see Algorithm 1). For robustness, we
compute Hc and Hd at point x using the mean value of Vness
inside the set B := {p ∈ Ω, ||p−x||2 <= 3}. For the second
stage, we just perform the regular AFM [5] with metric M̃~.

B. Evaluation

We evaluate our method on the test set of the DRIVE
dataset [10], which includes 20 retinal images. We choose
total 110 vessels which start from the optic disk of the retinal
images or those cross another vessel. If the extracted minimal
path exactly follows the desire vessel, we consider this is a
positive extraction (PE), otherwise a negative extraction(NE).

TABLE I
COMPARISON OF OUR METHOD AND B-C MODEL.

Measures NF
T NT

F NT
T NF

F

Number 47 2 55 6

And for our method, the number of PE = 102 out of total
110 vessels. For B-C model, the number is 57. Additionally,
we compute the following measures: 1) NT

F : the number
of vessels that our method positively extracts and the B-
C model fails. 2) NF

T : the number of vessels that the B-C
model positively extracts and our model fails. 3) NF

F : the
number of vessels that both models fail to extract. 4) NT

T :
the number of vessels that both models positively extract. In
Table I, we show the four measures. It can be seen that our
model are much better than the B-C model (102 against 57).

V. CONCLUSION

In this paper, we propose a novel two-stage retinal vessels
extraction method based on the AFM and local intensities
consistency. In the first stage, the vessel between two given
points can be roughly extracted and will avoid short branches
combination problem because of the dynamic metric. Then
this rough centreline is taken as prior curve and refined in the
second stage. Experiments show that the proposed method
indeed outperform the state-of-the-art B-C model [1].

VI. ACKNOWLEDGEMENTS

We would like to thank Dr. Jean-Marie Mirebeau for
fruitful discussions. This work was partially supported by
ANR grant NS-LBR, ANR-13-JS01-0003-01.

REFERENCES

[1] F. Benmansour and L. D. Cohen, “Tubular Structure Segmentation
Based on Minimal Path Method and Anisotropic Enhancement,” IJCV,
vol. 92, no. 2, pp. 192–210, 2011.
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