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ABSTRACT

Geodesic methods have been widely applied to image anal-
ysis [1]. They are particularly efficient to extract a tubular
structure, such as a blood vessel, given its two endpoints in a
2D or 3D medical image [2]. We address here a more difficult
problem: the extraction of a full vessel tree structure given
a single initial root, by growing a collection of keypoints,
connected by geodesic minimal paths as in [3]. Keypoints
are iteratively added, using selection criteria which compare
geodesic distances with the standard euclidean curve length
and a path score. A weakness of existing approaches is that
the geodesic length and the euclidean path length are locally
proportional, due to the use of an isotropic geodesic potential
P(x). In contrast, we use an anisotropic geodesic potential
P(x, v), and develop new criteria for selecting keypoints and
stopping the tree growth. Experimental results demonstrate
that our method can extract vessel structures at a finer scale,
with increased accuracy.

Index Terms— Vessel extraction, Anisotropic Fast March-
ing, Minimal Paths, Keypoints, Geodesic methods.

1. INTRODUCTION

Our work relies on the Cohen-Kimmel model [4], in which
image features - vessel tubular structures, or object bound-
aries - are extracted under the form of minimal paths with
respect to a geodesic energy potential P . The geodesic poten-
tial can be isotropic [3], or anisotropic in the sense that path
length depends on the path orientation [2]. It can be defined
on the physical space, or involve additional abstract variables
such as the extracted vessel radius [5]. Once this potential
is properly defined, Fast Marching methods [6, 7, 8, 9] are
the favored methods to estimate geodesic distances [4], from
which minimal paths can be extracted. Paths on the image
features are characterized by their small geodesic energy / eu-
clidean length ratio. This selection criterion is combined with
a path score in our vessel structure extraction algorithm. In
order to make clear the specificity of our algorithm, which in-
volves anisotropic potentials, and new keypoint selection and
stopping criteria, we need to introduce some notations.

We introduce a mathematical domain Ω ⊂ Rm, connected
open and bounded. As a first intuition, and as in the classi-
cal Cohen-Kimmel approach [4], Ω can be regarded as the

physical image space. More recent and accurate feature ex-
traction methods, pioneered by [5] and including this work,
however define Ω as the product of physical space U with a
parameter space ]r,R[ representing vessel radius; vessel lo-
cation and size are thus extracted and estimated in a single
unified step. We denote by = the collection of Lipschitz paths
γ : [0, 1] → Ω, and measure their length through a geodesic
energy potential P(x, v):

lP(γ) :=

∫ 1

0

P(γ(t), γ′(t))dt. (1)

The geodesic distance U(x), or minimal action map (MAM),
is the minimal energy of any path joining a point x ∈ Ω to a
given set of keypoints K ⊂ Ω:

U(x) := min{lP(γ); γ ∈ =, γ(1) = x, γ(0) ∈ K}. (2)

There always exists at least one minimal geodesic path γx,
and only a single one for most x. KeypointsK represent in our
application the currently extracted nodes of the vessel tree;
should x be selected as a new keypoint, the path γx would be
the connecting tree branch.

The classical Cohen-Kimmel model [4] relies on geodesic
potentials of the form P(x, v) = (P0(x) + ω)‖v‖, where P0

is a Potential taking lower values around the interesting fea-
tures of the images, and the positive constant w controls the
smoothness of the minimal curve γx. Li and Yezzi [5] use
potentials of the same form, but with the above mentioned
additional radius dimension. Both the models [4] and [5] re-
quire user input endpoints as the prior knowledge to track
the minimal paths. In order to reduce the user input, Ben-
mansour and Cohen [3] proposed a new approach: keypoints
searching method (KPSM) to detect recursively new start-
points (keypoints) along the expected features named, see §3.
Kaul et al. [10] proposed a new stopping criteria for both open
and closed curve detection and a new method to compute the
curve length different to [3, 11]. Li et al. [12] proposed to
detect the tubular structure using the extra radii model [5] and
KPSM [3]. Benmansour and Cohen [2] enriched these con-
structions through the use of an anisotropic geodesic potential
P(x, v) :=

√
vTM(x)v, whereM is a tensor field of sym-

metric positive definite matrices, accounting for the orienta-
tion of the tubular structure.

In this paper we propose a new vessel tree extraction
method based on automatic keypoints detection and state of



the art Anisotropic FM [8]. The pairwise distances between
keypoints are fixed by the curve length threshold (CLT); clas-
sical methods [3] tend to overlook parts of the vessel tree
when the CLT is small, and to “leak” or take shortcuts be-
tween distinct branches or the vessel tree for large CLT (for
details see section 4.1 and Figure 2). We substantially im-
prove the performance for small CLT, by incorporating in the
keypoint selection criterion a Path Score[13] computed from
the optimally oriented flux centreline map (OOFCM) for
each keypoint candidate detected by the classical definition.
Summarily, Our contribution is as follows: 1) we redefine
the keypoints to make them reasonable even for small curve
length threshold. 2) We present the extension of the curve
length calculation in the anisotropic case, in itself a different
contribution. 3) We give a stopping criterion to automatically
stop the keypoints searching scheme.

Convention: if Λ denotes a point (curve) with extra radii
dimension, then we use Λ̃ to denote a point (curve) with the
same space location but without extra radii dimension, i.e. if
Λ = (x0, y0, r0), then Λ̃ = (x0, y0).

2. BACKGROUND

Our algorithm combines three main ingredients: construc-
tion of an anisotropic Riemannian metric, state of the art
anisotropic fast marching with integrated geodesic curve
length computation, and vessel tree extraction based on orig-
inal and new selection criteria.

2.1. Optimally Oriented Flux and Metric construction

The oriented flux [14] of an image I , of dimension d, is de-
fined by the amount of the image gradient projected along
the orientation −→p flowing out from a 2D circle (or 3D local
sphere) at point x̃ with radius r:

f(x̃; r,−→p ) =

∫
∂Sr

(∇(Gσ∗I)(x̃+r−→n )·−→p )(−→p ·−→n )dA, (3)

whereGσ is a Gaussian function with variance σ and−→n is the
outward unit normal vector along ∂Sr. dA is the infinites-
imal length (area) on ∂Sr. The oriented flux is a quadratic
function: one has f(x̃; r,−→p ) = −→p T · A(x̃, r) · −→p for some
symmetric matrix A(x̃, r), which eigenvalues and eigenvec-
tors we denote by λi(x̃, r) and vi(x̃, r). Law et al. [14] used
the normalized sum of the non-zero eigenvalues to compute
the OOFCM, which takes its largest values for points x̃ in ves-
sel centrelines (suppose that inside a vessel having stronger
intensity than the background):

~(x̃) = max
r

{
−1

rd−1

d−1∑
i=1

λi(x̃, r)

}
(4)

In this paper, use the same metric tensor as in [2]: the met-
ric with additional radii dimension for the vessel extraction is

as follows:

M(x̃, r) =

(
Ms 0
0 Mr

)
, (5)

where Ms =
∑d
i=1 exp(α

∑
j 6=i λj)viv

T
i and Mr =

β exp(
∑d
i=1 αλi), with implicit dependence on (x̃, r). The

constant β controls FM propagation speed along the radius
direction, and α controls the metric anisotropy.

2.2. Anisotropic Fast Marching using Basis Reduction

Numerical methods for the minimal action map U(x), see (2),
introduce a discretization grid Z of Ω, and for each x ∈ Z a
small mesh S(x) of a neighborhood of x with vertices in Z
(with the adequate modification if x is at or near the bound-
ary). An approximation of U is given by the solution of the
following fixed point problem: find U : Z → R such that (i)
U(x) = 0 for all keypoints x ∈ K, and (ii) for all x ∈ Z \ K

U(x) = min
y∈∂S(x)

P(x, y − x) + IS(x) U(y), (6)

where IS denotes piecewise linear interpolation on a mesh S.
The expression (6) reflects the fact that the minimal path γx,
joining x to K, needs to cross the stencil boundary ∂S(x) at
some point y; hence it is the concatenation of a small path
joining x to y, of approximate length P(x, y − x), and of
γy , which energy is approximated by interpolation. A strik-
ing fact is that this N -dimensional fixed point system, with
N = #(Z), can be solved in a single pass using the Fast
Marching algorithm [6], provided the stencils S(x) satisfy
some geometric properties depending on the local geodesic
potential P(x, ·). An adaptive construction of such stencils
was introduced in [8], which led to breakthrough improve-
ments in terms of computation time and accuracy for strongly
anisotropic geodesic energy potentials, as in our application.
It invokes Lattice Basis Reduction, a tool from discrete geom-
etry which combines in an optimal way the geometric struc-
ture given by the Riemannian metric, and the arithmetic struc-
ture of the cartesian discretization grid.

2.3. Curve Length calculation and Geodesic Extraction

The minimal path γx of (2) is generically unique, and its eu-
clidean length V(x) is a crucial ingredient of our algorithm.
An approximation of V is given by the solution of the follow-
ing fixed point problem: find V : Z → R such that (i) for
all keypoints x ∈ K, V (x) = 0, and (ii) for all x ∈ Z \ K,
denoting by yx the point at which the minimum (6) is attained

V (x) = ‖yx − x‖+ IS(x) V (yx).

A single pass solve is again possible: whenever the Fast
Marching algorithm updates U(x), simultaneously update
V (x), using the (just computed) minimizer from (6). The
minimal path γx itself is extracted by following the direction
field (yx − x)x∈Z .



3. PATH SCORE BASED KEYPOINTS SEARCHING

Our vessel tree extraction method is embedded within the in-
ner loop of the fast marching algorithm, which it augments
with several robust criteria for keypoint selection (tree nodes),
adaptation of a path score threshold, and termination.

The approximate geodesic distance U(x) to the currently
extracted tree structure is estimated using the classical fast
marching algorithm: initialization and steps 1-9 of the loop
in the table of Algorithm 1. Following the dynamic program-
ming principle, image pixels are tagged as Trial or Accepted.
The Trial point x currently minimizing U is tagged Accepted
(i.e. frozen), and the value U(y) at neighboring points y is
suitably updated. In addition, line 7, we estimate the geodesic
curve length V (y), and potentially tag y as Trial - an “un-
freezing” procedure needed because some new source points,
the tree nodes, are introduced as the loop executes.

The original KPSM [3] adds the currently active point x
to the set K of keypoints as soon as V (x) ≥ λ, where λ is
the user chosen CLT. This operation, which amounts to lines
15, 16, 18, 19 of our algorithm, yields a tree with branches
of length exactly λ. Our algorithm in contrasts extracts ves-
sel tree branches of length within [λ, 3λ[, selected based on
a path score, see line 17 and (7) below. As a result, it can
reliably handle a much smaller CLT λ than the inspirational
[3], without leaking outside of the vessel structure, but stay-
ing right in its centerline. One or several path score thresholds
T1 ≥ · · · ≥ Tk are given as input; generally k ∈ {1, 2}, and
by convention T0 = +∞. If the currently active point x has
an excessive estimated curve length V (x) ≥ 3λ, see line 10,
then the next threshold Ti+1 is activated in order to discover
finer, less visible vessel structures; unless i = k in which case
the method ends.

If the currently active point x has an appropriate estimated
curve length λ ≤ V (x) < 3λ, then it is considered as a can-
didate new keypoint (i.e. a potential node of the vessel tree
structure), see line 15. We extract the geodesic γ linking x
to the already extracted tree structure, and evaluate its rele-
vance using a path score: defining δT (h) as 1 if h ≤ T and 0
otherwise

PST (x) =

∫
γ̃

~ δT (~)ds

/∫
γ̃

δT (~)ds. (7)

In other words the path score is the average value of the
OOFCM (4) centreline map ~ along the physical path γ̃, ob-
tained by stripping γ of its abstract radius dimension. The
selection test line 17 requires the path score to exceed the
current selection threshold Ti. The selector δT appearing in
(7) is applied with T := Ti−1 so as to push the keypoint se-
lection towards finer and less visible structures, when i > 1,
and leave the vicinity of the tree extracted with the previous
threshold Ti−1.

Algorithm 1 Vessel Tree Extraction (in 2D+radii case)
Input: MetricM, startpoint ps, curve length threshold λ ,

path score thresholds (Ti)1≤i≤k, centerline map ~.
Output: Paths Γ, keypoint set K.
Initialization:

For each point x, set U(x)=V (x)=+∞; Tag x as Trial.
Set U(ps)=V (ps)=0, K ← {ps} and Γ ← {ps}. Set
i← 1.

Marching Loop:
1: Find x, the Trial point which minimizes U .
2: Tag x as Accepted. . “Standard” fast marching.
3: for All y such that x ∈ S(y) and U(y) > U(x) do
4: Compute Unew(y) using (6).
5: if Unew(y) < U(y) then
6: Set U(y)← Unew(y)
7: Update V (y), tag y as trial.
8: end if
9: end for

10: if V (x) ≥ 3λ then . Path score threshold reduction.
11: if i = k then EXIT else i← i+ 1 end if
12: for all points y on the paths Γ do
13: Set U(y) = V (y) = 0, tag y as Trial.
14: end for
15: else if V (x) ≥ λ then . Keypoint selection.
16: Track the minimal path γ from x.
17: if min{PSTi−1(x), ~(x)} ≥ Ti then
18: Append x to keypoints K, and γ to edges Γ.
19: Set U(x) = V (x) = 0, tag x as Trial.
20: end if
21: end if

Fig. 1. Demonstration of the proposed method (see text).

4. EXPERIMENTS

The proposed method requires several parameters, as de-
scribed in Algorithm 1. Specifically, the Curve Length
Threshold (CLT) λ should be slightly more than twice the
largest radius of the vessels to be detected. The path score
thresholds (Ti)

k
i=1, with k ∈ {1, 2} depending on the test

case, are automatically selected as quantiles of the OOFCM
(4) distribution on image pixels. The user given starting



Fig. 2. Segmentation results of our method (left) and the clas-
sical KPSM (right), with a small (top) or large (bottom) curve
length threshold.

keypoint is colored in red or green and supersized, while
keypoints obtained with the second threshold are shown blue.

4.1. Advantages of using a small CLT and a path score

Small curve length thresholds (CLT) are a-priori desirable
when extracting vessel trees, since they favor the discovery
of small structures and avoid the extraction of inadequate
shortcuts linking different tree branches. Unfortunately, the
classical keypoints selection [3] suffers from a leaking prob-
lem with small CLT: before the main vessel branches are
extracted, multiple irrelevant keypoints are detected outside
the vessel structure of interest. This problem, which is mainly
caused by noise and intensity inhomogeneities, is avoided
with our new keypoint selection criterion involving a path
score, as illustrated on Figure 2.

On the bottom of Figure 2, with a large CLT λ = 60, the
two methods produce similarly inaccurate results: some small
branches are missed, and some undesirable shortcuts between
different branches are extracted. On top of Figure 2, with a
small CLT λ = 26, the KPSM [3] keypoints leak and be-
gin to accumulate outside the structure (right); in contrast our
method accurately detects the vessel tree and then automati-
cally stops (left).

4.2. Experimental results in a complex vessel network

We illustrate on Figure 3 the results of our method, with CLT
λ = 12, and the classical KPSM [3] with CLT λ = 50, which

(a) (b)

Fig. 3. Results of our method (a) and classical KPSM (b): red
point is the startpoint and yellow points are keypoints.

empirically are the best for these two methods on this image.
As discussed in section 4.1, many vessels are missed with a
large CLT, are numerous irrelevant shortcuts are extracted.

The impact of the second curve length threshold T2 is il-
lustrated on Figure 4. The smaller threshold T2 used in (b) al-
lows to detect more vessels, but meanwhile some non-vessels
paths are also collected.

(a) (b)

Fig. 4. Results of our method with a small (a) or large (b)
second threshold T2. Start point in green, keypoints extracted
with first threshold T1 in yellow, and with second threshold
T2 in blue.

5. CONCLUSIONS

In this paper, we propose a new keypoint based vessel tree
extraction method using Anisotropic Fast Marching, and in-
troducing of a path score in the keypoint selection criterion.
These ingredients allow our method to search keypoints sep-
arated by small curve lengths, leading better extraction re-
sults compared to the classical keypoints searching method.
Numerical experiments illustrate these improvements on two
retinal images and two MRA images. The next step is to ex-
tend our approach to 3D and to validate it on a large data set.
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