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ABSTRACT

In this paper, we propose a completely automatic method to

extract the vessel tree structure including its centerlines and

radius using geodesic paths technology. Our main goal is to

find a set of key points located in the vessel centerlines, link

each pair of key points by minimal paths for finding the ves-

sels between them and stop this process automatically. This

work adapts the growing minimal paths method to find the

set of key points. The main drawback of growing minimal

paths is when to stop the processing. To solve this problem

we propose an automatic stopping criteria. Additionally, we

use a cake wavelet to compute the vessel measurement con-

sisting of both radius and orientation to develop the classical

growing minimal paths model which cannot guarantee the ex-

tracted tree corresponds to the centerlines of the vessel tree.

Index Terms— Vessel extraction, key points, growing

minimal paths, isotropic fast marching.

1. INTRODUCTION

Energy minimization techniques have been widely applied to

solve various problems in image processing and computer vi-

sion. Minimal paths model is one of the most successful ap-

plications of energy minimization. Since the seminal work of

L.Cohen et al. [1], minimal paths model has been extensively

used for vessel tree extraction due to the advantages of the

minimal paths methods like global minimizers, fast compu-

tation and robustness to noise. In order to extract the vessel

centerline and surfaces simultaneously, Li et al.[2] proposed

a variant of the purely spatial minimal path technique by in-

corporating an extra radius dimension into the vessel space.

In the 3D paths, each point consists of both the spatial coor-

dinates and an additional radius dimension. This third dimen-

sion can describe the vessel thickness at the corresponding 2D

point. Taking into account of the orientation information, M.

Péchaud et al. [3] incorporated an extra orientation dimen-

sion into [2]. With the enhancement of extra-orientation, this

model can give better results than the original Li’s model. As

the classical minimal paths model[1] needs precise informa-

tion of endpoints, a novel minimal path approach proposed

by F. Benmansour et al.[4] to find a set of key points itera-

tively in the curves (2D) or surfaces (3D) with less restrictive

prior knowledge. In this method, user can provide only a sin-

gle point. The keypoints-based growing minimal paths model

(KPGMM) has a good performance in closed curves detec-

tion. But for open curves, the KPGMM requires a user-given

total length of the curves. V. Kaul[5] gave a new stopping cri-

terion to automatically stop the FM processing and also pro-

posed a new method to compute the paths length. However,

both [1] and [5] are only applied to spatial curve detection.

For tubular structure extraction, [6] use keypoints searching

strategy with radius + 2D spatial location. In this paper, we

use both radii and orientation dimension.

In this paper, we present a method to extract the vessel

tree structure without any a priori knowledge. This method

is based on the classical KPGMM with extra radii and orien-

tation Dimensions. We construct the 4D potential by the ori-

entation score computed by the cake wavelet [7, 8] and then

launch the isotropic Fast Marching method (FMM) to get the

geodesic distance and length map simultaneously. The main

issue is how to stop the set of key points. Once they have

covered the main branches, they go out and can include paths

with no interesting meaning. This is why we introduce the use

of mask. A mask is incorporated into the key points search-

ing scheme to stop the FMM processing. This allows an auto-

matic and efficient definition of the set of keypoints, leading

a precise segmentation of the vascular tree.

2. BACKGROUND

2.1. Minimal Paths Model

Given a 2D image I : Ω → R+ and two points p1 and p2,

a crucial step of the minimal paths [1] is to build a potential

P : Ω → R+ with lower values near the features. The mini-

mal paths model is formulated to find geodesic paths γ to min-

imize the following energy functional E : Ap1,p2
→ R+:

E(γ) =

∫

γ

(P(γ) + w)ds =

∫

γ

P̃(γ)ds (1)

Where Ap1,p2
is the set of all paths linking p1 and p2, s

is the arc-length parameter and w is a positive constant. A

minimal path can be defined as a curve connecting p1 and p2

that globally minimizes the energy (1). The solution of this

optimization problem is obtained through the computation of
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the minimal action map U : Ω → R+. The minimal action

map is the minimal energy integrated along a path between

p1 and any point x of the domain Ω:

U(x) = min
γ∈Ap1,x

∫

γ

P̃(γ)ds, ∀x ∈ Ω (2)

And U satisfies the Eikonal equation:

{
‖∇U‖ = P̃(γ) ∀x ∈ Ω
U(p1) = 0

(3)

The minimal path Cp1,p2
can be tracked by:

{
C′(s) = −∇U
Cp1,p2

(p1) = 0
(4)

The Euclidean path length map L : Ω → R+, is the length of

minimal path Cp1,x, where x is any point in the image domain

Ω. Solving the Eikonal equation (3), [1] adapts the FMM (for

details of FMM, refer to [5, 9]).

2.2. Classical KPGMM

Among all points in the front of the Fast Marching (FM) prop-

agation which have the same minimal action map values, a

point is likely to be located on the curve (2D) or surface(3D)

if this point has the largest Euclidean path length map value.

Specifically, when the front of the FM propagates to the first

point whose Euclidean path length map value exceeds the

given threshold λ ∈ R+, this point is selected as keypoint.

Keypoints are iteratively detected until the stopping criterion

is statified. See [4, 5] for mare details.

3. A MASK BASED GROWING MINIMAL PATHS

WITH EXTRA RADII AND ORIENTATION

3.1. Orientation Score based 4D Potential

For a given image I : Ω → R+ an orientation score[8, 11]

ℑ : Ω×S1 of I can be computed by convolution with a mutil-

directional wavelet ψθ:

ℑ(x, θ̂) = I(x) ∗ ψ̄θ̂(−x) (5)

Where ψ̄θ̂ is complex conjugate of ψθ̂. θ̂ ∈ [0 2π] is the

orientation variable. We adapt the cake wavelet [7, 8, 11] as

the multi-directional wavelet. The cake wavelet is constructed

from the Fourier domain (by using polar coordinates):

ψ̂cw

θ̂
(ω) =

{
Bk

(
θ̂ mod 2π−π

2

2πN−1

)
Mm(p), if p > 0

1

N , if p = 0
(6)

WhereN is the number of orientations, ω = (p cos θ̂, p sin θ̂)
and Bk is the k-th order B-Spline function. The function

Fig. 1. Steps of the Potential construction (see text).

Mm(p) = e−p
∑m

k=0

pk

k! . The cake wavelet in spatial do-

main can be obtained by:

ψθ̂(x) = F−1
(
ψ̂cw

θ̂

)
(x)Gσ(x) (7)

with Gσ(x) is a Gaussian kernel. We only utilize the imagi-

nary part of the orientation score[8, 11]:

ℑθ̂(x) = Imag
{
I ∗ ψcw

θ̂

}
(x) (8)

In order to perform a 4D isotropic Fast Marching propagation

with extra radii, we construct the 4D potential P : Ω× S1 ×
ℜ1 → R+ as follows:

P(x, θ, r) =
{
h̄(r) · (ℑθ ∗ Qθ−π/2,r)

}
(x) (9)

{
P(x, θ, r) = α

(
P + |P|+ c0

)−1
+ c (10a)

P(x, θ, r) = α
(
P − |P|+ c0

)−1
+ c (10b)

Where x ∈ Ω is a pixel position, θ ∈ [ 1
2
π 3

2
π] is the orien-

tation variable(As ℑθ = −ℑθ+π , we use θ ∈ [0 π] ), and

r ∈ [0 rmax] is the radii variable (rmax is the largest radius

given by the user). h̄(r) is a weighted function. α, c0 and c
are positive constants depending on the images. Qθ,r can be

computed in the polar coordinates:

Qθ,r(̟) =





e
−(θ−θ0)2

σ2
1 · e

−(r−r0)2

σ2
2 , θ ∈ [0 π]

−e
−(θ−θ0)2

σ2
1 · e

−(r−r0)2

σ2
2 , θ ∈ (π 2π]

(11)

Where ̟ = (r0 cos θ0, r0 sin θ0). σ1 and σ2 are positive con-

stants.In this paper we set that σ1 = 0.01 and σ2 = 0.1. In

Fig.1 we show this course of potential construction. For two

boundaries of a vessel, the orientation score value will be pos-

itive in one boundary and negative in another one depending

on the gray level of the vessels and the background. There-

fore, if the gray values in the vessel are lower than that in

background, we use (10a), otherwise use (10b). Fig.1(a) is a

synthetic Spiral with width 8, (b) is a cake wavelet in spatial

domain with a orientation θ = 6

N × 2π (N = 36). (c) is the

orientation score obtained by the cake wavelet shown in (b).

(d) shows the potential obtained by (10a) with r = 8.

3.2. Mask-based 4D growing minimal paths and stopping

criterion

In this paper, we propose a mask based growing minimal

paths method to automatically stop the propagation. The mo-

tivation of the use of mask is that after the keypoints detected
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by classical KPGMM have covered the main branches, they

will go out and lead to some paths without meaning. With

a mask, the set of keypoints will be re-defined automatically

and efficiently to obtain more precise segmentation results.

Also a positive threshold factor T can be used together with

the mask to stop the FM propagation automatically (see sec-

tion 4.1 for details of the mask).

3.2.1. Steps of 4D the keypoints searching scheme

Let N8(p) denote the set of 8 neighbours of a 4D point p.

Set minimal action map U = +∞ and path length map L =
+∞ for each point. Select the pixel p0 with minimum of the

Potential P as the source point, set U(p0) = 0 and L(p0) =
0. Move p0 to Trial set, and set all other points as Far. For

given threshold λ, threshold factor T , mask M, and Potential

P , we do the following loops:

While the Trial Points Set is not empty, do:

Find pmin, the Trial point with the smallest U .

If L(p0) > λ and M(i, j) = 1:

• set U(pmin) = L(pmin) = 0;

•tag pmin as a key point and Trial;

•track the geodesic from pmin according to Equ.(4).

Else if L(p0) ≤ (λ · T ):
•Tag pmin as Alive;

•For each Non-Alive point pn ∈ N8(pmin),
do {U(pn),L(pn)} = UpdateFM and Tag pn as Trial.

Else if L(p0) > (λ · T ) and M(i, j) = 0:

•Stop the FM propagation completely.

End

3.2.2. Details of UpdateFM

The method UpdateFM can simultaneously compute the

minimal action map and path length map for a point p =
{i, j, k, l}. We note {A,A1}, {B,B1}, {C,C1} and {D,D1}
the four couples of opposite neighbors such that we get

the ordering A ≤ A1, B ≤ B1, C ≤ C1, D ≤ D1 and

A ≤ B ≤ C ≤ D. {A0, B0, C0, D0 } are the corresponding

path length map values of the grid points whose minimal

action map values are {A,B,C,D} respectively. Assume

u = v = 0, we compute the the discriminant △U
1 and △L

1 of

(u−A)2 + (u−B)2 + (u− C)2 + (u−D)2 = P2(p) (12)

(v −A0)
2 + (v −B0)

2 + (v − C0)
2 + (v −D0)

2 = 1 (13)

If △U
1 ≥ 0, we get

u =
{
(A+B + C +D) +

√
△U

1

}
/4 (14)

v =
{
(A0 +B0 + C0 +D0) +

√
max{△L

1 , 0}
}
/4 (15)

If u ≤ D or △U
1 ≤ 0, compute △U

2 and △L
2 of

(u−A)2 + (u−B)2 + (u− C)2 = P2(p) (16)

(v −A0)
2 + (v −B0)

2 + (v − C0)
2 = 1 (17)

If △U
2 ≥ 0, we get

u =
{
(A+B + C) +

√
△U

2

}
/3 (18)

v =
{
(A0 +B0 + C0) +

√
max{△L

2 , 0}
}
/3 (19)

If u ≤ C or △U
2 ≤ 0, compute △U

3 and △L
3 of:

(u−A)2 + (u−B)2 = P2(p) (20)

(v −A0)
2 + (v −B0)

2 = 1 (21)

If △U
3 ≥ 0, we get

u =
{
(A+B) +

√
△U

3

}
/2 (22)

v =
{
(A0 +B0) +

√
max{△L

3 , 0}
}
/2 (23)

If u ≤ B or △U
3 ≤ 0, we have u = A+P(p) and L = A0+1.

Then U(p) := min{U(p), u}, L(p) := min{L(p), v}. Tag

p as Trial.

(a) (b) (c)

(d) (e) (f) (g)

Fig. 2. Results (top row) and the course of the proposed

method (bottom row, see text).

4. EXPERIMENTS

4.1. Details of the proposed method

For the mask, many vessel detection methods can be used. In

this paper, we choose the Hessian-based[10] model to make

a mask. After getting the Hessian-based vessel measurement,

we threshold this and obtain a binary mask like Fig.2(b) and

Fig.3(b). Fig.2(a) is the original image, (b) is the mask and (c)

is the result by our method. We show 4 intermediate results

of our method in Fig.2(d)∼(f). In those results, blue points

are the source points and black points are the detected key

points. Fig.2(g) shows the end point (black point ) for which

the propagation stops completely when the front reaches it.

4.2. Evaluation on synthetic image

Fig.3 shows an experiment in a synthetic image. (a) is the

original image with noise and (b) is the Hessian-based mask.
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(a) (b) (c) (d) (e)

Fig. 3. Results in synthetic image.

Table 1. Quantitative evaluation results

λ λ =33 λ =43 λ =53 Mask Fig3(d)

Error 0.86 1.0 0.94 7.62 1.4

(c) is the by classical KPGMM. (d) is a part of results of (c)

with the same number of keypoints to (e) which is the result of

our method: blue point is the source point and yellow points

are the keypoints detected (λ = 33 and T = 1.2). In (c)

the keypoints are located everywhere after covering the main

branches. We compare the results shown in Fig.3 with error

defined below in (24). Let Cg be the ground truth contours

and Pi be the ith pixel located at the detected boundaries.

Error =
1

N0

N0∑

i=1

Dis(Cg, Pi) (24)

where Dis(Cg, Pi) is the minimal distance among all the dis-

tances from pixel Pi to each pixel of Cg . N0 is the total num-

ber of pixels on the detected contours. We compare the results

for different thresholds λ but with same T in Table 1. Our

method can give a better performance as the propagation can

be stopped by the criteria to avoid the influence by the noise.

4.3. Comparison with the classical KPGMM

In Fig.4 we show two results: (a)a part of results without mask

and (b)a part of results (Fig.2 (c)) with mask. Both the yellow

points in (a) and (b) inside the green boxes are the thirteenth

keypoints with the same spatial location, radii and orientation.

Due to the mask-based stopping criteria, the proposed method

can avoid taking a point which can be tagged as keypoint by

the classical KPGMM (like the black point in (a)) but outside

the mask as key point. Instead, the front will continue to prop-

agate until finding a point with length more than λ but inside

the mask, like the black point in (b). This the main advantages

of our method comparing to the classical KPGMM.

(a) (b)

Fig. 4. Parts of segmentation results (see text).

5. CONCLUSIONS

We propose an automatic vessel tree extraction method based

on a mask and 4D KPGMM . With the orientation score, we

construct a 4D potential with extra radii and orientation di-

mensions. Experiments show our method can get a better

performance than the classical KPGMM.
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