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ABSTRACT

In this paper, we present a blood vessel segmentation method
by front propagation and anisotropic Riemannian metric. The
front is defined as the level set of the geodesic distance to
a set of given initial source points, with respect to a dynamic
anisotropic Riemannian metric. The boundaries of the vessels
can be represented by the level set at the given distance thresh-
old. The anisotropic Riemannian metric can be defined using
a prior estimate of the vessel orientations and the local inten-
sity difference values, where the vessel orientations are de-
tected by the oriented flux filter. Experimental results demon-
strate the proposed vessel detection method indeed outper-
forms the traditional vesselness based detection method.

Index Terms— Vessel tree segmentation, level set, Fast
Marching method, dynamic anisotropic Riemannian metric.

1. INTRODUCTION

Vessel tree extraction is an essential task in medical imaging
and computer-assisted therapy applications. Various vascula-
ture structure segmentation methods, such as vessel enhance-
ment methods and deformable models have been studied dur-
ing the passed three decades [1].

Multi-scale vessel enhancement methods like Hessian
based vessel enhancement filter [2, 3, 4, 5], convert the vessel
intensity into the vesselness value, where each pixel value
indicates the probability of this pixel belonging to a vessel.
Then the binary segmented image can be obtained by thresh-
olding the vesselness image. This class of models sometimes
suffer from the scale overfitting problem when treating two
vessels that are closed to each other.

Flux based active contours have been widely applied to
tubular structure segmentation since the pioneer work pre-
sented in [6], in which the flux magnitude field of the im-
age gradient vector is taken as the dominating external force
to drive the active contours (2D) or active surfaces (3D) to
sketch the tubular structure boundaries. To solve the expen-
sive computation of the flux, Law et al. proposed a fast flux
computation method [7] and its improved method: optimally
oriented flux filter [3] which be adapted to active contours
models [8]. However, those deformable models are based on
the level set evolution scheme, where the curve or surface is

defined as a zero level set, suffering from high computational
complexity.

Fast Marching based front propagation method was devel-
oped to overcome the computational complexity of classical
level set numerical scheme by Malladi et al. [9]. This requires
the speed to be positive everywhere, making the front propa-
gation based segmentation [9, 10] to suffer from leakage, i.e.,
some parts of the front need more time to reach the bound-
aries, and by that time, other parts of the front leak accross
the boundary. The authors in [10] proposed a curve length
based front propagation method which can classify the front
points into head and tail. Then the tail points are frozen to
prevent leakages. The main drawback of those front propaga-
tion methods is they are only based on isotropic metric.

In this work, we proposed an improved front propagation
method for blood vessel segmentation, based on a dynamic
anisotropic Riemannian metric calculated from the current
front and local intensities. The orientation of each pixel are
computed using the optimally oriented flux filter [3]. The mo-
tivation of this work is that vesselness based segmentation
methods like [3] may suffer from the scale overfitting prob-
lems and are difficult to combine with manual interventions.
Additionally, for isotropic Fast Marching front propagation,
leakage problem often occurs. Instead, our method can easily
take into account the user defined initial points and will avoid
leaking problem thanks to the dynamic Riemannian metric
field and the orientation enhancement.

2. BACKGROUND

2.1. Front Propagation Segmentation

We consider the isotropic Eikonal equation:

P(x)‖∇U(x)‖ = 1, (1)

where U is the minimal action map or minimal arrival time
with speed function P : Ω → R+ with Ω ⊂ R2 being
the image domain. This Eikonal equation was first adapted
by [9] for surface segmentation since it shares some of the
evolutional property of level set based method but with much
cheaper computational time.

Given a set of initial source points, the behaviour of the
front propagation is like the curve evolution driven by a bal-



lon force [11]. Generally, the speed function P should be
large inside the flat region in order for the front to propagate
very fast. In contrast, at the vicinity of boundaries, P should
become small and the front propagation will be slow in this
region, thus stopping the front to leak out the vessels. P might
depend on the image gradient or vesselness values.

Numerically, the Eikonal equation (1) can be solved by
the Fast Marching algorithm [12]. The gradient ∇U is ap-
proximated by a first order upwind scheme, satisfied for the
isotropic metric P . In this paper, we focus on the anisotropic
Riemannian metric which cannot be solved by such Fast
Marching method. Instead, we utilize the anisotropic Fast
Marching algorithm proposed in [13] which is very stable
even for large anisotropy ratio.

2.2. Optimally Oriented Flux Filter

The optimally oriented flux filter [3] was designed to com-
pute the vesselness map at the optimal scale and get the ori-
entations of each point inside the vessels. For a given two-
dimensional image I , flux f is defined as the summation of
the image gradient projected along the orientation vector ~p,
flowing out from a circle centred at point x with radius r:

f(x; r, ~p) =

∫
∂Cr

(
∇(Gσ ∗ I)(x + r~n) · ~p

)(
~p · ~n

)
ds . (2)

Where Gσ is a Gaussian with variance σ, which is used to
smooth I and the outward unit normal vector along ∂Cr is
represented by ~n. By the divergence theory [3], the oriented
flux f can be expressed as f(x; r, ~p) = 〈~p, Q(x, r)·~p〉, where
Q is a symmetric matrix defined by the oriented flux filter Fr:

Q(x, r) =
(

(
1

r
Fr) ∗ I

)
(x, r). (3)

See [3] for more details about Fr. For each point (x, r),
Q can be decomposed using eigenvectors as: Q(x, r) =∑2
i=1 λi(x, r)~ui(x, r)⊗ ~ui(x, r).
Supposing the intensity values inside the vessels are

higher than outside and λ1(·) ≤ λ2(·), one has : ∀x inside
vessels, λ1(x, ·) � λ2(x, ·) ≈ 0, which means λ1 is nega-
tive and has a large absolute value. Then the vesselness map
I : Ω→ R is defined as:

I(x) =
∣∣λ1(x, r∗(x)

)∣∣ , r∗(x) = arg max
r
|λ1(x, r)|.

Similarly, we define the vessel orientation field ~V :

~V (x) = ~u2(x, r∗(x)). (4)

We will use this orientation vector field ~V to construct our
Riemannian metric in the following section.

3. DYNAMIC RIEMANNIAN METRIC BASED
FRONT PROPAGATION

3.1. Front Propagation with Anisotropic Metric

In this section, we consider the anisotropic Eikonal equation
with Riemannian metric. For a symmetric positive tensor field
M, the anisotropic Eikonal equation is

‖∇U(x)‖M−1(x) = 1. (5)

The anisotropic Fast Marching algorithm [13] can be used as
the numerical solver of distance map U , by finding the solu-
tion, at each update step, of the fixed point problem:

U(x) = min
y∈∂S(x)

{
L(x,y − x) + IS(x) U(y)

}
, (6)

L(x, ~v) =
√
〈~v,M(x)~v〉,

where IS(x) is a piecewise linear interpolation operator on a
mesh S(x). The local mesh or stencil S can be adaptively
constructed according to the given Riemannian metricM by
the tool of Lattice Basis Reduction, as introduced in [13],
leading to breakthrough improvements in terms of computa-
tional time and accuracy when dealing with metrics having
strong anisotropy ratio.

As initialization, the Fast Marching algorithm tags all the
discretization grid points of Ω into three labels: Alive, points
have been computed and frozen; Trial, points have been up-
dated at least once but not frozen; and Far, points have not
been estimated yet. The Fast Marching front consists of all
the Trial points. At each update iteration, the Trial point x,
minimizing U , will be selected and tagged as Alive and all
the neighbour points yx ∈ {y ∈ Ω;x ∈ S(y)} will be up-
dated by solving (6). For convenience, we say that point x is
base-point of all its neighbour points yx in this update step.

3.2. Dynamic Riemannian Metric Construction

Traditional anisotropic Eikonal equation uses static metric
field independent of the Fast Marching front. For blood
vessels segmentation application, one has to deal with the
problem of intensities inhomogeneities which is not suitable
for the static metric, thus we propose to take into account the
front location to calculate dynamic metric field.

Assuming that vessels are brighter than background and
letting A ⊆ Ω be a collection of all points tagged as Alive,
we define a local mean intensity function K : Ω→ R+ and a
local intensity difference map J : Ω→ R+:

K(x) :=
∑

y∈A
⋂
Br(x)

I(y)
/

#
{
A
⋂
Br(x)

}
, (7)

J (x) := exp(α |min{I(x)−K(x), 0}|), x ∈ Ω. (8)

Where α is a positive constant. Br(x) is a ball with radius r
defined as {p; ‖x− p‖ ≤ r}. # {A

⋂
Br(x)} is the number



Algorithm 1 FrontPropagationwithDynamicMetric
Input: Tensor fieldMc, initial point setW and stencil S.
Output: Minimal action map U .
Initialization:
• For each point x ∈ Ω, set U(x)=+∞ and D(x) =Far.
• For each point x ∈ W , set U(x)=0 and D(x) =Trial.

While( stopping criterion is not reached )
1: Find xmin, the Trial point which minimizes U .
2: A ← xmin and D(xmin)← Alive.
3: Compute K(xmin) using (7).
4: for All y such that xmin ∈ S(y) and D(y) 6=Alive do
5: Update J (y) using (10).
6: Construct the tensor fieldMd using (11).
7: Compute Unew(y) using (6).
8: if Unew(y) < U(y) then
9: U(y)← Unew(y) and D(y)← Trial.

10: end if
11: end for

of points contained in the setA
⋂
Br(x). K is computed only

inside a local region such that the proposed front propagation
method is robust when dealing with intensity inhomogenities
and noise. By assuming that vessels have higher gray lev-
els, we consider that if a pixel x has higher intensity than
the average intensity value of its vicinity points defined by
Br(x)

⋂
A, x is likely to be located inside a vessel. There-

fore we use |min{I(x)−K(x), 0}| to calculate J (x) in (8)
instead of using |I(x)−K(x)|.

Numerically, function J will be updated in each update
iteration of the Fast Marching algorithm. To reduce the com-
putational complexity, we use the following approximation:

K(x) ≈ K(z), (9)

where z is a base-point of x. Then J can be approximated by

J (x) ≈ exp(α |min{I(x)−K(z), 0}|). (10)

With this approximation, J only requires to be updated N
times where N is the total number of grid points in I .

The dynamic tensor field (anisotropic Riemannian metric)
Md can be constructed by combination of J as:

Md(x) = J (x)×Mc(x), (11)

Mc(x) = ~V ⊗ ~V (x) + µ× ~V ⊥ ⊗ ~V ⊥(x). (12)

where ~V ⊥ is the vector field orthogonal to ~V and ~V is the ves-
sel orientation vector field defined in (4). µ is the anisotropic
ratio. One can see thatMc is a non-changed tensor field dur-
ing the Fast Marching front propagation. In contrast,Md will
be updated in each Fast Marching update iteration due to the
computation of J . In Algorithm 1, we present the details of
our algorithm. A, K, and J are updated in lines 2, 3 and 5
respectively. The stopping criterion is a threshold computed

(a) (b) (c) (d)

Fig. 1. Front propagation based on Mc in (12) for different ratio µ.

(a) (b) (c) (d)

Fig. 2. Front propagation using isotropic Fast Marching method and J .

by making sure that T% of pixels having the lowest mini-
mal action map U , among all pixels, have been chosen. For
Fast Marching algorithm, this stopping criterion is equivalent
to find N ∗ T% points tagged as Alive, where N is the total
number of image pixels.

4. EXPERIMENTS

We first show the advantage of using anisotropic Riemannian
metric rather than isotropic metric. Fig. 1 shows four front
propagation results with the same number of points tagged as
Alive. The anisotropic ratio values for Fig. 1(a)-(d) are 1, 10,
30, and 50 respectively. It can be seen that a large anisotropic
ratio could make the front propagate along the vessel structure
as far as possible before the front leaks out of the vessels. In
the following experiments, we set the anisotropic ratio value
to be 30 for the proposed method.

In Fig. 2, we show the segmentation results using 1/J as
the speed for the isotropic front propagation. At the begin-
ning of the front propagation in Fig. 2(a) and (b), no leakage
happens. However, as the front goes further along interior re-
gion of the vessel tree, it leaks from some weak vessels. This
is why we utilize the anisotropic front propagation method.

In Fig. 3, we show the segmentation results from three
segmentation methods: the second column shows the results
by thresholding the vesselness map I in (4); the third column
is obtained from a front propagation based method, in which
we set the metric as

M(x) = exp(βI(x))(~V ⊗ ~V (x) + µ ~V ⊥ ⊗ ~V ⊥(x)),

with β < 0. For fair comparison, we use the same Fast
Marching algorithm [13] with the proposed method to com-
pute the minimal action map. Black points in the third and
last columns are the initial source points. The last column
gives the results by the proposed method. All the three meth-
ods require thresholding to get the final segmentation results.



Fig. 3. Vessel tree segmentation results from different methods. (see text)

One can see that the vesselness based results have many holes
and scale overfitting. The vesselness-based front propagation
method also suffers from the similar problems since the dis-
tance maps are heavily affected by the vesselness. In contrast,
the proposed method can avoid the mentioned problems. In
this experiment, we choose the same T for the front propaga-
tion methods (third and last columns) but a little bigger T1 to
threshold the I in the second column.

5. CONCLUSION

In this paper, we propose a new front propagation method for
vessel segmentation with the dynamic anisotropic Rieman-
nian metric and anisotropic Fast Marching. We use the local
intensity coherence to penalize the tensor field constructed by
the vessel anisotropy to make the front propagation robust to
vessel intensity inhomogenities and noise. Experiments show
that our model indeed obtain expected results.
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