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Abstract. Geodesic methods have been widely applied to image analy-
sis[17]. In this paper, we propose an automatic anisotropic fast marching
based geodesic method to extract the centrelines of retinal vessel seg-
ments and their boundaries. Our method is related to the geodesic or
minimal path technique which is particularly efficient to extract a tubu-
lar shape, such as a blood vessel. The proposed method consists of a set
of pairs of points. Each pair of points provides the Initial point and Tar-
get point for one geodesic. For each pair of Initial point and Target point,
we calculate a special Riemannian metric with an additional Radius di-
mension to constrain the fast marching propagation so that our method
can get a nice path without any shortcut. The given pairs of points can
be easily obtained from a pre-segmented skeletonized image by any ves-
sel detection filter like Hessian or Oriented Flux method. Experimental
results demonstrate that our method can extract vessel segments at a
finer scale, with increased accuracy.

1 Introduction

Automatic segmentation and analysis of vascular structures has been deeply
developed during the last two decades[10]. Tubular structure enhancement filters,
like Hessian based method[9] and Oriented Flux[13] are widely used methods.
The response of those filters, named vesselness can be thresholded directly to
extract the vessel boundaries and then apply a sequential thinning filter[12] to
the binary vessel segmentation to obtain the vessel centrelines which can be
further processed. Those centrelines sometimes are not exactly located in the
middle of the tubular shape. And it is a difficult task to compute the width of
the tubular shape from those binary segmented images.

In this paper, we deal with the problem of automatically finding a set of ves-
sel segments by piecewise geodesics consisting of centreline positions and radii.
The minimal path model has been improved deeply since the seminal Cohen-
Kimmel model[5], in which tubular structures, or object edges are extracted as
the form of geodesics or minimal paths. This classic minimal path model can lead
to finding the global minimum with respect to a geodesic energy potential P be-
tween two given endpoints. The geodesic potential or metric can be isotropic[8,
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7, 6] (P only depends on the pixel position), or anisotropic in the sense that
path length depends on the path orientation as well[2, 3]. Once this potential
is properly defined, Fast Marching methods[18, 16] are the favored methods to
estimate geodesic distances, from which minimal paths can be extracted. How-
ever, for the minimal path models mentioned above, it is difficult for them to
extract the centreline of the tubular structure and the local width information
or boundaries simultaneously. In order to solve this drawback, Li and Yezzi[14]
proposed a variant minimal path technique, which defines the potential domain
Ω ⊂ Rn+1, connected open and bounded, as the product of spatial space Ω ⊂ Rn
with a parameter space ]Rmin, Rmax[ representing vessel radius collection. Thus,
each point in the extracted path by [14] contains spatial position and the last
dimension represents the vessel thickness at this spatial point, i.e, one point
coordinate consists of spatial dimensions and one radius dimension. And the
extracted path is also located on the centreline of the tubular structure with
appropriate potential.

Unfortunately, Li and Yezzi model suffers from a drawback that they did not
take advantage of vessel orientation information which plays an important role in
vessel detection. Benmansour and Cohen[2] proposed to use an anisotropic Rie-
mannian metric to enhance the Li and Yezzi model. In [2], the authors construct
a multi-resolution Riemannian metric guiding the Anisotropic Fast Marching
propagation in the domain Ω. Both [2] and [14] require the user to give two
or more endpoints as the prior knowledge to track the minimal paths. In order
to reduce the user input, several papers[1, 11, 15, 4] proposed to use keypoints
searching method to detect recursively new start-points (keypoints) along the
expected features by computing the curve length. But those methods require
complicated stopping criteria.

The main purpose of this work is to introduce an automatic method to extract
a complete tubular tree structure, such as the retinal vessel network, relying on
the Benmansour-Cohen model[2] by using an Euclidean distance function to
calculate the anisotropic metric for each initial vessel segment through thinning
the thresholded vesselness image. The Euclidean distance function can constrain
the anisotropic Fast Marching propagation and prevent shortcuts.

2 Background

In this paper, we only consider the 2D vessel segmentation so that one point
x = (x, r) ∈ Ω, where x ∈ Ω (Ω ⊂ R2) denotes the point position in spatial
dimensions and r ∈ ]Rmin, Rmax[ denotes the position in radius dimension.

2.1 Minimal Path

Let = denote the collection of Lipschitz paths γ : [0, L] → Ω. The weighted
length through a geodesic energy potential P can be formulated as follows:

lP(γ) :=

∫ L

0

P(γ(s), γ′(s)) ds , (1)
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where s is arc-length parameter and γ′ denotes the tangent vector of path γ.
The geodesic distance Us(x), or minimal action map, is the minimal energy of
any path joining a point x ∈ Ω to a given initial point s:

Us(x) := min{lP(γ)|γ ∈ =, γ(L) = x, γ(0) = s}. (2)

The path Cs,x is a minimal path if lP(Cs,x) = min
γ
{lP(γ), γ ∈ =}. There always

exists at least one minimal path Cs,x.

2.2 Optimally Oriented Flux and Riemannian Metric Construction

The oriented flux[13] of an image I : Ω → R2, of dimension d = 2, is defined by
the amount of the image gradient projected along the orientation p flowing out
from a 2D circle at point x with radius r:

f(x; r,p) =

∫
∂Cr

(∇(Gσ ∗ I)(x+ rn) · p)(p · n) ds , (3)

where Gσ is a Gaussian with variance σ and n is the outward unit normal vector
along ∂Cr. ds is the infinitesimal length on the boundary of Cr. According to the
divergence theory, one has f(x; r,p) = pT ·Q(x, r) ·p for some symmetric matrix
Q(x, r) whose eigenvalues and eigenvectors we denote by λi and vi, i = 1, 2 (
Suppose that λ1 ≤ λ2).

In this paper, as in Benmansour-Cohen model[2], the potential P(γ, γ′) is
set as a quadratic form with respect to a symmetric positive definite tensor M
which is a 3× 3 symmetric matrix:

P(γ, γ′) =
√
γ′(.)TM(γ(.))γ′(.) . (4)

As described in [2], we consider only the orientations in the spatial dimensions.
Thus M can be decomposed as follows:

M(x, r) =

(
M̃(x, r) 0

0 Pr(x, r)

)
. (5)

The anisotropic entry M̃(x, r), which is a 2 × 2 symmetric definite positive
matrix, at point x = (x, r) can be constructed by the eigenvectors v1 and v2 as:

M̃(x) = eα·λ2(x)v1(x)v1(x)T + eα·λ1(x)v2(x)v2(x)T . (6)

The isotropic entry Pr(x) can be computed as:

Pr(x) = β exp
(
α
λ1(x) + λ2(x)

2

)
, (7)

where α controls the spatial anisotropic ratio defined as

µ = max
(x,r)∈Ω

√
exp

(
α · (λ2(x, r)− λ1(x, r))

)
while β controls the radius speed. For more details, we refer to [2].
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2.3 Anisotropic Fast Marching Using Basis Reduction

Numerical methods for the minimal action map Us(x), see (2), introduce a dis-
cretization grid Z of Ω, and for each x ∈ Z a small mesh S(x) of a neighborhood
of x with vertices in Z (with the adequate modification if x is at or near the
boundary). An approximation of Us is given by the solution of the following fixed
point problem[16]: find Us : Z → R such that (i) Us(s) = 0 for the initial point
s, and (ii) for all x ∈ Z \ s

Us(x) = min
y∈∂S(x)

P(x,y − x) + IS(x) Us(y), (8)

where IS(x) denotes piecewise linear interpolation on a mesh S(x). IS(x) interpo-
lates Us on S(x) [2, 16, 20]. The expression (8) reflects the fact that the minimal
path Cs,x, joining x to s, needs to cross the stencil boundary ∂S(x) at some point
y; hence it is the concatenation of a small path joining x to y, of approximate
length P(x,y−x), and of Cy,x, which energy is approximated by interpolation. A
striking fact is that this N -dimensional fixed point system, with N = #(Z), can
be solved in a single pass using the Fast Marching algorithm [20], provided the
stencils S(x) satisfy some geometric properties depending on the local geodesic
potential P(x, ·).

An adaptive construction of such stencils was introduced in [16], which led
to breakthrough improvements in terms of computation time and accuracy for
strongly anisotropic geodesic energy potentials, as in our application. It invokes
Lattice Basis Reduction, a tool from discrete geometry which combines in an
optimal way the geometric structure given by the Riemannian metric, and the
arithmetic structure of the cartesian discretization grid.

2.4 Limitation of Classical Minimal Paths

Benmansour-Cohen model[2] can accurately extract the vessel boundaries and
centrelines at the same time, and also very fast. Unfortunately, despite its nu-
merous advantages, this model exhibits a disadvantage when applied to complete
vessel network extraction such as retinal segmentation. It requires user provided
endpoints at the end of each tubular structure end. This means expensive user
intervention. For the keypoints method[1, 11, 15, 4], which requires less user in-
tervention, there may be some missing tubular segments. This is mainly because
of the loops in the tubular structure network.

To solve those problems, we propose a new method based on Benmansour
and Cohen model with pre-segmented vessel map to automatically extract the
tubular structure segments. Our method can be divided as follows: presegmenta-
tion, endpoints correction and constrained Fast Marching propagation. We will
give details of those steps in the next section and a summary in Section 3.4.
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3 The Proposed Constrained Piecewise Geodesics

3.1 Pre-Processing

In this paper, we use a vessel detector to filter the image and obtain a vesselness
map. Then a constant threshold is applied to this vesselness map to get the
binary segmented vessel image. In order to find the endpoints for each vessel
segment, we thin the binary image by a sequential morphological filters[12] and
remove all the branch points and crossover points. The entire skeleton is broken
up into a set of segments, in which each segment consists of two endpoints.
The branch or crossover points are defined as any skeleton point having at least
three neighbors in 8-neighborhood system. Any endpoint is discovered if it has
only one neighbor and segment point has two neighbors. In Fig. 1(c), we show
the skeletons after applying thinning filter and the labeled segments in different
colours in Fig. 1(d).

(a) (b) (c) (d)

Fig. 1. PreProcessing.(a) Original image. (b) Vesselness map computed by Hessian-
based Filter[9]. (c) the Skeleton map of the image. (d) Label different segments with
different colours after removing branch and crossover points

.

In our work, we firstly scan the entire skeleton image to find all the vessel
segments with two endpoints and then label them. Delete the segments whose
length in pixels are smaller than a given threshold Tlen, but retain the segments
who connect two branch or crossover points. Those segments will be stored in
the set T .

3.2 Constrained Riemannian Metric and Anisotropic Fast Marching

In the previous section, we have all the segments and the corresponding endpoints
stored in T . Each segment consists of two endpoints and all the segment points
connected to the endpoints. For each segment ~ with two endpoints ps and pe,
it is easy to extract the centerline by Benmansour-Cohen model[2] by taking
one of the two endpoints as initial point and track the path from another one.
However, sometimes shortcuts will occur and some segments will be missed. In
Fig. 2(a), the extracted geodesic follows the segment labeled as blue in Fig 1(d).
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(a) (b) (c) (d)

Fig. 2. Results from Benmansour and Cohen model.(a) and (b) Extracted centrelines
corresponds to the vessel segments labeled as blue and red in Fig. 1(d), respectively.
(c) is the result of our method. (d) is the result of our method with endpoint correction
(see text).

.

But the result in Fig. 2(b) is a short cut path. In order to solve this problem,
we use the following function with respect to segment ~ ∈ T :

D~(x, r) =

{
1, if d~(x, r) ≤ ` ;

+∞, else ,
(9)

where ` is a given positive constant. And d~(x, r) is a distance function:

d~(x, r) = min
x~∈~

‖x− x~‖2. (10)

Note that (x, r) denotes a point in the domain Ω = Ω× ]Rmin, Rmax[. Function
d~(x, r) represents the minimal Euclidean distance from spatial point x ∈ Ω to
the segment ~. D~ in (9) gives a constraint volume computed by d~ and `.

Based on (5), (9), and (10) we can construct the constrained Riemannian
Metric for segment ~ ∈ T :

M~ =

(
D~ 0
0 D~

)(
M̃ 0
0 Pr

)
=

((
D~ · M̃

)
0

0
(
D~ · Pr

)) . (11)

In our method, in fact, distance D~ and d~ can be simply and fastly computed
through applying the morphological dilation operation with radius ` to segment
~. Denote the dilated region as R~ ⊂ Ω, D~ can be rewriten as:

D~(x, r) =

{
1, if x ∈ R~ ;

+∞, else .
(12)

Combining the dilated region R~ and D~, we use the Riemannian metric
M in (5), instead of M~ in (11). The detailed algorithm can be seen in Al-
gorithm 1. In Algorithm 1, the input initial point ps is defined in the domain
Ω × ]Rmin, Rmax[ , i.e., ps = (ps, r0) where r0 = 1 which means one pixel length
perimeter guess for ps. ps and pe are the two endpoints of segment ~ ∈ T .

In Algorithm 1 we give only a physical space endpoint pe. Once the Fast
Marching front meets one point p = (p0, r) which follows p0 = pe , we consider
p = (p0, r) to be the endpoint. In Fig. 2(c), we demonstrate the result of our
method. It can be seen that our method can overcome the shortcuts problem.
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Algorithm 1 ConstrainedAnisotropicFM

Input: Metric M, initial point ps ∈ Ω, endpoint pe ∈ Ω, dilated region R~ ⊂ Ω.
Output: Paths C~.
Initialization:

For each point x ∈ Ω, set U(x)=+∞ and V(x) = Trial.
Set U(ps)=0.

Marching Loop:
1: Find xmin = (xm, r), the Trial point which minimizes U .
2: if xm /∈ R~ then
3: Set U(xmin) = +∞ and V(xmin) =Accept.
4: Return to 1.
5: end if
6: if xm = pe then . Stop the propagation.
7: Stop the Fast Marching Propagation and Track the minimal path C~.
8: Output the path C~.
9: end if

10: Tag x as Accepted. . “Standard” fast marching.
11: for All y such that xmin ∈ S(y) and V(xmin) 6= Accepted do
12: Compute Unew(y) using (8).
13: if Unew(y) < U(y) then
14: Set U(y)← Unew(y)
15: Set V(y)=Trial.
16: end if
17: end for

3.3 Endpoints Correcting

Sometimes the endpoints of the segment ~ are not located at the exact center
of the tubular structure. As an example, see the two endpoints of the segment
in Fig. 1(d) labeled as red. This endpoint-bias will introduce inaccuracy to the
extracted minimal paths around the initial point and endpoint (see the red path
in Fig. 2(c)). In this section, we propose an endpoint correcting (EC) method to
solve this problem before applying Algorithm 1. The proposed EC method relies
on the Euclidean length E of the minimal path. We firstly introduce the Euclidean
length calculation method during the Anisotropic Fast Marching propagation[4]:
an approximation of E is the solution of the fixed point problem: find E : Z → R
such that (i) for ps ∈ Ω, E(ps) = 0, and (ii) for all x = (x0, r0) ∈ Z \ ps, let
yx = (y, r) be the point at which the minimum (8) is attained:

E(x) = ‖y − x0‖2 + IS(x) E(yx), (13)

Then a single pass solver is possible: whenever the Fast Marching updates U ,
update E at the same time, by using the just computed minimizer yx from (8).
In (13), the term ‖y − x0‖2 is the Euclidean distance between y and x0.

The EC method is described in Algorithm 2: for a given segment ~ ∈ T and
its two endpoints ps, pe we find its middle point pm ∈ ~ and the dilated region
R~ with radius ` as input. Launch the Fast Marching from point pm = (pm, 1)
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Algorithm 2 EndpointsCorrecting

Input: Metric M, endpoints ps and pe, initial point pm, dilated region R~ ⊂ Ω.
Output: Paths C~, new endpoints collection Φ0 = {ps,pe}.
Initialization:

For each point x ∈ Ω, set U(x)=E(x)=+∞ and V(x) = Trial.
Set U(pm)=E(pm)=0 and RemainedEndpoints = 2. Set point collection Φ = ∅.

Marching Loop:
1: Find xmin = (xm, r), the Trial point which minimizes U .
2: if RemainedEndpoints = 0 then
3: Track the minimal path C from each point of Φ0 and set C~ = C~ ∪ C;
4: Stop the algorithm completely.
5: end if
6: if xm /∈ R~ then
7: Set U(xmin) = E(xmin) = +∞ and V(xmin) =Accept.
8: Return to 1.
9: end if

10: if xm = pe or xm = ps then
11: RemainedEndpoints ← RemainedEndpoints− 1;
12: for All x ∈ B centred at xmin do . Endpoints searching criteria.
13: if E(x) ≥

(
[E(xmin)] + 1

)
and V(x) = Accepted then

14: Set Φ← x.
15: end if
16: end for
17: if Φ 6= ∅ then
18: Set Φ0 ← arg min

x∈Φ
U(x)

19: else Set Φ0 ← xmin.
20: end if
21: end if
22: Tag x as Accepted and update E(x) using (13). . “Standard” fast marching.
23: for All y such that xmin ∈ S(y) and V(xmin) 6= Accepted do
24: Compute Unew(y) using (8);
25: if Unew(y) < U(y) then
26: Set U(y)← Unew(y), V(y)=Trial.
27: end if
28: end for

to propagate the weighted distance U and Euclidean distance E everywhere in Ω.
Once either endpoint p̃e = (pe, re) is reached, search the desired point inside a set
B : {x ∈ Ω, ‖x− p̃e‖2 ≤ rB} according to the criteria described in Algorithm 2:
We find a collection of points Φ := {x |E(x) ≥ [E(p̃e)]+1,x ∈ B} where [n] means
the largest integer which is smaller than n ∈ R. Then the desired endpoint can
be selected as pe = arg min

x∈Φ
U(x). After another endpoint with the same criteria

is corrected, stop the algorithm completely. The criteria are based on the fact
that among all the points with the same curve length λ, any point which is
located at the centreline of the tubular structure has a local minimum arrival
time. In Fig. 2(d), we show the results with the boundaries delineation. We can
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see the endpoints of red, green and yellow lines have been placed at the better
positions compared with Fig. 1(d).

3.4 Summary of Our Method

In this section, we summaries our method as follows:

1. For a given image I : Ω ⊂ R2, obtain its skeletonized image by removing
all the branch and crossover points. Label each segment of the skeletonized
image and store them in T .

2. For each segment ~ ∈ T , do EndpointsCorrecting as described in Algorithm 2
to get a new set of segments Tnew.

3. For each segment ~new ∈ Tnew, do ConstraintAnisotropicFM described in
Algorithm 1 to obtain a set of minimal paths, in which each minimal path C
consists of the centrelines and the radius value representing the vessel width.

4 Experiments

In Fig. 3(b) we shown a complete results obtained by the proposed method. The
green lines represent the boundaries while the red lines are the centrelines of
the vessel segments. It can be seen that our method can capture almost all the
vessel segments without shortcuts. In this experiment, we set the anisotropic
ratio µ = 15, β = 2, the radius for the dilated region R~ as 3.

In Fig. 3(a) we show the results by Benmansour-Cohen model. Fig. 3(c), (d)
and (e) illustrate the details indicated by arrows. We can see that some vessel
segments are missed because of shortcuts. As comparison, we show the result
details of our method in Fig. 3(f), (g) and (h). In Fig. 4, we show the improved
results after endpoints correcting. Yellow lines are the paths without endpoints
correcting. Compared to the red lines which are produced after endpoints cor-
recting, we can see the endpoints are located at more precise positions.

For evaluation we apply our method on 20 retinal images got from the test
set of the DRIVE dataset[19], acquired through a Canon CR5 non-mydriatic
3CCD camera with a 45 degree field of view (FOV). We show the comparison
between Benmansour-Cohen model[2] and our method in Table 1 with evaluation
measure Accuracy, which can be computed by the ratio of the summation of
the statistical components: the true positive and the true negative to the total
number of pixels in the FOV[10]. In this paper, we erode the FOV region by
11 pixels to remove the effect of the boundaries of the FOV to the vessel pre-
segmentation. We evaluate our results only inside this eroded FOV region. In
Table 2 we show the computational time (CPU) of our algorithm in endpoints
correcting and constrained Fast Marching respectively. We also compare the
CPU with Benmansour-Cohen model[2] with the same given segment set. Our
method can achieve almost 2 times faster than [2]. In this experiment, we use
the parameters as: anisotropic ratio µ = 15, β = 1, the radius for the dilated
region R~ equals 3.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 3. Segmentation of a retinal image. (a) is the result by Benmansour and Cohen
model and (b) is the result of our method (Green lines are the boundaries and red
lines are the centrelines). (c-e) are the details of (a) indicated by arrows. (f-h) are the
details shown in (b).

(a) (b) (c) (d)

Fig. 4. Improved results by Endpoints Correcting. Yellow lines are the paths without
Endpoints Correcting while red lines are the paths after Endpoints Correcting.

5 Conclusions

In this paper, we propose a new tubular structure extraction method based on
the constraint anisotropic Fast Marching, and introduce a endpoints correcting
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Table 1. Comparison of our segmentations with the second manual segmentation on
the test set of DRIVE database.

Methods Maximum Minimum Mean Standard deviation

Benmansour-Cohen model[2] 0.947 0.9271 0.9372 0.0054

Proposed Method 0.949 0.9305 0.9397 0.0052

Table 2. Comparison of our segmentations CPU (in Seconds) with Benmansour-Cohen
model[2] on 12 retinal images from DRIVE.

Maximum Minimum Mean Standard deviation

Benmansour-Cohen model 22.6 9.16 13.17 3.2

Endpoints Correcting 5.1 4.0 4.39 0.27

Constrained Fast Marching 5.6 4.4 5.06 0.353

method using Euclidean curve length. These ingredients allow our method to
approximate piecewise minimal paths from complex tubular network, leading
better extraction results compared to the classic Benmansour and Cohen model.
Numerical experiments illustrate these improvements on several retinal images.
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3. Bougleux, S.., Peyré, G., Cohen, L.: Anisotropic Geodesics for Perceptual Grouping
and Domain Meshing. In ECCV pp. 129–142 (2008)

4. Chen, D., Cohen, L., Mirebeau, J.M.: Vessel Extraction using Anisotropic Minimal
Paths and Path Score. In Proc: ICIP pp. 1570–1574 (2014)

5. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: A minimal
path approach. International Journal of Computer Vision 24(1), 57–78 (1997)

6. Cohen, L.D.: Multiple Contour Finding and Perceptual Grouping using Minimal
Paths. Journal of Mathematical Imaging and Vision 14(3), 225–236 (2001)

7. Cohen, L.D., Deschamps, T.: Grouping connected components using minimal path
techniques. Application to reconstruction of vessels in 2d and 3d images. in Proc:
IEEE CVPR (2001)



12 Da Chen and Laurent D. Cohen

8. Deschamps, T., Cohen, L.D.: Fast extraction of minimal paths in 3D images and
applications to virtual endoscopy. Medical Image Analysis 5(4), 281–299 (2001)

9. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel en-
hancement filtering. In MICCAI pp. 407–433 (1998)

10. Fraz, M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A., Owen, C.,
Barman, S.: Blood vessel segmentation methodologies in retinal images - A survey.
Computer Methods and Programs in Biomedicine 108(1), 130–137 (2012)

11. Kaul, V., Yezzi, A., Tsai, Y.: Detecting curves with unknown endpoints and arbi-
trary topology using minimal paths. IEEE Transactions on Pattern Analysis and
Machine Intelligence 34(10), 1952–1965 (2012)

12. Lam, L., Lee, S.W., Suen, C.Y.: Thinning Methodologies - A Comprehensive Sur-
vey. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(9), 869–
885 (1992)

13. Law, M.W.K., Chung, A.C.S.: Three Dimensional Curvilinear Structure Detection
Using Optimally Oriented Flux. In ECCV pp. 368–382 (2008)

14. Li, H., Yezzi, A.: Vessels as 4-D curves: Global minimal 4-D paths to extract 3-D
tubular surfaces and centrelines. IEEE Transactions on Medical Imaging 26(9),
1213–1223 (2007)

15. Li, H., Yezzi, A.J., Cohen, L.D.: 3D multi-branch tubular surface and centerline
extraction with 4D iterative key points. In MICCAI pp. 1042–1050 (2009)

16. Mirebeau, J.M.: Anisotropic Fast-Marching on cartesian grids using Lattice Basis
Reduction. SIAM J. Numer. Anal. 52(4), 1573–1599 (2014)
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