
Path extraction in 3D medical images for virtual endoscopyT. DeschampsProfessional Imaging System Group, LEP,22, avenue Descartes, BP 15, F-94453 Limeil-Brévannes Cedex, FranceTelephone : 33-1-45 10 68 56 Fax : 33-1-44 05 69 59Email : deschamps@lep-philips.frL.D. CohenCEREMADE UMR CNRS 7534, Université Paris IX Dauphine,Place du Marechal de Lattre de Tassigny, 75775 Paris Cedex 16, FranceTelephone : 33-1-44 05 46 78 Fax : 33-1-44 05 45 99Email : cohen@ceremade.dauphine.frJanuary 7, 2000AbstractThis paper presents a fast and e�cient algorithm that computes a path useful forguiding endoscopic viewing that only depends on a start and end point.This is based on previous work (Cohen and Kimmel, 1997) for extracting paths in2D images, given only the two extremities of the path and the image as inputs, witha front propagation equation. This technique maps the active contours (Kass et al.,1988) into a minimal path problem minimizing only the potential P term. It makesglobal minimization, reduces user interaction, and the front propagation is solved usingFast Marching (Sethian, 1996). Our original contribution is to extend this techniqueto 3D. We also introduce a method to extract a centered path in tubular structures,which is very useful for object with complex topology.This work �nds its motivation in the particular case of 3D medical images. Weshow that this technique can be e�ciently applied to the problem of �nding a path intubular anatomical structures with minimum interactivity, and we apply it to virtualendoscopy. Usually path construction is left to the user who must guide by hand thevirtual endoscope. But for a complex structure, the path construction in 3D imagesbecomes a very tedious task. Using our 3D front propagation method, we propose amore automatic path tracking method to overcome those drawbacks: we are able tobuild a path, given only one or two endpoints. Synthetic and real medical images areused to illustrate each contribution. Virtual endoscopy results are shown for variousanatomical regions (colon, brain vessels, ...) with di�erent 3D imaging protocols (CT,MR) and di�erent de�nitions of the Potential P to minimize.keywords : Endoscopy, Virtual Reality, Medical Image Understanding, Deforn-able Models, Multimodal Image Segmentation.



Submission to ISRACAS'00. January 7, 2000 11 IntroductionThe main motivation of this work is that it enables almost automatic path tracking routinein 3D medical images for virtual endoscopy inside an anatomical object from a CT or MRimage. The virtual endoscopy process consists in rendering perspective views of the insideof tubular structures of human anatomy along a user-de�ned path. Clinicians are thenprovided with an alternative to the uncomfortable and invasive diagnostic procedures ofreal endoscopy. Usually, the examination of a patient pathology would require threading acamera inside his body. This new method skips the camera and can give views of region ofthe body di�cult or impossible to reach physically (e.g. brain vessels), the only requirementbeing X-ray exposure for CT and sometimes to inject a contrast product (dye or air) inthe anatomical objects, for better detection. A major drawback in general remains whenthe user must de�ne all path points manually. For a complex structure (small vessels,colon,...) the required interactivity can be very tedious. If the path is not correctly build,it can cross an anatomical wall during the virtual �y-through. Path construction is thusa very critical task and precise anatomical knowledge of the structure is needed to a set asuitable trajectory. Our work focuses on the automation of the path construction, reducinginteractions and improving performance, in a robust way, given only one or two end pointsand the image as inputs.With classical deformable models (Kass et al., 1988), extracting a path between two�xed extremities is the solution of the minimization of an energy composed of internaland external constraints on this path, needing a precise initialization. Similarly, de�ninga cost function as an image constraint only, the minimal path becomes the path for whichthe integral of the cost between the two end points is minimal. Simplifying the modelto external forces only, (Cohen and Kimmel, 1997) solved this minimal path problemin 2D with a front propagation equation between the two �xed end points, using theEikonal equation (that physically models wavelight propagation), with a given initial front.Therefore, the �rst step is to build an image-based measure P that de�nes the minimalityproperty in the studied image, and to introduce it in the Eikonal equation. The secondstep is to propagate the front on the entire image domain, starting from an initial frontrestricted to one of the �xed points. The propagation is done using an algorithm calledFast Marching developed in (Sethian, 1996).The original contribution of our work is to adapt to 3D images the minimal pathtechnique developed in (Cohen and Kimmel, 1997). Other improvements concerning thereduction of the computing cost and the user interactivity can be found in (Deschamps andCohen, 2000). For the particular case of tubular anatomical structures, we also introducea method to extract a centered path in the object of interest. We show that the FastMarching method can be e�ciently applied to the problem of �nding a path in virtualendoscopy with minimum interactivity. A wide range of application areas are envisagedfrom colon to brain vessels. We also propose a range of choices for �nding the right inputpotential P to the minimal path tracking.In section 2, we summarize the method detailed in (Cohen and Kimmel, 1997) andextend it to 3D. In section 3, we explain how to extract centered paths in tubular structures.And in section 4, we apply our method to virtual endoscopy.2 3D minimal path extractionWe are interested in this paper in �nding a 3D curve for virtual endoscopy. Our approachis to extend to 3D the basic ideas of the method introduced by (Cohen and Kimmel, 1997)to �nd the global minimum of the active contour energy using minimal paths.



Submission to ISRACAS'00. January 7, 2000 22.1 The Cohen-Kimmel MethodThe energy to minimize is similar to classical deformable models (see (Kass et al., 1988))where it combines smoothing terms and image features attraction term (Potential P ):
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ds (1)where C(s) represents a curve drawn on an image, Ω is its domain of de�nition [0, L], and
L is the length of the curve. It reduces the user initialization to giving the two end pointsof the contour C. In (Cohen and Kimmel, 1997), the authors have related this problemwith the new paradigm of the level-set formulation. In particular, its Euler equation isequivalent to the geodesic active contours (Caselles et al., 1995). They introduced a modelwhich improves energy minimization because the problem is transformed in a way to �ndthe global minimum. It avoids the solution being sticked in local minima. Let us explaineach step of this method.Most of the classical deformable contours have no constraint on the parameterization
s, thus allowing di�erent parameterization of the contour C to lead to di�erent results. In(Cohen and Kimmel, 1997), contrary to the classical snake model (but similarly to geodesicactive contours), s represents the arc-length parameter. This means that ‖C ′(s)‖ = 1,and considering a simpli�ed energy model without a second derivative term leads to theformulation

E(C) =

∫

Ω

{w + P (C(s))}ds (2)We now have an expression in which the internal forces are included in the external po-tential. The regularization of this model is now achieved by the constant w > 0. Thisterm integrates as ∫

Ω
wds = w × length(C) and allows us to control the smoothness of thecontour (see (Cohen and Kimmel, 1997) for details).Given a potential P > 0 that takes lower values near desired features, we are lookingfor paths along which the integral of P̃ = P + w is minimal. We can de�ne the surface ofminimal action U , as the minimal energy integrated along a path between a starting point

p0 and any point p:
U(p) = inf

Ap0,p

E(C) = inf
Ap0,p

{
∫
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P̃ (C(s))ds

} (3)where Ap0,p is the set of all 3D paths between p0 and p. The minimal path between p0and any point p1 in the image can be easily deduced from this action map. Assuming thatpotential P is always positive, the action map will have only one local minimum which isthe starting point p0, and the minimal path will be found by a simple back-propagationon the energy map. Thus, contour initialization is reduced to the selection of the twoextremities of the path.2.2 3D Fast-Marching resolutionIn order to compute this map U , a front-propagation equation related to equation (3) issolved : ∂C
∂t

= 1

P̃
−→n . It evolves a front starting from an in�nitesimal circle shape around

p0 until each point inside the image domain is assigned a value for U . The value of U(p)is the time t at which the front passes over the point p. Then it noti�es the shortest pathenergy to reach the start point from any point in the image.



Submission to ISRACAS'00. January 7, 2000 3The fast marching technique, introduced by (Sethian, 1996), was used by (Cohen andKimmel, 1997) noticing that the map U satis�es the Eikonal equation:
‖∇U‖ = P̃ (4)Classic �nite di�erence schemes for this equation tend to overshoot and are unstable.(Sethian, 1996) has proposed a method which relies on a one-sided derivative that looks inthe up-wind direction of the moving front, and thereby avoids the over-shooting associatedwith �nite di�erences. The 2D scheme equation developed in (Rouy and Tourin, 1992) isextended to 3D, leading to the scheme

(max{u − Ui−1,j,k, u − Ui+1,j,k, 0})
2 +

(max{u − Ui,j−1,k, u − Ui,j+1,k, 0})
2 + (5)

(max{u − Ui,j,k−1, u − Ui,j,k+1, 0})
2 = P̃ 2

i,j,kgiving the correct viscosity-solution u for Ui,j,k. The complete resolution of this schemeis detailed in (Deschamps and Cohen, 2000), where we extend the fast marching method,introduced by (Sethian, 1996) and used by (Cohen and Kimmel, 1997) to our 3D problem.The improvement made by the fast marching is to introduce order in the selection ofthe grid points. This order is based on the fact that information is propagating outward,because action can only grow due to the quadratic equation (5). The fast marching tech-nique select at each iteration the Trial point with minimum action value. This techniqueof considering at each step only the necessary set of grid points was originally introducedfor the construction of minimum length paths in a graph between two given nodes in (Di-jkstra, 1959). Thus it needs only one pass over the image. To perform e�ciently theseoperations in minimum time, the Trial points are stored in a min-heap data structure (seedetails in (Sethian, 1996)). Since the complexity of the operation of changing the value ofone element of the heap is bounded by a worst-case bottom-to-top proceeding of the treein O(log2 N), the total work is about O(N log2 N) for the fast marching on a N pointsgrid.Therefore, �nding the shortest path between any point p and the starting point p0 issimply done by back-propagation on the computed minimal action map, until p0 is reached,
p0 being its global minimum.2.3 Example of a minimal path extractionThe minimal action map U computed according to the discretization scheme of equation (3)is similar to convex, in the sense that its only local minimum is the global minimum foundat the front propagation start point p0 where U(p0) = 0. The gradient of U is orthogonalto the propagating fronts since these are its level sets. Therefore, the minimal action pathbetween any point p and the start point p0 is found by sliding back the map U until itconverges to p0. It can be done with a simple steepest gradient descent, with a prede�neddescent step, on the minimal action map U , choosing pn+1 = pn − step × ∇U(pn). Seein �gure 1-middle the action map corresponding to a binarized potential de�ned by highvalues in a spiral rendered in �gure 1-middle. The path found between a point in the centerof the spiral and another point outside is shown in �gure 1-right by transparency. Severalimportant issues concerning the back-propagation technique are detailed in (Deschampsand Cohen, 2000), where we show how to constrain the computations to a small subset ofthe images.
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Potential P = spire action map with P = spire 3D path in the spireFigure 1: Examples on synthetic potentials3 The path centering methodIn this section we derive a technique to track paths that are centered in a tubular shape,using the front propagation methods. To illustrate this problem, we use example shownon �gure 2-left, which is a binarized image of brain vessels. Using our classical frontpropagation, the minimal path extracted is tangential to the edges, as shown in �gure 2-middle, superimposed on the action map computed. This is due to the fact that length isminimized. This path is not tuned for problems which may require a centered path, likevirtual endoscopy.In some cases it is possible to get the shape of the object in which we are looking fora path. One way of making this shape available is to use the front propagation itself asshown in Figure 5. This is more detailed in (Deschamps and Cohen, 2000). If we have theshape of our object, we can use a front propagation method to compute the distance to itsedges using a potential de�ned by
P (i, j) = 1 ∀(i, j) ∈ {object}

P (i, j) = ∞ ∀(i, j) ∈ {Background}
P (i, j) = 0 ∀(i, j) ∈ {Interface}When this distance map, noted E , is computed, it is used to create a potential P ′ whichweights the points in order to propagate faster a new front in the centre of the desiredregions. Choosing a value d to be the minimum acceptable distance to the walls, wepropose the following potential:
P ′(x) = {|d − min(E(x); d)|}γ (6)According to this new penalty, the �nal front propagates faster in the center of thevessel. This can be observed by looking at the shape of the iso-action lines of the centeredminimal action shown in �gure 2-right. Finally, the path avoids the edges and remains inthe center of the vessel, while the former path tangential to edges. Results on real 3D dataare shown in section 4.
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The two paths The thresholded potential The centered minimal actionFigure 2: Comparing classic and centered paths4 Application to Virtual EndoscopyVisualization of volumetric medical image data plays a crucial part for diagnosis and ther-apy planning. The better the anatomy and the pathology are understood, the more e�-ciently one can operate with low risk. Di�erent possibilities exist for visualizing 3D data:three 2D orthogonal views (see �gure 3), maximum intensity projection (MIP, and itsvariants, see �gure 10), surface and volume rendering. In particular, virtual endoscopy

Figure 3: Three orthogonal views of a volumetric CT data set of the Colonallows by means of surface/volume rendering techniques to visually inspect regions of thebody that are dangerous and/or impossible to reach physically with a camera. A virtualendoscopic system is usually composed of two parts:1. A Path construction part, which provides the successive locations of the �y-throughthe tubular structure of interest (see �gure 4-left);2. Three dimensional viewing along the endoscopic path (see �gure 4-right).A major drawback in general remains when the path construction is left to the userwho manually has to �guide� the virtual endoscope/camera. The required interactivity ona 3D image can be very tedious for complex structures such as the Colon.Since the anatomical objects have often complex topologies, the path passes in and outof the three orthogonal planes. Consequently the right location is accomplished by alter-natively entering the projection of the wanted point in each of the three planes. Then, the
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Path

Original CT slice + path Endoscopic viewFigure 4: Interior view of a Colon, reconstructed from a de�ned pathpath is approximated between the user de�ned points by lines or Bezier splines, and if thenumber of points is not enough, it can easily cross an anatomical wall. Path constructionin 3D images is thus a very critical task and precise anatomical knowledge of the structureis needed to set a suitable trajectory, with the minimum required interactivity.The front propagation techniques studied in this paper, propose an alternative to thistedious path construction by building paths in 3D images with minimum interactivity. We�rst apply this method to the case of virtual endoscopy in a Colon CT dataset, then weextend this technique to other anatomical objects.Application to Colonoscopy

Figure 5: Successive steps of front propagation inside the Colon volumeAll tests are performed on a volumetric CT scan of size 512 × 512× 140 voxels, shownin �gure 3. We de�ne a potential P from the 3D image I(x) that is minimal insidethe anatomical shapes where end points are located. We chose the potential P (x) =
|I(x) − Imean|α + w, where an average grey level value Imean of the Colon is obtainedwith an histogram. From this de�nition, P is lower inside the Colon in order to propagatethe front faster. Also, edges are enhanced with a non-linear function (α > 1) since the pathto be extracted is in a large object that have complex shape and very thin edges. Then,



Submission to ISRACAS'00. January 7, 2000 7using this potential, we propagate inside the Colon creating a path between a couple ofgiven points. In fact, the Colon being a closed object with two extremities, this allows togive only one end point for front propagation. This method is explained in (Deschamps andCohen, 2000). The �gure 5 shows the result of the fast marching technique with a uniquestarting point belonging to the Colon and an Euclidean path length criterion of 500 mm.However, this potential does not produce paths relevant for virtual endoscopy. Indeed,
Initial Path

Path centered

The two di�erent paths Image potential Centering potentialFigure 6: Centering the path in the Colon.

Figure 7: 3D views of a path inside the Colon.paths should remain not only in the anatomical object of interest but as far as possible fromits edges. In order to achieve this target, we use the centering potential method as detailedin section 3. This approach needs a shape information. This information is provided by theprevious front propagation. From its de�nition, the front sticks to the anatomical shapesas shown in �gure 5. This is related to the use of Fast Marching algorithm to extract asurface for segmentation (Malladi and Sethian, 1998). It gives a rough segmentation of theColon and provides a good information and a fast-reinitialization technique to computethe distance to the edges. Using this thresholded map as a potential that indicates thedistance to the walls, we can correct the initial path as shown in �gure 6-left. Both 3Dpaths are projected on the 2D slice for visualization. As expected, the new path remainsmore in the middle of the Colon. The two di�erent cross-sections in �gures 6-middle and 6-right display the view of the interior of the Colon from both paths at the u-turn shownin �gure 6-left. This e�ect of centering the path enhances dramatically the rendering of



Submission to ISRACAS'00. January 7, 2000 8the video sequence of virtual endoscopy obtained. 1 With the initial potential, the path isnear the wall, and we see the u-turn, whereas with the new path, the view is centered intothe Colon, giving a more correct view of the inside of the Colon.Therefore, the two end points can be connected correctly, giving a path staying insidethe anatomical object. The results are displayed in two 3D views in �gure 7. But for virtualColonoscopy, it is often not necessary to set the two end points within the anatomicalobject.Application to a Trachea CT scanExtracting paths inside the Trachea (see �gure 8) is the same problem than in the Colon.Air �lls the object and give a shape information all along from mouth to lungs. Therefore,
Figure 8: A slice of the 3D dataset of the Trachea and an endoscopic view inside it.the anatomical object having a very simple topology, the path construction with one ortwo �xed points is easier than in the Colon case. One example path tracks the Trachea,using a nonlinear function of the image grey levels (P (x) = |I(x)−200|2 +1) An endoscopicview along the path is displayed in �gure 8-right, and two views of this path are shown in�gure 9.

Figure 9: 3D views of a path inside the Trachea.1This video will be shown at a presentation, and could be made available for reviewers on a web site ifrequired.



Submission to ISRACAS'00. January 7, 2000 9Application to a Brain MRA imageTests were performed on Brain vessels in a magnetic resonance angiography (MRA) scan(a maximum-intensity-projection (MIP) view of the Brain vessels is shown in �gure 10).The problem is di�erent, because there is only signal from blood. All other structures havebeen removed. The main di�culty here lies in the variations of the dye intensity. The pathshown from two viewpoints tracks (see �gure 11) the superior sagittal venous canal, usinga nonlinear function of the image dye intensity (P (x) = |I(x)− 100|2 + 1). An endoscopic
Figure 10: MIP and endoscopic views of Brain vessels in a MRA volume.view along this path is shown in �gure 10-right.

Figure 11: 3D views of a path inside the Brain Vessels.Application to an Aorta MR scanA test was made on an Aorta dataset in a MR scan shown in �gure 12-left. The propagationpotential is based on a nonlinear function of the intensity of the contrast solution that �llsthe Aorta. Tracking the Aorta in this dataset is di�cult since the intensity of the contrastproduct will vary along the Aorta (the contrast bolus dilutes during the acquisition time).This non-uniformity could make a path cross other anatomical structures with similarintensities. One example path tracks one illiaca, using the potential P (x) = |I(x)−1000|2+
1 in the MRcan. We have displayed an endoscopic view along this path in �gure 12-right.We have displayed an endoscopic view along the path in �gure 12-right.
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Figure 12: A slice of the 3D Aorta MR dataset and an endoscopic view inside it.

Figure 13: 3D views of a path inside the Aorta.5 ConclusionIn this paper we presented a fast and e�cient algorithm that computes a path useful forguiding endoscopic viewing that only depends on a start and end point.This work was the extension to 3D of a level-set technique developed in (Cohen andKimmel, 1997) for extracting paths in 2D images, given only the two extremities of thepath and the image as inputs, with a front propagation equation. This technique improvesenergy minimization, reduces user interaction, of the classical deformable models, and issolved using a very fast numerical implementation developed by (Sethian, 1996).We showed that this technique can be e�ciently applied to the problem of �nding a pathin tubular anatomical structures for virtual endoscopy with minimum interactivity, and wedevelopped a method to extract centered paths in tubular anatomical structures. Theresults were promising for several clinical applications, including those with very complextopology. In particular we extracted centered paths inside a CT dataset of the colon,and in a MR datasets of the brain vessels. We have proved the bene�t of our methodtowards classical virtual endoscopy: examination of a patient pathology no more requiresthreading a camera inside his body, and only a few seconds are necessary to build a completetrajectory inside the body, giving only one or two end points and the image as inputs.ReferencesCaselles, V., Kimmel, R., and Sapiro, G. (1995). Geodesic active contours. In ICCV'95, pp.694�699, Cambridge, USA.Cohen, L.D. and Kimmel, R. (1997). Global minimum for active contour models: A minimal pathapproach. International Journal of Computer Vision, 24(1), 57�78.



Submission to ISRACAS'00. January 7, 2000 11Deschamps, T. and Cohen, L.D. (2000). Minimal path in 3d images and application to virtualendoscopy. Technical report, Laboratoire Cérémade, Université Paris Dauphine.Dijkstra, E.W. (1959). A note on two problems in connection with graphs. Numerische Mathematic,1, 269�271.Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active contour models. InternationalJournal of Computer Vision, 1(4), 321�331.Malladi, R. and Sethian, J.A. (1998). A real-time algorithm for medical shape recovery. InProceedings of International Conference on Computer Vision, pp. 304�310.Rouy, E. and Tourin, A. (1992). A viscosity solution approach to shape-from-shading. SIAMJournal of Numerical Analysis, 29, 867�884.Sethian, J.A. (1996). Level set methods:Evolving Interfaces in Geometry, Fluid Mechanics, Com-puter Vision and Materials Sciences. Cambridge University Press, University of California,Berkeley.


