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In the context of Alzheimer's disease, two challenging issues are (1) the characterization of local hippocampal
shape changes specific to disease progression and (2) the identification of mild-cognitive impairment patients
likely to convert. In the literature, (1) is usually solved first to detect areas potentially related to the disease.
These areas are then considered as an input to solve (2). As an alternative to this sequential strategy, we inves-
tigate the use of a classificationmodel using logistic regression to address both issues (1) and (2) simultaneously.
The classification of the patients therefore does not require any a priori definition of themost representative hip-
pocampal areas potentially related to the disease, as they are automatically detected. We first quantify deforma-
tions of patients' hippocampi between two time points using the large deformations by diffeomorphisms
framework and transport these deformations to a common template. Since the deformations are expected to
be spatially structured, we perform classification combining logistic loss and spatial regularization techniques,
which have not been explored so far in this context, as far as we know. The main contribution of this paper is
the comparison of regularization techniques enforcing the coefficient maps to be spatially smooth (Sobolev),
piecewise constant (total variation) or sparse (fused LASSO) with standard regularization techniques which do
not take into account the spatial structure (LASSO, ridge and ElasticNet). On a dataset of 103 patients out of
ADNI, the techniques using spatial regularizations lead to the best classification rates. They also find coherent
areas related to the disease progression.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Large scale population studies aim to improve the understanding of
the causes of diseases, define biomarkers for early diagnosis, and devel-
op preventive treatments. An important challenge for medical imaging
is to analyze the variability in MRI acquisitions of normal control (NC),
mild cognitive impairment (MCI), and Alzheimer's disease (AD) pa-
tients. For Alzheimer's disease, several classification strategies have
Technology Centre, Damastown,

. Fiot).
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d from the Alzheimer's Disease
.usc.edu). As such, the investiga-
mentation of ADNI and/or pro-
f this report. A complete listing
.usc.edu/wp-content/uploads/

. This is an open access article under
been proposed to separate patients according to their diagnosis. These
methods can be split into three categories: voxel-based (Fan et al.,
2007, 2008a,b; Klöppel et al., 2008; Lao et al., 2004; Magnin et al.,
2009; Vemuri et al., 2008), cortical-thickness-based (Desikan et al.,
2009; Klöppel et al., 2008; Querbes et al., 2009) and hippocampus-
based (Chupin et al., 2007, 2009; Gerardin et al., 2009) methods.
While decent classification rates can be achieved to separate AD from
NC or NC from p-MCI (progressive MCI patients, i.e. converting to AD),
all methods perform poorly at separating s-MCI (stable MCI patients,
i.e. non-converting to AD) and p-MCI. A recent review comparing
these methods can be found in Cuingnet et al. (2011).

In the case of longitudinal analysis, it is not anymore the shapes that
are compared but their evolutions in time. To extract information be-
tween two successive time-points, we use a one-to-one deformation
which maps the first image onto the second one. Different registration
algorithms are available to compute plausible deformations in this con-
text. However, only one, the large deformations via diffeomorphisms
(LDDMM) (Beg et al., 2005), provides a Riemannian setting that enables
to represent the deformations using tangent vectors: initial velocity
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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fields or equivalently initial momenta. This can be used in practice to re-
trieve local information and to perform statistics on it as presented in
Vaillant et al. (2004) and Wang et al. (2007). In this direction, it is
worthmentioning the study of Singh et al. (2010)which shows the cor-
relation between principal modes of deformation and diagnosis. In Qiu
et al. (2008) the authors estimate the typical deformation of several
clinical groups from the deformations between baseline and follow-up
hippocampus surfaces. In order to compare this information across the
population, we need to define a common coordinate system. This im-
plies (1) the definition of a template and (2) a methodology for the
transport of the tangent vector information. Note finally that, as far as
the authors know, no paper explores binary classification using logistic
regression in this context.

Quality of shape descriptors with regard to the disease is often eval-
uated through statistical significance tests or classification performance.
In this paper, we evaluate descriptors on a binary classification task
using logistic regression.

In addition to its simplicity, it has the advantage of providing a map
of coefficients weighting the relevance of each voxel. Such map can be
used to localize the hippocampus deformations that are related to AD.
However, the dimensionality of the problem (i.e. number of voxels p)
beingmuch higher than the number of observations (i.e. number of pa-
tients n, p ~ 106≫ n ~ 102), the problem requires proper regularization.

Now standard regularization methods such as ridge (Hoerl and
Kennard, 1970), LASSO (Tibshirani, 1994) and Elastic Net (Zou and
Hastie, 2005) do not take into account any spatial structure of the
coefficients.

In contrast, spatial models for regularizing supervised learning
methods have been proposed in the literature (Grosenick et al., 2013;
Jenatton et al., 2012; Ng and Abugharbieh, 2011). Total variation was
used to regularize a logistic regression on functional MRI (fMRI) data
(Michel et al., 2011). This method promotes coefficient maps with spa-
tially homogeneous clusters. Fused LASSO was also used on fMRI data
(Baldassarre et al., 2012; Gramfort et al., 2013). Similar ideas can be
found in Cuingnet et al. (2012) where the authors defined the notion
of spatial proximity to regularize a linear SVM classifier.

In Durrleman et al. (2013), the authors introduce sparse parametri-
zation of the diffeomorphisms in the LDDMM framework. Our goal is
different: we want spatial properties (smoothness, sparsity, etc.) to be
found across the population (i.e. on the common template) and we
want this coherence to be driven by the disease progression.

In this paper, we investigate the use of total variation, Sobolev and
fused LASSO regularizations in 3D volumes. Compared to total variation,
Sobolev enforces smoothness of the coefficient map, whereas fused
LASSO adds a sparsity constraint.

The deformationmodel used to assess longitudinal evolutions in the
population is presented in Section 2. Machine learning strategies are
discussed and the model of classification with logistic loss and spatial
regularization is described in Section 3. The dataset used and numerical
results are presented in Section 4. We illustrate that initial momenta
capture information related to AD progression, and that spatial
regularizations significantly increase classification performance.
Section 5 concludes the paper.
Fig. 1. Four steps are needed to classify patient evolutions using local descriptors of shape defor
ulation template is computed, (3) all local shape deformation descriptors are transported towa
2. Longitudinal deformation model for population analysis

2.1. Global pipeline

Let us assume that we have a population of patients and the binary
segmentation of their hippocampus at two different time points, called
screening and follow-up. Let us also assume that all patients have the
same diagnosis at the screening time point, and only a part of them
have converted to another diagnosis at the follow-up time point. Our
goal is to compare patient evolutions, and classify them with regard to
disease progression, i.e. stable diagnosis versus progressive diagnosis.
From a machine learning point of view, we need to build features
encoding the evolutions of the patients.

We use the pipeline summarized in Fig. 1. First, the evolution de-
scriptors are computed locally for each patient (independently). To be
able to compare these descriptors, one needs to transport them into a
common space. To do so, a population template is computed, towards
which all the local descriptors are transported. Finally, classification is
performed to separate progressive from stable patients.

2.2. Diffeomorphic registration via geodesic shooting

As mentioned in Sections 1 and 2.1, local deformation descriptors
are computed to model the evolutions of the patients. In this section,
we describe how we use diffeomorphic registration via geodesic shoot-
ing Vialard et al. (2012a) to compute these local deformation
descriptors.

2.2.1. Definitions
To register a source image I : Ω⊂ ℝ3 →ℝ towards a target image J :

Ω ⊂ ℝ3 → ℝ, the LDDMM framework (Beg et al., 2005) introduces the
following minimization problem

argmin
υ∈L2 ½0;1�;HKð Þ

1
2
∥I∘ϕ−1

0;1− J∥2L2 þ λ
Z 1

0
∥υt∥

2
Kdt; ð1Þ

where υ : (t,ω)∈ [0,1] ×Ω⊂ℝ3→Ω is a time dependent velocity field
that belongs to a reproducing kernel Hilbert spaceHK of smooth enough
vector fields defined on Ω, and of associated kernel K and norm ∥ ∥K,
and λ ≥ 0 is a regularization coefficient. For (t,ω) ∈ [0,1] × Ω, we note
υt(ω) = υ(t, ω). The deformation ϕ : [0,1]2 × Ω ⊂ ℝ3 → Ω is given by
the flow of υt

∀ t;ωð Þ ∈ 0;1½ � �Ω;
∂ϕ0;t

∂t ωð Þ ¼ υt∘ϕ0;t ωð Þ
ϕt;t ωð Þ ¼ ω ;

8<
: ð2Þ

where ϕt1, t2 is the deformation from t= t1 to t= t2. Such approach in-
duces a Riemannian metric on the orbit of I, i.e. the set of all deformed
images by the registration algorithm (Miller et al., 2006). The first
term in formula (1) is a similarity term controlling the matching
quality whereas the second one is a smoothing term controlling
the deformation regularity. Now noting It ¼def : I∘ϕ−1

0;t and Jt ¼def : J∘ϕt;1 ,
mations: (1) the local descriptors are computed for each patient independently, (2) a pop-
rds this template, and (4) classification is performed.
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the Euler-Lagrange equation associated with Eq. (1) reads ∀ (t,ω) ∈
[0,1] × Ω,

υt ωð Þ ¼ −K ⋆ grad It ωð Þ Jacϕt;1
ωð Þ It ωð Þ− Jt ωð Þð ÞÞ

� �
; ð3Þ

where K is the translation-invariant kernel of the reproducing kernel
Hilbert space, ⋆ the convolution operator, grad the image gradient in
space and Jacϕ the Jacobian of ϕ.

For t ∈ [0,1], let us define the momentum Pt : Ω → ℝ by

∀ω∈Ω; Pt ωð Þ ¼def: Jacϕt;1
ωð Þ It ωð Þ− Jt ωð Þð Þ: ð4Þ

The Euler–Lagrange Eq. (3) can be rewritten as a set of geodesic
shooting equations

∀ t;ωð Þ∈ 0;1½ � �Ω;

∂It
∂t ωð Þ þ 〈 grad I ωð Þ;υt ωð Þ 〉 ¼ 0;

∂Pt

∂t ωð Þ þ div Pt ωð Þυt ωð Þð Þ ¼ 0;

υt ωð Þ þ K ⋆ grad It ωð Þ Pt ωð Þ ¼ 0;

8>>><
>>>: ð5Þ

where div is the divergence operator.
Given an initial image I0 and an initial momentum P0, one can inte-

grate the system (Eq. (5)). Such a resolution is called geodesic shooting.
We say that we shoot from I0 using P0.

The minimization problem (Eq. (1)) can be reformulated using a
shooting formulation on the initial momentum P0

argmin
P0

1
2
∥I∘ϕ−1

0;1− J∥2L2 þ λ grad I0P0;K ⋆ grad I0P0h iL2 ð6Þ

subject to the shooting system (Eq. (5)).
In order to solve the new optimization problem (Eq. (6)), we use the

methodology described in Risser et al. (2011) and Vialard et al. (2012a).
Note that thismethodology is similar to the one presented in Ashburner
and Friston (2011), but uses a different optimization strategy.

For each patient, a two-step process was performed to encode the
deformations of the hippocampus shape evolution from the screening
image S (scanned at t = t0) to the follow-up image F (scanned at
t = t0+12 months), as described in Fig. 2. First Fwas rigidly registered
back to S. We note R : Ω ⊂ ℝ3 → Ω the rigid transformation obtained.
Second, the geodesic shooting was performed with the screening
image as source image (I = S) point towards the registered followed-
a) Step 1: rigid 

b) Step 2: geode

Fig. 2. For each patient, the initial momentum encoding the hi
up image as target image (J= F ∘ R−1). Initial momenta from different
patients are local descriptors that were used to compare hippocampus
evolutions, such choice is further described in the next paragraph.

2.2.2. Motivation and rationales for the use of initial momenta
As written in the third row of Eq. (5), the velocity field υ encoding

the geodesic between the registered images has the following property
at each time t∈ [0,1] and at each coordinate ω ∈ Ω,

υt ωð Þ ¼ −K ⋆ grad It ωð ÞPt ωð Þ; ð7Þ

We recall that It, υt and Pt are respectively the deformed source
image, the velocity field and the momentum at time t. We also denote
K⋆ the convolution with the kernel K (typically Gaussian). Therefore,
Eq. (7) can be read in the case of a binary image as follows: the unitary
vector field normal to the shape surface is multiplied by a scalar field
P(t) and this quantity gives the vector field υt once convolved with the
kernel K.

The system given in all rows of Eq. (5) leads to the fact that the initial
momentum P0 entirely controls the deformation for a given source
image I0 and a given kernel K. In the context of our study, longitudinal
variations of the geodesics are relatively limited as only small deforma-
tions are required to register pairs of hippocampi out of the same sub-
ject. The displacement field can then be reasonably approximated by
Id + υ0 using a first-order expansion of Eq. (5). As a consequence, P0
can be directly interpreted as a value encoding expansions and contrac-
tions of the shape if multiplied by −grad I0 and then smoothed by K.
Note also that the momentum is a scalar field, which is a more compact
representation than a vector field. This motivates our approach.

2.3. Population template

2.3.1. Need for a template
Asmentioned in Section2.1, local descriptors of hippocampus evolu-

tions need to be transported in a common space prior to any statistical
analysis. One way to obtain spatial correspondences between local de-
scriptors of different patients consists in building a population template
and then aligning these descriptors on the template. In the literature,
template algorithms can be categorized into deterministic (Avants and
Gee, 2004; Beg and Khan, 2006; Fletcher et al., 2004; Pennec, 2006;
Vialard et al., 2011), probabilistic (Allassonnière et al., 2008; Ma et al.,
2008) and mixed (Bhatia et al., 2004; Jia et al., 2010; Joshi et al., 2004;
Seghers et al., 2004) approaches. As described in Section 4.1, we want
registration.

sic shooting.

ppocampus evolution is computed in a two-step process.
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to build a population of binary images of hippocampi. As there is no
variation of topology, and we want a template with sharp boundaries
without averaging the gray levels, the first category is appropriate.
Most algorithms in this category rely on the notions of Fréchet and
Karcher means, which we will now describe.

2.3.2. Notions of Fréchet and Karcher means
In the Riemannian framework used for the geodesic shooting, a

Fréchet mean (Fréchet, 1948) can be used to define an average shape
from a population (Fletcher et al., 2004; Pennec, 1999, 2006). Given n
images {Si : Ω ⊂ ℝ3 → ℝ}1 ≤ i ≤ n and d a Riemannian metric on the
space of images, the Fréchet mean T̂ : Ω⊂ℝ3→ℝ is defined as aminimiz-
er of the sum of the geodesic distances to all images

min
T

1
n

Xn
i¼1

d T; Si
� �2

: ð8Þ

In practice, such problem is often solved via an optimization proce-
dure looking for a local minimum, and the solutions found are called
Karcher means. For instance, a solution of Eq. (8) can be computed
using a gradient descent procedure (Vialard et al., 2011).

2.3.3. Invariance to rigid orientations, approximations and optimization
procedure

The problem (8) is not invariant with respect to the rigid orienta-
tions of the input images, we modify the optimization problem to

min
T;R1 ;…;Rn

1
n

Xn
i¼1

d T; Si∘ Ri
� �−1

� �2
; ð9Þ

where {Ri : Ω → Ω}1 ≤ i ≤ n are rigid transformations. In this paper, we
assume that the solution of Eq. (9) can be approximated by alternate
minimization. It is also important to note that in the general case
there is not necessarily unicity of the solution.

When the {Ri} are fixed, we follow the optimization strategy de-
scribed in Vialard et al. (2011). Since the functional in Eq. (1) does not
give a geodesic distance between two images — but between a source
image and the deformed image, we approximate the minimization
with regard to T by

min
T

1
n

Xn
i¼1

d T ; Ji1
� �2

; ð10Þ

where J1i is the result of the shooting equations for the initial conditions
I = T and P0 = P0

i , where P0i is a minimizer of Eq. (6) with J= Si ∘ (Ri)1.
In this case, each term of the sum in Eq. (10) is equal to bgradIP0;K⋆
gradIP0ð ÞN L2 , and the gradient with regard to T is

−1
n

Xn
i¼1

K ⋆ grad TPi
0; ð11Þ

where P0
i is the initial momentum matching T on Si ∘ (Ri)−1 via the

shooting system (Eq. (5)).
When T isfixed,we approximate the optimization over {Ri}1≤ i ≤ n by

performing rigid registrations matching each Si to T.
Altogether, each update of the Karcher estimate is composed of four

steps

1. the images Si are rigidly aligned towards the current Karcher mean
estimate Tk,

2. diffeomorphic registrations via geodesic shootings from the current
Karcher estimate Tk towards all the registered images Si ∘ (Ri)−1

are computed,
3. geodesic shooting from Tk usingP

mean
0 ¼def :1

n
∑i P

i
0 generates a deforma-

tion field umean,
4. the composed deformation field ukþ1 ¼def : umean∘ uk is used to com-
pute the updated estimate from the reference image.

The advantage of computing the new estimate from a reference
image is to avoid consecutive resamplings thatwould lead to smoothing
and bias, as noted in Yushkevich et al. (2010).

In the literature, the empirical convergence of the gradient descent
procedure optimizing over T (with {Ri}1 ≤ i ≤ n fixed) was studied in
Vialard et al. (2011, 2012b). Similar tests are performed in Section 4.2
for our procedure.

2.4. Tangent information and associated transport

2.4.1. Motivation and rationals
The local descriptors computed for each patient as explained in

Section 2.2 need to be transported in a common coordinate space: the
space of the Karcher average defined in Section 2.3.

There is still no consensus about the choice of which transport
method should be used in our context. Different methods have been
proposed. The first one is the transport of vector fields by the standard
adjointmap. It was however shown that thismethod is not quite appro-
priate for statistical study (Bossa et al., 2010). Parallel transportwas also
proposed in the context of LDDMM (Younes, 2007). Although it might
seem relevant in our context, volume variation may be distorted. Note
that its properties also depend on the deformation path and not only
on the final deformation.

In the context of LDDMM, another action of the group of deforma-
tions on the momentum is called co-adjoint transport (Fiot et al.,
2012). This method only depends on the final deformation and pre-
serves volume variation in the context of small deformations on binary
images. This argument motivated its use in our study.

2.4.2. Definitions
A two-step process was then used to transport local descriptors of

hippocampus evolutions to the template space (Fig. 3). First, the screen-
ing hippocampus Si was registered towards the template T rigidly
(Ourselin et al., 2001) then non-rigidly (Modat et al., 2010). The
resulting deformation is denoted by ϕi. Second, this transformation
was used to transport the local descriptors of hippocampus deforma-
tions towards the template.

We use the standard transport for a density P0i :Ω⊂ℝ3→ℝ, defined
by

∀ω∈Ω; ePi
0 ωð Þ ¼def : det Jac

ϕi
� �−1 ωð Þ

0
@

1
APi

0∘ ϕi
� �−1

ωð Þ; ð12Þ

where det is the notation for the determinant. Note that this action pre-
serves the global integration of the density by a simple change of
variable.

3. Machine learning strategies

3.1. Support vector machine classification

In Fiot et al. (2012), SVM classifiers are used on different types of
features. In that paper, local features obtained by integration of initial
momenta on subregions provided the best classification results.
This conclusion motivates the search for an optimal subregion Ωr

defining features as xi ¼def :∫Ωr

ePi
0 ωð Þdω (optimal in terms of classification

accuracy). This is equivalent to the search of the best indicator function
Ir : Ω→ {0,1}, or more generally a weighting functionw : Ω→ℝ defin-
ing features by xi ¼def :∫Ω

w ωð ÞePi
0 ωð Þdω.

To compute meaningful weighting functions, models where the fea-
ture space is the same as the input space are of particular interest. Indeed
as one coefficient corresponds to one voxel, meaningful spatial



Fig. 3. Local descriptors of hippocampus evolutions are transported to the template in a two-step process. First the deformation field from the patient space to the population template.
Second, this deformation field is used to transport the local descriptors.

722 J.-B. Fiot et al. / NeuroImage: Clinical 4 (2014) 718–729
regularizations can be introduced. This was used in the linear SVM
setting in Cuingnet et al. (2012). In this paper, we exploit similar ideas
on a classification framework with a logistic loss, which is well-suited
for the introduction of spatial regularizations, easy to implement and
that can be solved efficiently.

3.2. Binary classification with logistic regression and spatial regularization

3.2.1. Definitions
Let us define a predictive model which reads

y ¼def : F Xwþ bð Þ; ð13Þ

where y∈ {±1}n is the behavioral variable,X∈ℝn × p is the designma-
trix containing n observations of dimension p, F is the prediction func-
tion and (w,b) ∈ ℝp × ℝ are the parameters to estimate. In our
application, each coefficient in y represents the disease progression of
one of the n patients, and each row in X contains the initial momentum
representing the deformations of the hippocampus of one of the n pa-
tients. It is important to notice that each row in X is noted as a vector
inℝp in the formulation of the predictivemodel, but it is actually a scalar
field in 3D. Similarly,w is noted as a vector in ℝp for the convenience of
the formulation of the model, even if it also represents a scalar field in
3D. Since each coefficient in w is associated to a spatial position, w is
sometimes called a coefficient map. Such property allows us to detect
(spatial) areas of interest, with regard to the machine learning problem
wewant to solve (see Section 3.2.4 about the interpretation of the solu-
tion of the model).

The logistic regression model defines the probability of observing yi
given the data xi as

p yijxi;w; bð Þ ¼def : 1
1þ exp −yi x

T
i w þ b

� �� � : ð14Þ

Given parameters ŵ; b̂
� �

and a new data point x the prediction is
the maximum likelihood, i.e. class xð Þ ¼ argmaxy ∈ �1f gp yjx; ŵ; b̂

� �
¼

sign xTŵ þ b̂
� �

. Accordingly the parameters are estimated as mini-
mizers of the opposite log likelihood of the observations, considered
as independent

L w; bð Þ ¼def : 1
n

Xn
i¼1

log 1þ exp −yi xT
i w þ b

� �� �� �
: ð15Þ

Since the number of observations is much smaller than the dimen-
sion of the problem (n ≪ p) minimizing directly the loss Eq. (15)
leads to overfitting, and proper regularization is required. This is com-
monly performed by introducing a regularization function J and the
final problem becomes

Find ŵ; b̂
� �

in argmin
w;b

L w; bð Þ þ λ J wð Þ; ð16Þ

where λ is a coefficient tuning the balance between loss and
regularization.
The standard elastic net regularization (Zou and Hastie, 2005)
uses a combined ℓ1 and squared ℓ2 penalization λEN wð Þ¼def : λ1

��jwjj1þ
λ2jjwjj22 ¼ ∑p

j¼1λ1jwjj þ λ2w2
j , with the limit cases λ2 = 0 referred

to as LASSO (Tibshirani, 1994) and λ1 = 0 referred to as ridge (Hoerl
and Kennard, 1970). However as mentioned in Michel et al. (2011), one
drawback of such methods is that they do not take into account any
geometrical structure of w. Since coefficients are expected to be locally
correlated in space, we investigate the Sobolev semi-norm, total variation
semi-norm and fused-LASSO regularizations, respectively defined as

SB wð Þ ¼def :
X
ω∈Ω

∥gradΩw ωð Þ∥22; ð17Þ

TV wð Þ ¼def :
X
ω∈Ω

∥gradΩw ωð Þ∥2; ð18Þ

λFL wð Þ ¼def :λ1TV wð Þ þ λ2∥w∥1: ð19Þ

The above sums go over all voxels ω in the domain Ω ⊂ ℝ3, and
gradΩ is a linear operator implementing the image gradient byfinite dif-
ferences. By indexing each voxel ω by integer coordinates on a 3D lat-
tice, we define gradΩ by

gradΩw ωijk

� �
¼def :

ΔΩw ωijk;ω iþ1ð Þjk
� �

ΔΩw ωijk;ωi jþ1ð Þk
� �

ΔΩw ωijk;ωij kþ1ð Þ
� �

0
BBB@

1
CCCA; ð20Þ

where ΔΩw ω1;ω2ð Þ¼def : w ω2ð Þ−w ω1ð Þ if ω1;ω2ð Þ∈Ω2
;

0 otherwise:

	
This defi-

nition allows to restrain Ω to any region of interest and boundaries of
the domain are not penalized. Rationals and differences for those
regularizations are discussed in Section 4.

3.2.2. Solving the model
Let us first study differentiability and convexity of the objective func-

tion in Eq. (15). For convenience, we define ew ¼def : wT ; b
� �T

and for all i,exi ¼def : xT
i ;1

� �T
, with associated data matrix eX¼def : exij

� �
1≤ i≤n
1≤ j≤pþ 1

∈ ℝn� pþ1ð Þ .

Then Eq. (15) becomes

L ew� � ¼ 1
n

Xn
i¼1

log 1þ exp −yiexT
i ew� �� �

: ð21Þ

This loss function is twice differentiable and the non-negativity
of ∇2L ew� �

establishes the convexity.
When the regularization J is also convex and twice differentiable the

reference optimization algorithms include quasi-Newton methods; in
particular for large-scale problems the limited memory Broyden–
Fletcher–Goldfarb–Shanno (LM-BFGS) is very popular. However non-
differentiable regularizations such as total variation and fused LASSO
optimization raises theoretical difficulties. Proximal methods such as
monotonous fast iterative shrinkage thresholding algorithm (M-FISTA,



3 http://sourceforge.net/projects/utilzreg/.
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(Beck and Teboulle, 2009)) and generalized forward–backward (GFB,
(Raguet et al., 2013)) have been considered. Unfortunately their low
convergence rates are prohibitive for extensive investigation of the clas-
sification scheme (parameter λ, domain Ω, training design matrix X).
Therefore we used the hybrid algorithm for non-smooth optimization
(HANSO, (Lewis and Overton, 2012)) which is a LM-BFGS algorithm
with weak Wolfe conditions line search. This addresses both the total
variation semi-norm and the ℓ1-norm, with almost everywhere

∇ TV wð Þ ¼ −div gradΩ w ωð Þk k−1
2 gradΩ w ωð Þ

� �
ω ∈ Ω

� �
;

∇ wk k1 ¼ sign w ωð Þð Þð Þω ∈ Ω:

3.2.3. Weighted loss function
In supervised learning, classifiers trained with observations not

equally distributed between classes can be biased in favor of the major-
ity class. In order to alleviate this, several strategies can be used. One
strategy is to restrict the training set to be equally distributed among
classes. An alternative strategy is to use the full training set and intro-
duce weights (qi)i ∈ [[1,n]] in the loss function as follows

Lq ew� � ¼def :1
n

Xn
i¼1

qi log 1þ exp −yi exT w
� �� �

ð22Þ

whereqi ¼def : n= nc � card j∈ 1 ::n½ �jyj ¼ yi
n o� �

, nc being the number of
classes (2 in our case). When the observations are equally distributed
among classes qi = 1 for all i and one retrieves (Eq. (21)), whereas
qi b 1 (respectively qi N 1) when the class of observation i is over-
represented (respectively under-represented) in the training set.

3.2.4. Interpretation of the solution
Anothermotivation for the use of themodel presented in Section 3 is

the possibility to interpret the computed solution. Let us remind that,
after optimization, the solution is of the form ŵ; b̂

� �
∈ℝp �ℝ . This

solution can be used to predict the evolution y∈ {±1} of a new patient
of associated initial momentum x ∈ ℝp, by using the equation y ¼ sign
xTŵ þ b̂

� �
. As mentioned in Section 3.2.1, the hyperplane ŵ has the

same dimension of the initialmomentum, and each coefficient is associ-
ated to one voxel.

Now let us talk about the interpretation of theweights in ŵ. High co-
efficients in ŵ correspond to areas of the hippocampus where the defor-
mation is related to the disease progression. They are not areas of high
expansions or contractions, and therefore have a different interpreta-
tion than the coefficients in the initial momenta (see Section 2.2 for
the interpretation of the coefficients of the initial momenta). On the
contrary, coefficients close to zero inŵ represent areaswhere the values
of x are not relevant to the disease progression (in that case the values of
x in these areas will not modify the value of the scalar product xTŵ). In
that sense, the coefficients in ŵ have a clinical interpretation.

To summarize, each initial momentum can describe the local
hippocampal shape changes for a patient taken individually, whereas
the coefficient map ŵ can describe the relevance of hippocampal
areas with regard to the disease progression, at the population level
i.e. from the observation of all training patients.

4. Material and results

4.1. Data

Data used in the preparation of this article were obtained from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database (http://
adni.loni.usc.edu). TheADNIwas launched in 2003by theNational Insti-
tute on Aging, the National Instituteof Biomedical Imaging and Bioengi-
neering, the Food and Drug Administration, private pharmaceutical
companies and non-profit organizations, as a $60 million, 5-year public
private partnership. The primary goal of ADNI has been to test whether
serialMRI, positron emission tomography, other biologicalmarkers, and
clinical and neuropsychological assessment can be combined to mea-
sure the progression of MCI and early AD. Determination of sensitive
and specific markers of very early AD progression is intended to aid re-
searchers and clinicians to develop new treatments and monitor their
effectiveness, as well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative isMichaelW.Weiner,MD,
VAMedical Center and University of California— San Francisco. ADNI is
the result of efforts of many co-investigators from a broad range of
academic institutions and private corporations, and subjects have
been recruited from over 50 sites across the U.S. and Canada. The initial
goal of ADNI was to recruit 800 subjects but ADNI has been followed by
ADNI-GO and ADNI-2. To date these three protocols have recruited over
1500 adults, ages 55 to 90, to participate in the research, consisting of
cognitively normal older individuals, people with early or late MCI,
and people with early AD. The follow-up duration of each group is spec-
ified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects origi-
nally recruited for ADNI-1 and ADNI-GO had the option to be followed
in ADNI-2. For up-to-date information, see http://www.adni-info.org.

A dataset of 206 hippocampus binary segmentations from 103
patients enrolled in ADNI (Mueller et al., 2005) has been used. The seg-
mentationswere computed and provided byADNI, detailed information
can be found on their website. For each patient, ‘screening’ and ‘month
12’ were the two time points selected. All patients were MCI at the
screening point, 19 converted to AD by month 12, and the remaining
84 stayed MCI.
4.2. Experiments

4.2.1. Preprocessing
First, all screening images were resampled to a common isotropic

voxel size 1.0 × 1.0 × 1.0 mm, similar to their original size. Rigid trans-
formations aligning the month 12 hippocampus towards the screening
ones were computed using Ourselin et al. (2001).
4.2.2. Computation of initial momenta
The geodesic shootings (Vialard et al., 2012a) were performed3

using a sum of three kernels (sizes 1, 3 and 6 mm, with respective
weights 2, 1 and 1), and 200 gradient descent iterations. To check the
quality of the geodesic shooting computed for each patient i (second
step in Fig. 2), the evolution of the Dice score DSC between St

i which is
the deformed screening image at time t and the target image Fi ∘ (Ri)−1

was computed, and the average final DSC is 0.94 ± 0.01.
4.2.3. Computation of the template
The computation of a Karcher mean as described in Section 2.3 is a

computationally expensive step, which is linearwith the number of im-
ages. Therefore it can be desirable to select only a subset of the images.
In this paper, a subset of 20 images was used, of corresponding
hippocampal volumeswhichwere the closest to themean hippocampal
volume. The Karcher mean estimate was updated four times, with
respectively 200, 150, 150 and 100 gradient descent iterations in the
geodesic shootings. Below are two verifications we performed to
validate this approach.

First, we evaluated if all patients can be registered properly to the
template, which is an important verification since only a subset of the
images was used to compute the template. In our study, the average
Dice score between the 103 registered patients and the template was
0.87 ± 0.02, which validated the suitability of the template obtained
for our study. The last paragraph of Section 4.3 also provides another
reason why such template can be used in our study.

http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://www.adni-info.org
http://sourceforge.net/projects/utilzreg/
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Fig. 4. Empirical measures of convergence of the Karcher template algorithm. On this dataset, we notice that (1) the convergence speeds are coherent with the ones presented in Vialard
et al. (2011) and Vialard et al. (2012b), i.e. only a few Karcher iterations are required for convergence, and (2) the alternate minimization over T and {Ri}1 ≤ i ≤ n provides a faster conver-
gence than the one over T with the {Ri} fixed.
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Second, we evaluated the empirical convergence of our optimization
procedure. Fig. 4a shows the relative distance to the final estimate, i.e.

∥Tk−T∞∥2L2
∥T∞∥2L2

; ð23Þ

where Tk is the Karcher estimate at iteration k, and T∞ is approximated
by the last computed estimate. Fig. 4b shows the relative distance
between two consecutive estimates, i.e.

∥Tkþ1−Tk∥2L2
∥Tk∥2L2

; ð24Þ

with the same notations. On this dataset, we notice that (1) the conver-
gence speeds are coherent with the ones presented in Vialard et al.
(2011, 2012b), i.e. only a few Karcher iterations are required for conver-
gence, and (2) the alternateminimization over T and {Ri}1 ≤ i ≤ n provides
a faster convergence than the one over T with the {Ri} fixed.

4.2.4. Transport of initial momenta
To compute the transformations ϕi from the screening hippocampi

towards the template (Fig. 3), rigid (Ourselin et al., 2001) then non-
rigid (Modat et al., 2010) registration algorithms were applied with
their default parameters. To check the quality of the registrationϕi com-
puted to transport the local descriptor of the patient i (first step in 3),
the Dice score was computed between the rigidly registered screening
a) Template  T

Fig. 5. The region of interest ΩS (visualized with transparency) is designed to select voxels clos
operations, and in this study ΩS contains 12,531 voxels.
image and the template (i.e. DSC(S ∘ (Ri)−1,T)) and between the final
registered screening image and the template (i.e. DSC(S ∘ (ϕi)−1,T)).

4.2.5. Computation of the region of interest ΩS

The region of interest ΩS was restricted around the surface of the
template (see Fig. 5), where the high values of the initial momenta lie.
Moreover, this allows greater differences of coefficient values from
one side to the other when using Sobolev regularization.

More specifically, given a binary template T : Ω ⊂ ℝ3 → [0,1] and a
spherical structural element Er of radius r ∈ ℝ defined as

Er ¼def : ω1;ω2;ω3ð Þ∈ℝ3
; ω2

1 þω2
2 þω2

3≤r2
n o

; ð25Þ

we define the region of interest ΩS as

ΩS ¼def :Dila T ; Erð Þ− Ero T; Erð Þ; ð26Þ

where Dila and Ero are the standard dilatation and erosion morpholog-
ical operators. In this study, using r = 5, the ROI ΩS contained
12,531 voxels.

4.2.6. Optimization of the logistic regression model
In the training procedure, we have n = 103 observations (one

for each patient). As initial momenta are scalar fields in space, each
initial momenta has the same dimension as the number of voxels, so
p = 12,531. Since stable and progressive classes in the dataset are
b) Region of interest ΩS

e to the boundary (i.e. close to the surface) of T. It is obtained via standard morphological
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unbalanced, the weighted version of the loss function defined in
Section 3.2.3 was used. Solution of the optimization problemswas com-
puted via HANSO4 with a maximum of 20 iterations.

4.2.7. Performance evaluation
First, the effect of spatial regularizations was compared. The spatial

regularizations introduced in Section 3.2 aim at enforcing local correla-
tions between the coefficients inw. Using the whole dataset, the effects
of the various regularizations were compared. Second, the model was
evaluated in terms of classification of AD progression. All patients
were classified using a leave-10%-out scheme. From the numbers of
true/false positives/negatives (TP, FP, TN, FN), four indicators were
used to measure classification accuracy: specificity Spec ¼def : TN

TN þ FP
,

sensitivity Sens¼def : TP
TP þ FN

, negative predictive value NPV ¼def: TN
TN þ FN

, and

positive predictive value PPV ¼def : TP
TP þ FP

. Statistical tests were also per-

formed to evaluate the significance of the differences. Using N = 50
random re-orderings of the patients, the Spec+ Sens variable was com-
puted 50 times for each regularization and two-sample t-tests were
performed.

4.3. Effect of spatial regularizations

When using standard regularizations, increasing the regularization
does not lead to any spatial coherence (Fig. 6a, b and c). It is interesting
to remark that LASSO regularization emphasizes a more limited number
of points than ridge regularization. This is particularly clear in the right
columns of Fig. 6, where the regularization energy (λJ(w) in Eq. (16))
has a significant weight in the total energy. As expected, ElasticNet also
gives results which are in-between those of LASSO and those of ridge.
In contrast to these regularization techniques, the higher the spatial
regularizations, the more structured are the coefficients. Note that
delimited areas are coherent across different spatial regularizations.
Sobolev regularization leads to smooth coefficientmaps (Fig. 6d)where-
as total variation tends to piecewise constant maps (Fig. 6e). Finally,
fused LASSO adds sparsity by zeroing out the lowest coefficients (Fig. 6f).

4.3.1. Another benefit of spatial regularizations
As mentioned in the Introduction, a motivation to regularize the

learning problem is the lownumber of observations compared to the di-
mensionality of the problem. However, we can infer another benefit of
the use of spatial regularizations. Indeed, to build voxel-based statistical
models from the observations of several patients, one needs to align
these observations properly. Even though we checked the quality of
the alignment to the template, such alignment is not perfect. Adding
spatial regularizations in the model is a way to limit the effects of the
alignment errors.

4.4. Classification of Alzheimer's disease progression

Besides providing a map of coefficients indicating the importance of
each voxel with regard to the disease progression, themodel presented
in this paper can be used to classify the disease progression of new pa-
tients. Table 1 displays the classification performance indicators of bina-
ry classification using logistic loss and various regularizations.

Without any regularization, the resulting classifier always predicts
the same class. Before going any further, let us comment on this point.
If all testing subjects are classified in the same class, it means that all
the testing points are on the same side on the hyperplane found in the
optimization process. Here, unbalanced observations and the chosen
optimization strategy are the causes of this result. In the model used,
the bias b plays a special role and several strategies can be considered,
such as 1) optimizing w and b at the same time, 2) optimizing w and
4 http://www.cs.nyu.edu/overton/software/hanso.
b, then freezingw and optimizing b, 3) optimizingw and b, then freez-
ingw and setting b using heuristic rules (e.g. setting it to have the same
ratio between classes in training and test sets), 4) optimizingw with b
frozen to zero, then optimizing b, 5) optimizing w with b frozen to
zero, then setting b using heuristic rules, etc. In initial tests, we realized
that some strategies would classify all patients to positive whereas
other would classify them all to negative. This happened when the op-
timization is not regularized. However, this instability with regard to
the optimization strategy fades out when the problem is regularized.
These initial tests further motivated the use of regularization. Let us
note that the above strategy 1) was used in all the results presented in
this paper.

All regularizations improve significantly the classification perfor-
mance, the top 3 being the three spatial regularizations. On this dataset,
fused LASSO is the one providing the best results (Spec+ Sens= 1.32),
closely followed by total variation (Spec + Sens = 1.31).

4.4.1. Comparison with the literature
Using spatial regularizations such as total variation and fused-

LASSO, our experiments provide higher performances than the best
one reported in Fiot et al. (2012) (Spec + Sens = 1.27). Moreover,
the linear classification model used in this paper is simpler than the
non-linear SVM used in Fiot et al. (2012). SVM is a very powerful ap-
proach, which has been widely studied and successfully used. Many
implementations are available, but it can get difficult to modify them
and, for example, add spatial regularizations. Besides, only linear SVM
can provide an interpretable map of coefficients, but not the non-
linear version used in Fiot et al. (2012). On the other hand, a model as
simple as the logistic regression can be easily implemented and
modified.

4.5. Statistical tests

To evaluate the significance of the performance differences found in
Table 1, we performed two-sample t-tests. The variable considered was
Spec + Sens, and 50 realizations of the variable from random re-
ordering of the patients were obtained for each sample. Two
regularizations can be considered statistically significantly different if
the test has a p-value p b α = 10−3. These results are presented in
Table 2. First, we notice that all regularizations are statistically better
than the absence of regularization. Then we notice that all spatial
regularizations are statistically better than standard regularizations. Fi-
nally, we notice that despite higher prediction accuracy, Elastic Net is
not statistically significantly better than ridge in our tests. Similarly,
fused-LASSO is not statistically significantly better than total variation
in our tests.

4.6. Computation time

The various algorithms were implemented in a mix of C++,
MATLAB®, mex and python. Table 3 reports approximate running time
on a standard laptop (Intel® Core™ i7-2720QM CPU at 2.20 GHz, 8 GB
of RAM). The geodesic shooting step is linear with the number of pa-
tients. The computation of the template is linear with the number of pa-
tients and the number of Karcher iterations. One should note that
Karcher iterations can have decreasing number of gradient descent iter-
ations, which decreases the total computation time. Then the transport
is also linear with the number of patients. So far, it is interesting to no-
tice that all the steps can be easily be divided into different jobs to take
advantage of multi-core or distributed architectures. Finally come the
learning and classification. The computation time of this step can vary
dramatically depending on several parameters such as the training/test-
ing splitting scheme, the optimization algorithm, and the number of
regularization parameters to test. In particular, for this exploratory
study, we used mainly HANSO algorithm, since the convergence rate
of the proximal algorithms mentioned in Section 3.2.2 was too low.

http://www.cs.nyu.edu/overton/software/hanso
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Fig. 6. Effects of various regularizations on the solution ŵ of the optimization problem. Each small image represents the coefficients of one 2D slice of ŵ, which is a 3D volume. Zero
coefficients are displayed in light green, higher values are going red and lower values are going blue. On each row, the regularization is increasing from left to right, and the 10th and
90th percentiles of the coefficients (resp. P10 and P90) correspond to the saturation limits of the colorbar. Panels a, b and c show standard regularizations whereas Panels d, e and f
show spatial regularizations. Spatial regularizations provide more structured coefficients.
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Table 1
Prediction accuracy of MCI patients' progression.

Regularization
λ

range
λ

(optimal λ)

Spec+
Sens

Spec Sens NPV PPV

None 0 0 1.00 0.00 1.00 NaN 0.18

Standard

LASSO [10-9,100] 0.01 1.04 0.20 0.84 0.85 0.19

Ridge [10-9,100] 0.001 1.06 0.95 0.11 0.82 0.33

Elastic Net [10-9,100]2 λ1 = 0.01

λ2 = 1
1.13 0.29 0.84 0.89 0.2

Sobolev [10-9,107] 104 1.17 0.54 0.63 0.87 0.24
Total Variation [10-9,100] 0.01 1.31 0.46 0.84 0.93 0.26

Fused LASSO [10-9,100]2 1.32 0.48 0.84 0.93 0.27
λ1 = 0.01

λ2 = 10−4

Spatial
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4.7. Comparison with the literature

Asmentioned earlier, themain contribution of this paper is the com-
parison of the effects of various regularizations on the solution of binary
classification problem with a logistic loss. In the context of longitudinal
Alzheimer's disease study, we saw that the use of spatial regularizations
techniques was not only leading to better classification results than
standard regularizations, but also providing maps of coefficients with
improved spatial coherence.

In the literature, a large number of methods are also trying to iden-
tify the hippocampal sub-areas that are related to either the conversion
of patients to the disease or to other symptoms such as cognitive or
memory measures. For example, one can cite Fig. 5 of Frisoni et al.
(2008), Fig. 7 of Gutman et al. (2009), Fig. 1 to 5 of Apostolova et al.
(2010), and Fig. 3 and 4 of Shen et al. (2012).

Several strategies can be considered to compare the most signifi-
cant regions found by various methods. One strategy is to transport
relevance maps from different methods to the same space. However,
transporting information is delicate (Fiot et al., 2012), and one
needs to be cautious with such strategy. This transport could be
avoided by using the same template for all methods, though this is
likely to cause problems if the population studied is not the same.
Another strategy is to rank the hippocampal subareas, as it is done
for example in Table 2 of Frisoni et al. (2008), and compare the rank-
ings. This strategy would require us to align a map of known hippo-
campal subareas to our template, and design a ranking algorithm (for
example based on ∫

ω∈ΩR
ŵ ωð Þ2dω , where ΩR is a hippocampal

subregion).

Comparingqualitatively or quantitatively the subregions that are the
most significant with regard to disease progression is out of the scope of
this paper. Nonetheless, it is a very interesting perspective, and several
strategies including the onesmentioned above are considered for future
work.
Table 2
Statistical p-values of two-sample t-tests between different regularizations. The variable consid
patients were obtained for each sample. Two regularizations can be considered statistically si
red otherwise).

Regularization
Standard

LASSO Ridge E

None <10−5 <10−5

Standard

LASSO – 1.1*10−04

Ridge – 4

Elastic Net

Spatial

Sobolev

Total Variation

Fused LASSO
5. Conclusion

In this paper, we studied deformationmodels for longitudinal popu-
lation analysis, regularizations and machine learning strategies. In par-
ticular, we investigated the combined use of the LDDMM framework
and classification with logistic loss and spatial regularizations in the
context of Alzheimer's disease. Results indicate that initial momenta of
hippocampus deformations are able to capture information relevant to
the progression of the disease.

Another contribution of this paper is the joint use of a simple linear
classifier with complex spatial regularizations. Achieving results higher
than the ones reported in Fiot et al. (2012), which uses non-linear SVM
classifier, our method provides in addition coefficient maps with direct
anatomical interpretation.

Moreover, we compared Sobolev, total variation and fused LASSO
regularizations. While they all successfully enforce different priors
(respectively smooth, piecewise constant and sparse), their resulting
coefficientmaps are coherent one to the other. They improve coefficient
maps and their classification performances are statistically better than
the ones obtained with standard regularizations.

Now the ideas and results presented in this paper open awide range
of perspectives. First, the question of the representation of patients from
images, and in particular the representation of their evolutions for lon-
gitudinal population studies was raised. We have used initial momenta
encoding the patient evolution in 3D volumes. An interesting research
direction is the adaptation of our pipeline to surface representation of
shape evolution. Indeed, as we saw in the application studied in this
paper, the strong values of the initial momenta lie on the hippocampus
volumeboundary, in otherwords on the surface. Second, thequestion of
how to compare evolutions of different patients was raised.We studied
the use of Karchermean and the importance of the regularizations. Even
though diffeomorphic deformationmodels such as LDDMMcan provide
smooth deformation fields and encode the shape deformation of a
ered is Spec + Sens, and 50 realizations of the variable from random re-orderings of the
gnificantly different if the test has a p-value light green p b α = 10−3 (marked in green,

Spatial

lastic Net Sobolev Total Variation Fused LASSO

<10−5 <10−5 <10−5 <10−5

<10−5 <10−5 <10−5 <10−5

.2*10−02 <10−5 <10−5 <10−5

– 6.3*10−05 <10−5 <10−5

– <10−5 <10−5

– 0.86

–



Table 3
Computation time of the various steps. (⁎): can differ by several orders of magnitude, see
Section 4.6 for details.

Step Computation time

Preprocessing A few hours
Geodesic shooting ≈1 day
Template computation ≈3 days
Transport ≈1 day
Learning and classification From 1 min to several days⁎
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patient in a smooth representation, we saw that it is important to regu-
larize spatially across the population (i.e. between patients) in order to
be able to build meaningful statistical models for classification and bio-
marker discovery. On that point, the logistic regressionmodel has prov-
en to be efficient as it can be combined with complex regularizations.
Our spatial regularizations gave the best results on our dataset, and an-
other research direction is the study of other regularizations such as
group sparsity. Third, another great perspective of this work consists
in studying evolutions of patients with more than two time points. In
this context, the design of spatio-temporal regularizations (for example
in the context of geodesic regression (Niethammer et al., 2011)) is an
exciting research direction.

Acknowledgements

Data collection and sharing for this project were funded by the
Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes
of Health Grant U01 AG024904) and DOD ADNI (Department of Defense
award number W81XWH-12-2-0012). ADNI is funded by the National
Institute on Aging, the National Institute of Biomedical Imaging and Bio-
engineering, and through generous contributions from the following:
Alzheimer's Association; Alzheimer's Drug Discovery Foundation;
BioClinica, Inc.; Biogen Idec, Inc.; Bristol-Myers Squibb Company; Eisai
Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F. Hoffmann-La
Roche Ltd. and its affiliated company Genentech, Inc.; GE Healthcare;
Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy
Research & Development, LLC.; Johnson & Johnson Pharmaceutical
Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso
Scale Diagnostics, LLC.; NeuroRx Research; Novartis Pharmaceuticals
Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and
Takeda Pharmaceutical Company. The Canadian Institutes of Health Re-
search is providing funds to support ADNI clinical sites in Canada. Private
sector contributions are facilitated by the Foundation for the National
Institutes of Health (www.fnih.org). The grantee organization is the
Northern California Institute for Research and Education, and the study
is coordinated by the Alzheimer's Disease Cooperative Study at the
University of California, San Diego. ADNI data are disseminated by the
Laboratory for Neuro Imaging at the University of Southern California.

References

Allassonnière, S., Kuhn, E., Trouvé, A., 2008. 2008. MAP estimation of statistical deform-
able templates via nonlinear mixed effects models: deterministic and stochastic ap-
proaches. (Session 03: Building Atlases) In: Pennec, X. (Ed.), 2nd MICCAI
Workshop on Mathematical Foundations of Computational Anatomy, New-York,
United States, pp. 80–91.

Apostolova, L.G., Morra, J.H., Green, A.E., Hwang, K.S., Avedissian, C., Woo, E., Cummings, J.L.,
Toga, A.W., Jack, C.R., Weiner, M.W., Thompson, P.M., Initiative, A.D.N., 2010. Automated
3D mapping of baseline and 12-month associations between three verbal memory
measures and hippocampal atrophy in 490 ADNI subjects. NeuroImage 51, 488–499.

Ashburner, J., Friston, K.J., 2011. Diffeomorphic registration using geodesic shooting and
Gauss–Newton optimisation. NeuroImage 55, 954–967.

Avants, B., Gee, J.C., 2004. Geodesic estimation for large deformation anatomical shape
averaging and interpolation. NeuroImage 23, S139–S150 (Mathematics in Brain
Imaging).

Baldassarre, L., Mourao-Miranda, J., Pontil, M., 2012. Structured sparsity models for brain
decoding from FMRI data. Pattern Recognition in NeuroImaging (PRNI), 2012 Inter-
national Workshop, pp. 5–8. http://dx.doi.org/10.1109/PRNI.2012.31.

Beck, A., Teboulle, M., 2009. Fast gradient-based algorithms for constrained total variation
image denoising and deblurring problems. IEEE Trans. Image Process. 18, 2419–2434.
Beg, M.F., Khan, A., 2006. Computing an average anatomical atlas using LDDMM and geo-
desic shooting. Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International
Symposium on, IEEE, pp. 1116–1119.

Beg, M.F., Miller, M.I., Trouvé, A., Younes, L., 2005. Computing large deformation metric
mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61, 139–157.

Bhatia, K.K., Hajnal, J.V., Puri, B.K., Edwards, A.D., Rueckert, D., 2004. Consistent groupwise
non-rigid registration for atlas construction. Biomedical Imaging: Nano to Macro,
2004. IEEE International Symposium on, vol. 1, pp. 908–911. http://dx.doi.org/10.
1109/ISBI.2004.1398686.

Bossa, M.N., Zacur, E., Olmos Gasso, S., 2010. On changing coordinate systems for longitu-
dinal tensor-based morphometry. Medical Image Computing and Computer-assisted
Intervention (MICCAI): Intl. Workshop of Spatio-temporal Image Analysis for Longi-
tudinal and Time-series Image Data (STIA).

Chupin, M., Mukuna-Bantumbakulu, A.R., Hasboun, D., Bardinet, E., Baillet, S.,
Kinkingnéhun, S., Lemieux, L., Dubois, B., Garnero, L., 2007. Anatomically constrained
region deformation for the automated segmentation of the hippocampus and the
amygdala: method and validation on controls and patients with Alzheimer's disease.
NeuroImage 34, 996–1019. http://dx.doi.org/10.1016/j.neuroimage.2006.10.035.

Chupin, M., Gérardin, E., Cuingnet, R., Boutet, C., Lemieux, L., Lehéricy, S., Benali, H., Garnero,
L., Colliot, O., Initiative, A.D.N., 2009. Fully automatic hippocampus segmentation and
classification in Alzheimer's disease and mild cognitive impairment applied on data
from ADNI. Hippocampus 19, 579–587. http://dx.doi.org/10.1002/hipo.20626.

Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.O., Chupin, M.,
Benali, H., Colliot, O., 2011. Automatic classification of patients with Alzheimer's
disease from structural MRI: a comparison of ten methods using the ADNI database.
NeuroImage 56, 766–781. http://dx.doi.org/10.1016/j.neuroimage.2010.06.013.

Cuingnet, R., Glaunès, J.A., Chupin, M., Benali, H., Colliot, O., 2012. Spatial and anatomical
regularization of SVM: a general framework for neuroimaging data. IEEE Trans.
Pattern Anal. Mach. Intell.. http://dx.doi.org/10.1109/TPAMI.2012.142.

Desikan, R.S., Cabral, H.J., Hess, C.P., Dillon, W.P., Glastonbury, C.M., Weiner, M.W.,
Schmansky, N.J., Greve, D.N., Salat, D.H., Buckner, R.L., Fischl, B., Initiative, A.D.N.,
2009. Automated MRI measures identify individuals with mild cognitive impairment
and Alzheimer's disease. Brain 132, 2048–2057.

Durrleman, S., Allassonnière, S., Joshi, S., 2013. Sparse adaptive parameterization of vari-
ability in image ensembles. Int. J. Comput. Vis. 101, 161–183. http://dx.doi.org/10.
1007/s11263-012-0556-1.

Fan, Y., Shen, D., Gur, R.C., Gur, R.E., Davatzikos, C., 2007. COMPARE: classification of mor-
phological patterns using adaptive regional elements. IEEE Trans. Med. Imaging 26,
93–105. http://dx.doi.org/10.1109/TMI.2006.886812.

Fan, Y., Batmanghelich, N., Clark, C.M., Davatzikos, C., Initiative, A.D.N., 2008a. Spatial pat-
terns of brain atrophy in MCI patients, identified via high-dimensional pattern classi-
fication, predict subsequent cognitive decline. NeuroImage 39, 1731–1743.

Fan, Y., Resnick, S.M., Wu, X., Davatzikos, C., 2008b. Structural and functional
biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern
classification study. NeuroImage 41, 277–285. http://dx.doi.org/10.1016/j.
neuroimage.2008.02.043.

Fiot, J.B., Risser, L., Cohen, L.D., Fripp, J., Vialard, F.X., 2012. Local vs global descriptors of
hippocampus shape evolution for Alzheimer's longitudinal population analysis. 2nd
International MICCAI Workshop on Spatiotemporal Image Analysis for Longitudinal
and Time-series Image Data (STIA '12), Nice, France, pp. 13–24. http://dx.doi.org/
10.1007/978-3-642-33555-6.

Fletcher, P.T., Lu, C., Pizer, M., Joshi, S., 2004. Principal geodesic analysis for the study of
nonlinear statistics of shape. IEEE Trans. Med. Imaging 995–1005.

Fréchet, M., 1948. Les éléments aléatoires de nature quelconque dans un espace distancie.
Ann. Inst. Henri Poincaré 10, 215–310.

Frisoni, G.B., Ganzola, R., Canu, E., Rüb, U., Pizzini, F.B., Alessandrini, F., Zoccatelli, G.,
Beltramello, A., Caltagirone, C., Thompson, P.M., 2008. Mapping local hippocampal
changes in Alzheimer's disease and normal ageing with mri at 3 tesla. Brain 131,
3266–3276. http://dx.doi.org/10.1093/brain/awn280.

Gerardin, E., Chételat, G., Chupin, M., Cuingnet, R., Desgranges, B., Kim, H.S., Niethammer,
M., Dubois, B., Lehéricy, S., Garnero, L., Eustache, F., Colliot, O., Initiative, A.D.N., 2009.
Multidimensional classification of hippocampal shape features discriminates
Alzheimer's disease and mild cognitive impairment from normal aging. NeuroImage
47, 1476–1486.

Gramfort, A., Thirion, B., Varoquaux, G., 2013. Identifying predictive regions from fMRI
with TV-L1 prior. Pattern Recognition in Neuroimaging (PRNI), IEEE, Philadelphia,
United States. ANR grant BrainPedia, ANR-10-JCJC 1408-01, FMJH Program Gaspard
Monge in Optimization and Operation Research with Support from EDF.

Grosenick, L., Klingenberg, B., Katovich, K., Knutson, B., Taylor, J.E., 2013. Interpretable
whole-brain prediction analysis with GraphNet. NeuroImage 72, 304–321.

Gutman, B., Wang, Y., Morra, J., Toga, A.W., Thompson, P.M., 2009. Disease classification
with hippocampal shape invariants. Hippocampus 19, 572–578. http://dx.doi.org/
10.1002/hipo.20627.

Hoerl, A.E., Kennard, R.W., 1970. Ridge regression: biased estimation for nonorthogonal
problems. Technometrics 12, 55–67. http://dx.doi.org/10.2307/1267351.

Jenatton, R., Gramfort, A., Michel, V., Obozinski, G., Eger, E., Bach, F., Thirion, B., 2012.
Multiscale mining of fMRI data with hierarchical structured sparsity. SIAM J. Imaging
Sci. 5, 835–856.

Jia, H.,Wu, G.,Wang, Q., Shen, D., 2010. Absorb: atlas building by self-organized registration
and bundling. NeuroImage 51, 1057–1070. http://dx.doi.org/10.1016/j.neuroimage.
2010.03.010.

Joshi, S., Davis, B., Jomier, M., Gerig, G., 2004. Unbiased diffeomorphic atlas construction
for computational anatomy. NeuroImage 23.

Klöppel, S., Stonnington, C.M., Chu, C., Draganski, B., Scahill, R.I., Rohrer, J.D., Fox, N.C., Jack,
C.R., Ashburner, J., Frackowiak, R.S.J., 2008. Automatic classification of MR scans in
Alzheimer's disease. Brain 131, 681–689. http://dx.doi.org/10.1093/brain/awm319.

http://www.fnih.org
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0235
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0235
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0235
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0235
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0235
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0010
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0010
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0010
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0015
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0015
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0240
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0240
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0240
http://dx.doi.org/10.1109/PRNI.2012.31
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0020
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0020
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0250
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0250
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0250
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0030
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0030
http://dx.doi.org/10.1109/ISBI.2004.1398686
http://dx.doi.org/10.1109/ISBI.2004.1398686
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0260
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0260
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0260
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0260
http://dx.doi.org/10.1016/j.neuroimage.2006.10.035
http://dx.doi.org/10.1002/hipo.20626
http://dx.doi.org/10.1016/j.neuroimage.2010.06.013
http://dx.doi.org/10.1109/TPAMI.2012.142
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0055
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0055
http://dx.doi.org/10.1007/s11263-012-0556-1
http://dx.doi.org/10.1007/s11263-012-0556-1
http://dx.doi.org/10.1109/TMI.2006.886812
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0065
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0065
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0065
http://dx.doi.org/10.1016/j.neuroimage.2008.02.043
http://dx.doi.org/10.1016/j.neuroimage.2008.02.043
http://dx.doi.org/10.1007/978-3-642-33555-6
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0085
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0085
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0090
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0090
http://dx.doi.org/10.1093/brain/awn280
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0095
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0095
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0095
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0280
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0280
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0280
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0280
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0100
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0100
http://dx.doi.org/10.1002/hipo.20627
http://dx.doi.org/10.2307/1267351
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0110
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0110
http://dx.doi.org/10.1016/j.neuroimage.2010.03.010
http://dx.doi.org/10.1016/j.neuroimage.2010.03.010
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0120
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0120
http://dx.doi.org/10.1093/brain/awm319


729J.-B. Fiot et al. / NeuroImage: Clinical 4 (2014) 718–729
Lao, Z., Shen, D., Xue, Z., Karacali, B., Resnick, S.M., Davatzikos, C., 2004. Morphological
classification of brains via high-dimensional shape transformations and machine
learning methods. NeuroImage 21, 46–57.

Lewis, A.S., Overton, M.L., 2012. Nonsmooth optimization via quasi-Newton methods.
Math. Program. 1–29. http://dx.doi.org/10.1007/s10107-012-0514-2.

Ma, J.,Miller,M.I., Trouvé, A., Younes, L., 2008. Bayesian template estimation in computational
anatomy. NeuroImage 42, 252–261. http://dx.doi.org/10.1016/j.neuroimage.2008.03.
056.

Magnin, B., Mesrob, L., Kinkingnéhun, S., Pélégrini-Issac, M., Colliot, O., Sarazin, M., Dubois,
B., Lehéricy, S., Benali, H., 2009. Support vector machine-based classification of
Alzheimer's disease from whole-brain anatomical MRI. Neuroradiology 51, 73–83.
http://dx.doi.org/10.1007/s00234-008-0463-x.

Michel, V., Gramfort, A., Varoquaux, G., Eger, E., Thirion, B., 2011. Total variation regular-
ization for fMRI-based prediction of behaviour. IEEE Trans. Med. Imaging 30,
1328–1340. http://dx.doi.org/10.1109/TMI.2011.2113378.

Miller, M.I., Trouvé, A., Younes, L., 2006. Geodesic shooting for computational anatomy. J.
Math. Imaging Vis. 24, 209–228. http://dx.doi.org/10.1007/s10851-005-3624-0.

Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J., Fox, N.C.,
Ourselin, S., 2010. Fast free-form deformation using graphics processing units.
Comput. Methods Programs Biomed. 98, 278–284. http://dx.doi.org/10.1016/j.
cmpb.2009.09.002.

Mueller, S.G., Weiner, M.W., Thal, L.J., Petersen, R.C., Jack, C., Jagust, W., Trojanowski, J.Q.,
Toga, A.W., Beckett, L., 2005. The Alzheimer's disease neuroimaging initiative. Neuro-
imaging Clin. N. Am. 15, 869–877. http://dx.doi.org/10.1016/j.nic.2005.09.008
(Alzheimer's Disease: 100 Years of Progress).

Ng, B., Abugharbieh, R., 2011. Generalized sparse regularization with application to fMRI
brain decoding. In: Székely, G., Hahn, H. (Eds.), Information processing inmedical im-
aging. Volume 6801 of Lecture Notes in Computer Science, vol. 6801. Springer, Berlin
Heidelberg, pp. 612–623. http://dx.doi.org/10.1007/978-3-642-22092-0_50.

Niethammer, M., Huang, Y., Vialard, F.X., 2011. Geodesic regression for image time-series.
Med. Image Comput. Comput. Assist Interv. 14, 655–662.

Ourselin, S., Roche, A., Subsol, G., Pennec, X., Ayache, N., 2001. Reconstructing a 3D struc-
ture from serial histological sections. Image Vis. Comput. 19, 25–31. http://dx.doi.org/
10.1016/S0262-8856(00)00052-4.

Pennec, X., 1999. Probabilities and statistics on Riemannianmanifolds: basic tools for geo-
metric measurements. In: Cetin, A., Akarun, L., Ertuzun, A., Gurcan, M., Yardimci, Y.
(Eds.), Proc. of Nonlinear Signal and Image Processing (NSIP '99), IEEE-EURASIP,
June 20–23, Antalya, Turkey, pp. 194–198.

Pennec, X., 2006. Intrinsic statistics on Riemannian manifolds: basic tools for geometric
measurements. J. Math. Imaging Vis. 25, 127–154. http://dx.doi.org/10.1007/
s10851-006-6228-4.

Qiu, A., Younes, L., Miller, M.I., Csernansky, J.G., 2008. Parallel transport in diffeomorphisms
distinguishes the time-dependent pattern of hippocampal surface deformation due to
healthy aging and the dementia of the Alzheimer's type. NeuroImage 40, 68–76.

Querbes, O., Aubry, F., Pariente, J., Lotterie, J.A., Démonet, J.F., Duret, V., Puel, M., Berry, I.,
Fort, J.C., Celsis, P., Initiative, A.D.N., 2009. Early diagnosis of Alzheimer's disease using
cortical thickness: impact of cognitive reserve. Brain 132, 2036–2047.

Raguet, H., Fadili, J., Peyré, G., 2013. A generalized forward–backward splitting. SIAM J. Im-
aging Sci. 6, 1199–1226. http://dx.doi.org/10.1137/120872802.
Risser, L., Vialard, F.X., Wolz, R., Murgasova, M., Holm, D.D., Rueckert, D., 2011. Simulta-
neousmultiscale registration using large deformation diffeomorphicmetric mapping.
IEEE Trans. Med. Imaging 30 (10), 1746–1759.

Seghers, D., D'Agostino, E., Maes, F., Vandermeulen, D., Suetens, P., 2004. Construction of a
brain template from MR images using state-of-the-art registration and segmentation
techniques. In: Barillot, C., Haynor, D., Hellier, P. (Eds.), Medical image computing and
computer-assisted intervention — MICCAI 2004. Volume 3216 of Lecture Notes in
Computer Science, vol. 3216. Springer, Berlin Heidelberg, pp. 696–703. http://dx.
doi.org/10.1007/978-3-540-30135-6_85.

Shen, K.K., Fripp, J., Mériaudeau, F., Chételat, G., Salvado, O., Bourgeat, P., A.D.N Initiative,
2012. Detecting global and local hippocampal shape changes in Alzheimer's disease
using statistical shape models. NeuroImage 59, 2155–2166. http://dx.doi.org/10.
1016/j.neuroimage.2011.10.014.

Singh, N., Fletcher, P., Preston, J., Ha, L., King, R., Marron, J., Wiener, M., Joshi, S., 2010.
Multivariate statistical analysis of deformation momenta relating anatomical shape to
neuropsychological measures. In: Jiang, T., Navab, N., Pluim, J., Viergever, M. (Eds.),
Medical image computingandcomputer-assisted intervention—MICCAI2010. Volume
6363 of Lecture Notes in Computer Science, vol. 6363. Springer, Berlin/Heidelberg,
pp. 529–537.

Tibshirani, R., 1994. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58,
267–288.

Vaillant, M., Miller, M.I., Younes, L., Trouvé, A., 2004. Statistics on diffeomorphisms via
tangent space representations. NeuroImage 23 (Suppl. 1), S161–S169. http://dx.doi.
org/10.1016/j.neuroimage.2004.07.023.

Vemuri, P., Gunter, J.L., Senjem,M.L., Whitwell, J.L., Kantarci, K., Knopman, D.S., Boeve, B.F.,
Petersen Jr., R.C., C.R.J., 2008. Alzheimer's disease diagnosis in individual subjects
using structural MR images: validation studies. NeuroImage 39, 1186–1197. http://
dx.doi.org/10.1016/j.neuroimage.2007.09.073.

Vialard, F.X., Risser, L., Holm, D., Rueckert, D., 2011. Diffeomorphic Atlas Estimation using
Karcher Mean and Geodesic Shooting on Volumetric Images.

Vialard, F.X., Risser, L., Rueckert, D., Cotter, C.J., 2012a. Diffeomorphic 3D Image Registra-
tion via Geodesic Shooting using an Efficient Adjoint Calculation. Int. J. Comput. Vis.
97, 229–241. http://dx.doi.org/10.1007/s11263-011-0481-8.

Vialard, F.X., Risser, L., Rueckert, D., Holm, D., 2012b. Diffeomorphic Atlas Estimation using
Karcher Mean and Geodesic Shooting on Volumetric Images. Annals of the British
Machine Vision Association.

Wang, L., Beg, F., Ratnanather, T., Ceritoglu, C., Younes, L., Morris, J.C., Csernansky, J.G.,
Miller, M.I., 2007. Large deformation diffeomorphism and momentum based hippo-
campal shape discrimination in dementia of the Alzheimer type. IEEE Trans. Med. Im-
aging 26, 462–470. http://dx.doi.org/10.1109/TMI.2005.853923.

Younes, L., 2007. Jacobi fields in groups of diffeomorphisms and applications. Q. Appl.
Math. 65, 113–134.

Yushkevich, P.A., Avants, B.B., Das, S.R., Pluta, J., Altinay, M., Craige, C., 2010. Bias in estimation
of hippocampal atrophyusing deformation-basedmorphometry arises fromasymmetric
global normalization: an illustration in ADNI 3 T MRI data. NeuroImage 50, 434–445.

Zou, H., Hastie, T., 2005. Regularization and variable selection via the elastic net. J. R. Stat.
Soc. Ser. B 67, 301–320.

http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0130
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0130
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0130
http://dx.doi.org/10.1007/s10107-012-0514-2
http://dx.doi.org/10.1016/j.neuroimage.2008.03.056
http://dx.doi.org/10.1016/j.neuroimage.2008.03.056
http://dx.doi.org/10.1007/s00234-008-0463-x
http://dx.doi.org/10.1109/TMI.2011.2113378
http://dx.doi.org/10.1007/s10851-005-3624-0
http://dx.doi.org/10.1016/j.cmpb.2009.09.002
http://dx.doi.org/10.1016/j.cmpb.2009.09.002
http://dx.doi.org/10.1016/j.nic.2005.09.008
http://dx.doi.org/10.1007/978-3-642-22092-0_50
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0160
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0160
http://dx.doi.org/10.1016/S0262-8856(00)00052-4
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0310
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0310
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0310
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0310
http://dx.doi.org/10.1007/s10851-006-6228-4
http://dx.doi.org/10.1007/s10851-006-6228-4
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0175
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0175
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0175
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0180
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0180
http://dx.doi.org/10.1137/120872802
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0320
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0320
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0320
http://dx.doi.org/10.1007/978-3-540-30135-6_85
http://dx.doi.org/10.1016/j.neuroimage.2011.10.014
http://dx.doi.org/10.1016/j.neuroimage.2011.10.014
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0335
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0335
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0335
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0335
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0335
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0190
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0190
http://dx.doi.org/10.1016/j.neuroimage.2004.07.023
http://dx.doi.org/10.1016/j.neuroimage.2007.09.073
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0340
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0340
http://dx.doi.org/10.1007/s11263-011-0481-8
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0210
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0210
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0210
http://dx.doi.org/10.1109/TMI.2005.853923
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0220
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0220
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0225
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0225
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0225
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0230
http://refhub.elsevier.com/S2213-1582(14)00020-5/rf0230

	Longitudinal deformation models, spatial regularizations and learning strategies to quantify Alzheimer's disease progression
	1. Introduction
	2. Longitudinal deformation model for population analysis
	2.1. Global pipeline
	2.2. Diffeomorphic registration via geodesic shooting
	2.2.1. Definitions
	2.2.2. Motivation and rationales for the use of initial momenta

	2.3. Population template
	2.3.1. Need for a template
	2.3.2. Notions of Fréchet and Karcher means
	2.3.3. Invariance to rigid orientations, approximations and optimization procedure

	2.4. Tangent information and associated transport
	2.4.1. Motivation and rationals
	2.4.2. Definitions


	3. Machine learning strategies
	3.1. Support vector machine classification
	3.2. Binary classification with logistic regression and spatial regularization
	3.2.1. Definitions
	3.2.2. Solving the model
	3.2.3. Weighted loss function
	3.2.4. Interpretation of the solution


	4. Material and results
	4.1. Data
	4.2. Experiments
	4.2.1. Preprocessing
	4.2.2. Computation of initial momenta
	4.2.3. Computation of the template
	4.2.4. Transport of initial momenta
	4.2.5. Computation of the region of interest ΩS
	4.2.6. Optimization of the logistic regression model
	4.2.7. Performance evaluation

	4.3. Effect of spatial regularizations
	4.3.1. Another benefit of spatial regularizations

	4.4. Classification of Alzheimer's disease progression
	4.4.1. Comparison with the literature

	4.5. Statistical tests
	4.6. Computation time
	4.7. Comparison with the literature

	5. Conclusion
	Acknowledgements
	References


