
Surface Segmentation Using Geodesic Centroidal Tesselation

Gabriel Peyré Laurent Cohen
CMAP CEREMADE, UMR CNRS 7534

Ecole Polytechnique Universite Paris Dauphine
91128 Palaiseau, France 75775 Paris, France

peyre@cmapx.polytechnique.fr cohen@ceremade.dauphine.fr

Original Speed function Segmented Segmented function

Figure 1. Segmentation of a textured head.

Abstract

In this paper, we solve the problem of mesh partition
using intrinsic computations on the 3D surface. The key
concept is the notion of centroidal tesselation that is widely
used in an eucidan settings. Using the Fast Marching al-
gorithm, we are able to recast this powerful tool in the lan-
guage of mesh processing. This method naturally fits into
a framework for 3D geometry modelling and processing
that uses only fast geodesic computations. With the use
of classical geodesic-based building blocks, we are able to
take into account any available information or requirement
such as a 2D texture or the curvature of the surface.

1 Introduction

The applications of 3D geometry processing abound
nowadays. They range from finite element computation
to computer graphics, including solving all kinds of sur-
face reconstruction problems. The most common repre-
sentation of 3D objects is the triangle mesh, and the need
for fast algorithms to handle this kind of geometry is obvi-
ous. Classical 3D triangulated manifold processing meth-
ods have several well identified shortcomings: mainly, their
high complexity when dealing with large meshes, and their

numerical instabilities.
To overcome these difficulties, we propose a geometry

processing pipeline that relies onintrinsic information of
the surface and not on its underlying triangulation. Bor-
rowing from well established ideas in different fields (in-
cluding image processing and perceptual learning) we are
able to process very large meshes efficiently.

1.1 Overview

In section 2 we introduce some concepts we use in our
geodesic computations. This includes basic facts about the
Fast Marching algorithm, the computations of Voronoi di-
agrams on surfaces, and a recently proposed greedy algo-
rithm for manifold sampling.

Then, in section 3, we will introduce the notion of
geodesic centroidal tessellationin order to compute a seg-
mentation of the manifold. There, a fast algorithm based
on a geodesic gradient descent is derived, and we will ex-
plain how to take into account special features of the mesh,
or user defined constraints.

In the conclusion, we will apply this partioning algo-
rithm to texture each patch of the mesh. We will then give
a complete study of the timings of each part of our algo-
rithm, including a comparison with classical methods.

1.2 Related Work

Geodesic Computations. Distances computation on man-
ifolds is a complex topic, and a lot of algorithms have been
proposed such asChenandHan shortest path method [2]
which is of quadratic complexity.Kimmel andSethian’s
Fast Marchingalgorithm [15] allows finding numerically
the geodesic distance from a given point on the manifold,
in O(nlog(n)) in the number of vertices. They deduce
minimal geodesics between two given points. Some di-
rect applications of geodesic computations on manifolds
have been proposed, such as in [16], which applies the Fast
Marching algorithm to obtainVoronoi diagramandoffset
curveson a manifold.

Mesh Segmentation. The segmentation of a complex sur-
face is the first step for constructing a parameterization of
a whole mesh. In [18] such a segmentation is performed
to build an atlas for mesh texturing. In [31] the segmenta-
tion borrows ideas from Morse theory. The work of [13]
decomposes the object into meaningful components using
fuzzy clustering. The importance of texture seams reduc-
tion is studied in [26]. The geometry images paradigm [11]
uses a single chart to parametrize the mesh on a 2D im-
age. In [24], the authors also use a segmentation proce-
dure to build geometry images for complex meshes. This
segmentation is computed using a form of combinatorial
Lloyd iteration. In section 3 we will describe a more pow-
erful approach that uses real geodesic computations. The
main issue of these techniques is the discontinuities of the
parameterization along patch boundaries. These disconti-
nuities can be nearly removed as explained in [14] at the
cost of additional complexity.

2 Geodesic-Based Building Blocks

2.1 Fast Marching Algorithm

The classical Fast Marching algorithm is presented in
[25], and a similar algorithm was also proposed in [29].
This algorithm is used intensively in computer vision, for
instance it has been applied to solve global minimization
problems for deformable models [5].

This algorithm is formulated as follows. Suppose we
are given a metricP(s)ds on some manifoldS such that
P > 0. If we have two pointsx0, x1 ∈ S , the weighted
geodesic distance betweenx0 andx1 is defined as

d(x0, x1)
def.
= min

γ

(

∫ 1

0
||γ ′(t)||P(γ(t))dt

)

, (1)

whereγ is a piecewise regular curve withγ(0) = x0 and
γ(1) = x1. WhenP = 1, the integral in (1) corresponds to
the length of the curveγ andd is the classical geodesic dis-
tance. To compute the distance functionU(x)

def.
= d(x0, x)

with an accurate and fast algorithm, this minimization can

Figure 2. Front Propagation on the David,
level sets of the distance function and
geodesic path.

be reformulated as follows. The level set curveCt
def.
=

{x \U(x) = t} propagates following the evolution equa-
tion ∂Ct

∂ t (x) = 1
P(x)

−→nx, where−→nx is the exterior unit vector
normal to the curve atx, and the functionU satisfies the
nonlinearEikonalequation:

||∇U(x)|| = P(x). (2)

The functionF = 1/P> 0 can be interpreted as the propa-
gation speed of the frontCt .

The Fast Marching algorithm on an orthogonal grid
makes use of an upwind finite difference scheme to com-
pute the valueu of U at a given pointxi, j of a grid:

max(u−U(xi−1, j), u−U(xi+1, j),0)2

+ max(u−U(xi, j−1), u−U(xi, j+1),0)2 = h2P(xi, j)
2.

This is a second order equation that is solved as detailed
for example in [4]. An optimal ordering of the grid
points is chosen so that the whole computation only takes
O(N log(N)), whereN is the number of points.

In [15], a generalization to an arbitrary triangulation
is proposed. This allows performing front propagations
on a triangulated manifold, and computing geodesic dis-
tances with a fast and accurate algorithm. The only issue
arises when the triangulation contains obtuse angles. The
numerical scheme presented above is not monotone any-
more, which can lead to numerical instabilities. To solve
this problem, we follow [15] who proposes to “unfold” the
triangles in a zone where we are sure that the update step
will work [15]. To get more accurate geodesic distance on
meshes of bad quality, one can use higher order approxi-
mations, e.g. [19], which can be extended to triangulations
using a local unfolding of each 1-ring.

Figure 2 shows the propagation of a front and the calcu-
lation of a geodesic path computed using a gradient descent
of the distance function.

We should emphasize the fact that the Fast Marching
computations are consistent with the continuous setting,
which is not the case for traditional graph-based meth-
ods. When the triangulation becomes denser, geodesics

2

Figure 3. Progression of the fronts, Voronoi
diagram, and resulting tessellation.

will converge to the exact geodesics of the underlying con-
tinuous manifold. For that reason, we will work with this
continuous setting in mind, almost without any reference
to the underlying triangulation that supports the computa-
tions.

2.2 Extraction of Voronoi Regions

It is possible to start several fronts from points
{x1, . . . , xn} and make them evolve together, as shown on
figure 3. The areas with various colours define theVoronoi
diagramof the starting points, namely the tessellation into
the regions, fori ∈ {1, . . . , n}

Vi
def.
= {x∈ S \ ∀ j 6= i, d(x, x j) > d(x, xi)}.

To accurately compute the boundaries of the Voronoi
regions, we allow an overlap of the front on one vertex.
Suppose a fronta arrives at a vertexv1 with time arrivalta

1
and another frontb arrives at a vertexv2 (connected tov1)
with time tb

2. Allowing an overlap of the fronts, we record
the time arrivalta

2 of a atv2, andtb
1 of b atv1. Then the two

fronts collapse at(1−λ)v1+λv2 whereλ =
da

2−da
1+db

1−db
2

db
1−da

1
.

2.3 A Greedy Algorithm for Sampling a Manifold

A new method for sampling a 3D mesh was recently
proposed in [21] that follows a farthest point strategy based
on the weighted distance obtained through Fast Marching
on the initial triangulation. This is related to the method
introduce in [4]. A similar approach was proposed inde-
pendently and simultaneously in [20]. It follows thefar-
thest pointstrategy, introduced with success for image pro-
cessing in [9] and related to the remeshing procedure of
[3]. This greedy solution for sampling has been used with
success in other fields such as computer vision (compo-
nent grouping, [4]), halftoning (void-and-cluster, [30])and
remeshing (Delaunay refinement, [23]).

This approach iteratively adds new vertices based on the
geodesic distance on the surface. Figure 4 shows the first
steps of our algorithm on a square. The result of the al-
gorithm gives a set of vertices uniformly distributed on the
surface according to the geodesic distance.

Once we have found enough points, we can link them
together to form ageodesic Delaunay triangulation. This
is done incrementally during the algorithm, and leads to

Third point

First point

Second point

20 points later

Figure 4. A n overview of the greedy sampling
algorithm.

300 points 5,000 points 20,000 points

Figure 5. Geodesic remeshing with an in-
creasing number of points.

a powerful remeshing method that can be either uniform
(figure 5) or adaptive.

2.4 Adaptive Sampling Using Texture Informa-
tion

To introduce some adaptivity in the sampling performed
by this algorithm, we use a speed functionF = 1/P (which
is the right hand side of the Eikonal equation (2)) that is not
constant across the surface.

When a mesh is obtained from range scanning, a pic-
ture I of the model can be mapped onto the 3D mesh.
Using a functionF of the form F(x) = 1

1+µ|grad(I(x))| ,
where µ is a user-defined constant, one can refine re-
gions with high variations in intensity. Figure 6 shows
such a 3D model. On figure 1, one can see a 3D head
remeshed with variousµ ranging fromµ = 0 (uniform) to
µ = 20/max(|grad(I(x))|) (highly adaptive). Local den-
sity based on curvature information can be used, see [21].

In the following section, we will make heavy use of
adaptive sampling based on the curvature of the surface.
Let us denote byτ(x)

def.
= |λ1|+ |λ2| the total curvature at a

given pointx of the surface, whereλi are the eigenvalues of
the second fundamental form. We can introduce two speed
functions

F1(x)
def.
= 1+ ετ(x) and F2(x)

def.
=

1
1+ µτ(x)

, (3)

whereε andµ are two user-defined parameters. Figure 7
(a) shows that by using functionF1, we avoid putting more

3

3D model Speed function Uniform Semi-adaptive Adaptive

Figure 6. Remeshing of a 3D model using in-
creasing weight for the speed function.

(a) Speed F1 (b) Speed F2

S
a
m

p
li
n
g

R
e
m

e
sh

in
g

Figure 7. Uniform versus curvature-based
sampling and remeshing.

vertices in regions of the surface with high curvature. The
speed functionF1 can be interpreted as an “edge repulsive”
function. On the other hand, functionF2 could be called
“edge attractive” function, since it forces the sampling to
put vertices in region with high curvature such as mesh cor-
ners and edges. Figure 7 (b) shows that this speed function
leads to very good results for the remeshing of a surface
with sharp features, which is obviously not the case for the
“edge repulsive” speed function (figure 7 (a)).

3 Mesh Segmentation Using Centroidal Tes-
sellation

In this section, we present an automatic mesh segmen-
tation method which is the first part of our surface param-
eterization pipeline. This method is adapted to the tessel-
lation of a complex manifold in elementary domains topo-
logically equivalent to a disk.

In this method the mesh is cut into regions that best sat-
isfy the following properties:
(C1) Boundaries of the regions agree with sharp features of
the surface.
(C2) Regions are as compact as possible (the ratio
area/perimeter should be large), enclosing equal areas.
Condition (C1) is natural because the resulting parameter-
ization will have discontinuities on the boundaries of the
patches, and it has no consequences if these singularities

coincide with singularities of the surface. Condition (C2)
prevents degenerated patches and minimizes the length of
the singularities which occur along the boundary. These
two conditions are contradictory, and a trade-off can be
found using an iterative approach.

To achieve this trade-off, we first make an initial choice
of regions using our greedy sampling algorithm to satisfy
(C1). Then we use these regions to seed a geodesic-based
centroidal tesselation to match requirement (C2).

3.1 Initial Choice of Regions

The goal of the algorithm is to build a segmentation
S =

⋃n
i=1Vi of a triangulated manifoldS . TheVi will

be the Voronoi regions associated with a given set of points
{v1, . . . ,vn}.

These points are chosen using the sampling algorithm of
section 2.3. To avoid the clustering of base pointsvi near
regions of high curvature, we choose the “edge repulsive”
speed functionF1 of equation (3) for the sampling.

Once thevi are computed, we can build the Voronoi re-
gionsVi , using the method described in section 2.2. In
order to force the boundaries of the regionsVi to follow
the discontinuities of the surface, we use the “edge attrac-
tive” speed functionF2(v) defined in equation (3) for the
Voronoi cells extraction. This will allow us to “freeze” the
front in regions with high curvature. This way the resulting
Voronoi regions will have boundaries aligned with sharp
features of the surface, and condition (C1) will be satisfied.

We also put a topological constraint on the shape of the
Voronoi regions so that each cell is a topological disk. In
order to maintain this constraint, we keep track of the shape
of the front during the Fast Marching procedure. When this
front fails to enclose a topological disk (e.g. on a sphere
with a single base, the front will collapse onto itself), we
stop the process and add a new base point at the location of
the failure.

3.2 Centroidal Voronoi Tessellation

The segmentation provided by the previous section sat-
isfies condition (C1), but does not match the requirements
of (C2). In order to make the size of regions more homoge-
neous, we use a clustering technique to refine the Voronoi
segmentation. This method is well known in the case of a
planar segmentation, and allows the building ofcentroidal
Voronoi diagrams[7].

In a formal fashion, the planar segmentation corre-
sponds to minimizing the energy function

E(vi , Vi)
def.
=

n

∑
i=1

∫

Vi

ρ(y)d(y, vi)
2dy, (4)

whereρ represents a density function, andd is a distance
on the plane. If one usesd(x, y) = ||x− y|| the Euclidean
distance, withρ = 1, and we can prove that:
• TheVi regions must be the Voronoi cells of thevi points.

4

0
 i
te

ra
ti
o
n

1
 i
te

ra
ti
o
n

3
0
 i
te

ra
ti
o
n
s

1
0
0
 i
te

ra
ti
o
n
s

Figure 8. Iterations of Lloyd algorithm on a
square.

• Thevi points must be the centers of mass of theVi cells.
One can show that such a segmentation exists (although it
need not be unique), and it is calleda centroidal Voronoi
tessellation. This segmentation can be computed using the
Lloyd algorithm as follows. We are given an integern and
an initial configuration{(vi , Vi)}

n
i=1. The algorithm itera-

tively updates theVi and thevi using these steps:

(i) Compute the centers of massv∗i of Vi .
(ii) Replacevi with v∗i .
(iii) Compute the Voronoi regionsV∗

i , associated withvi ,
for the metricd.

(iv) ReplaceVi with V∗
i . If ∀i, Vi = V∗

i , terminate the
algorithm. Otherwise, go back to (i).

Figure 8 shows some iterations of the algorithm, restricted
to a square. If we omit the problem on the boundaries,
the centroidal segmentation corresponds to the well-known
bee-hive structurewhich gives both an optimal compact-
ness and an equal repartition of area among the regions.
It is important to note that we have started the algorithm
with a random distribution of points. If we had used the
output of the previous section (using our greedy sampling
method), the number of iterations would have been reduced
significantly (approximately 5 iterations instead of 100 for
the same result).

The distribution of the pointsvi really corresponds to
the notion of isotropic sampling. For example, suppose we
want to construct a Delaunay triangulation with the size of
the triangles controlled by a functionH(x). Then, one can
show that we may solve this problem asymptotically using
a centroidal tessellation by choosingρ(x) ∝ 1/H(x)4 [7].

3.3 Geodesic Lloyd Algorithm

In this paragraph, we explain how to generalize the
centroidal Voronoi segmentation to surfaces. To that end
we consider, on a triangulated manifoldS , the weighted
geodesic distanced defined by equation (1).

The centroidal tessellation paradigm has already been

recognized as a powerful tool for remeshing a triangulated
manifold. In [1], an isotropic remeshing is performed using
a Lloyd algorithm in parameter space. We, however, pro-
pose to compute the Lloyd iterations directly on the mesh.
This allows us to handle meshes with arbitrary genus and
without the distortion introduced by the parameterization
of the surface. In [28] such a parameterization is avoided
by using a local Lloyd scheme. However, due to the scal-
ing induced by the conformal parameterization, this is not
equivalent to the computation of a geodesic centroidal tes-
selation. In [24] a heuristic is used (back-propagation from
the boundary) which does not solve the real center of mass
equation.

To perform the Lloyd algorithm, we need to define the
intrinsic center of mass v∗i of Vi, which is the minimizer of
the energy function

Ei(w)
def.
=

∫

x∈Vi

d(x, w)2ds.

where ds is the area element on the surface. On a Rieman-
nian surface, such a minimizer exists and is unique under
some mild assumptions on the local curvature, which are
given in details in [12]. It is important to note that this
intrinsic center of mass is different from the classical Eu-
clidean center of mass (which in general does not even lie
on the surface). The computation of the intrinsic center of
mass has been introduced in the computer vision commu-
nity in [27] and is closely related to the generalised pro-
crustes analysis, see [17]. We note, however, that this cen-
ter of mass has never been explicitly used for mesh pro-
cessing, for example in [8], the authors uses a projection of
the center of mass, and not an intrinsic barycenter.

In order to computev∗i , we perform a gradient descent
of the energy function using

−−→
∇Ei(w) =

1
2

∫

x∈Vi

d(w, x)
−−−→
nw(x)ds,

where
−−−→
nw(x) stands for the unit vector tangent atw to the

geodesic path joiningx and w. To estimate
−−→
∇Ei(w), we

first compute the distance map fromw to all points inVi .

Tracing back the geodesics, we are able to compute
−−−→
nw(x)

for each vertexx of Vi . At last, we use a first order numer-
ical integration formula to approximate the integral. We
compute the boundary ofVi by interpolation as explained
in section 2.2.

Figure 9 shows the results we obtain with a uniform
speed function (sod is just the classical geodesic dis-
tance). We obtain a kind ofgeodesic bee-hivestructure.
The initialization of the seed point is done at random. With
our greedy sampling algorithm for initialization, only one
Lloyd iteration instead of three is enough to get the same
centroidal tessellation.

But the most powerful feature of our method is that we
can use a varying speed function to define the geodesic dis-
tance. In the following, we will use the “edge attractive”

5

0
 i
te

ra
ti
o
n

3
 i
te

ra
ti
o
n
s

Figure 9. Lloyd iterations on various models.

g
re

e
d
y
 i
n
it
ia

li
za

ti
o
n

ra
n
d
o
m

 i
n
it
ia

li
za

ti
o
n

1 Lloyd

iteration

2 iterations 3 iterations

Figure 10. Greedy initialization lead to an op-
timal segmentation of the cube.

speed functionF2, that we have already used in subsection
3.1 to construct the initial regions. This way we ensure that
condition (C1) will still be satisfied while the Lloyd itera-
tions improves the segmentation with respect to condition
(C2).

To perform a case study of our method, the figure 10
takes the example of a cube with 10 base points:

• On the top row, we use arandominitialization. After 2
Lloyd iterations, we get a tessellation that respects the
faces of the cube, so it is compliant with condition (C1).
This is due to the fact that we use the “edge attractive”
speed function. After 3 more iterations, we get a per-
fectly centered segmentation, and condition (C2) is re-
spected on each face.

• With a random initialization, we do not get an optimal
tessellation, since the distribution of base points is as fol-
low: 1 face with 3 points, 2 faces with 2 points, and
3 faces with 1 point. On the bottom row, we use our
greedyinitialization. Thanks to the use of the “edge re-
pulsive” speed function, the seeds are nearly optimally
placed (no faces have 3 seeds anymore). We then perform
the segmentation and Lloyd iterations using the “edge at-
tractive” function. Only one iteration instead of three is
enough to get a perfect segmentation.

Figure 11 shows the segmentation we obtain on more
complex models. In the close-up we can see that the cell
boundaries try to follow the edges of the mesh whenever it
is possible.

Figure 11. Segmentation of two complex
models.

Figure 12. Speed function, segmentation of
the earth and resulting regions on the texture
map (right).

Original Texture-based Texture and curvature

Figure 13. Segmentation using both texture
and curvature information.

3.4 Segmentation using texture information

Following the ideas of the section 2.4, we can use a tex-
ture function to modulate the speed functionsF1 and F2.
The resulting segmentation will take in account both the
texture intensity and the curvature information, according
to the user will. Figure 12 shows the segmentation of a tex-
tured earth, and the resulting segmentation of the texture.

On such a simple model (a sphere), one could perform
a segmentation directly on the 2D image (with periodic
boundary conditions), with a special speed function that
takes into acount both the gradient of the image and the
length distortion due to the cylindrical coordinates. How-
ever, this cannot be easily extended to models with com-
plex topology such as the one shown on figure 1. One could
also use both the texture and the curvature information, as
shown on figure 13.

6

Figure 15. Texturing a bunny and a shark.
4 Results and Discussion

Texturing of a Complex Model.
Once we have performed the segmentation of a 3D

mesh, we can flatten each patch and compute texture map-
ping on this atlas. Although the study of this step is outside
the scope of this paper, we note that most of these classi-
cal methods come from graph-drawing theory, [10] gives a
survey of these techniques. The boundary-free formulation
of [6] and [18] (which are mathematically equivalent) is
very interesting for texture mapping. We rather choose the
boundary-free formulation of [22] that is not conformal but
seems to better preserve area across the parameterization.
This flattening scheme also uses only geodesic computa-
tions and naturally fits into an intrinsic framework for mesh
processing together with our segmentation procedure.

On figure 14 one can see the whole pipeline in action.
This includes first a centroidal tessellation of the mesh,
then the extraction and flattening of each cell, and lastly
the texturing of the model.

Figure 15 shows a bunny and a shark that have under-
gone the same texturing process. On the bunny, left image,
all the base points for all patches have been depicted (30
point per patch). On the shark, left image, we have shown
in blue the movement of some seed points during the Lloyd
iteration process (4 iterations). This clearly shows one of
the main features of our segmentation method, which is
able to drive its base points to the most relevant areas with
respect to the tessellation quality.

To store the texture into memory, we pack all the patches
into a single square image, as shown on figure 16. We use
a simple strategy to minimize the lost space, as suggested
in [18]. It is important to note that the textures we use
are mapped directly on the parameter space, without taking
care of the junctions between boundaries. Although it is
out of the scope of this article, a more complex texturing
process could take the output of our pipeline and use it to
perform real time painting directly on the mesh.

Discussion. Our tests on various 3D models enlight the

Figure 16. Example of chart packing.
strengths of our approach:

• The boundary of our patches are smooth, almost straight
in regions with low curvature variations. We can see that
in parameter space, the base domain of a patch located
in the middle of the David is a convex polyhedron with
straight edges.

• The Voronoi cells of the tessellation are very compact,
with almost equal areas. In regions with low curvature
variations, this leads to convex base domains, and in re-
gions with sharp features, the boundary of the cells fol-
lows the discontinuities.

• Using our greedy initialization, the convergence of the
geodesic Lloyd algorithm is very fast (3 iterations).

Our future works include a theoretical study of the con-
vergence of the geodesic Lloyd algorithm. We also would
like to analyze experimentally the quality of the param-
eterization. A good way of evaluating the efficiency of
such a scheme is to use its output to perform mesh com-
pression. The mesh atlas provided by our algorithm is an
ideal pre-processing step for performing wavelet transform
in parameter space, in a fashion similar to [24].

5 Conclusion

We have described a new algorithm to perform the seg-
mentation of a triangulated manifold. The main tool that al-
lows to have a fast algorithm is the fast marching on a trian-
gulated mesh, together with some improvements we added.
This segmentation step is the first stage of most mesh pro-
cessing pipelines. Our contribution includes a geodesic ex-
tension of the Lloyd algorithm that is able to construct a
geodesic centroidal tessellation. This iterative algorithm
takes into account curvature of the surface as well as tex-
ture information and is very well suited to building a set of
base domains for mesh flattening.

References

[1] P. Alliez, E. C. de Verdière, O. Devillers, and M. Isenburg.
Isotropic Surface Remeshing.International Conference on
Shape Modeling and applications, 2003.

[2] J. Chen and Y. Hahn. Shortest Path on a Polyhedron.Proc.
6th ACM Sympos. Comput Geom, pages 360–369, 1990.

7

Flatten Texture MapSegment

Figure 14. An overview of our pipeline. The mesh is first segme nted using a weighted geodesic
centroidal tessellation. Each resulting patch is then flatt ened using the Geodesic LLE procedure.
At last, we can perform texture mapping on each base domain.

[3] L. P. Chew. Guaranteed-Quality Mesh Generation for Curved
Surfaces. Proc. of the Ninth Symposium on Computational
Geometry, pages 274–280, 1993.

[4] L. Cohen. Multiple Contour Finding and Perceptual Group-
ing Using Minimal Paths.Journal of Mathematical Imaging
and Vision, 14(3):225–236, May 2001.

[5] L. D. Cohen and R. Kimmel. Global Minimum for Active
Contour models: A Minimal Path Approach.International
Journal of Computer Vision, 24(1):57–78, Aug. 1997.

[6] M. Desbrun, M. Meyer, and P. Alliez. Intrinsic Parameteriza-
tions of Surface Meshes.Eurographics conference proceed-
ings, 21(2):209–218, 2002.

[7] Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi
Tessellations: Applications and Algorithms.SIAM Review,
41(4):637–676, Dec. 1999.

[8] Q. Du, M. Gunzburger, and L. Ju. A Constrained Cen-
troidal Voronoi Tessellations for Surfaces.SIAM J. Scientific,
24(5):1488–1506, 2003.

[9] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Zeevi. The Far-
thest Point Strategy for Progressive Image Sampling.IEEE
Trans. on Image Processing, 6(9):1305–1315, Sept. 1997.

[10] M. S. Floater, K. Hormann, and M. Reimers. Parameteri-
zation of Manifold Triangulations.Approximation Theory X:
Abstract and Classical Analysis, pages 197–209, 2002.

[11] X. Gu, S. Gortler, and H. Hoppe. Geometry Images.Proc.
ACM SIGGRAPH 2002, pages 355–361, 2002.

[12] J. Jost.Riemannian Geometry and Geometric Analysis, 3rd
edition. Springer Verlag, 2001.

[13] S. Katz and A. Tal. Hierarchical mesh decomposition us-
ing fuzzy clustering and cuts.Proc. SIGGRAPH 2003, ACM
Transactions on Graphics, 22(3):954–961, Jul. 2003.

[14] A. Khodakovsky, N. Litke, and P. Schröder. Globally
Smooth Parameterizations with Low Distortion.ACM Trans-
actions on Graphics. Special issue for SIGGRAPH confer-
ence, pages 350–357, 2003.

[15] R. Kimmel and J. Sethian. Computing Geodesic Paths on
Manifolds. Proc. Natl. Acad. Sci., 95(15):8431–8435, 1998.

[16] R. Kimmel and J. A. Sethian. Fast Voronoi Diagrams on
Triangulated Surfaces. InProc. of the 16th European Work-
shop on Comp. Geom. (EUROCG-00), pages 1–4, 2000.

[17] H. Le. Mean Size-and-shape and Mean Shapes: a Geometric
Point of View. Adv. Appl. Prob., 27:44–55, 1995.

[18] B. Levy, S. Petitjean, N. Ray, and J. Maillot. Least Squares
Conformal Maps for Automatic Texture Atlas Generation. In
ACM, editor,Special Interest Group on Computer Graphics -
SIGGRAPH’02, San-Antonio, Texas, USA, Jul. 2002.

[19] S. Manay and A. Yezzi. Second-order Models for Com-
puting Distance Transforms.Proc. IEEE VLSM 2003, Sept.
2003.

[20] C. Moenning and N. A. Dodgson. Fast Marching Farthest
Point Sampling.Proc. EUROGRAPHICS 2003, Sept. 2003.

[21] G. Peyré and L. D. Cohen. Geodesic Remeshing Using
Front Propagation.Proc. IEEE VLSM 2003, Sept. 2003.

[22] G. Peyré and L. D. Cohen. Geodesic Computations for
Fast and Accurate Surface Flattening.Preprint available at
http://www.cmap.polytechnique.fr/
∼peyre/upload/flattening/, May. 2004.

[23] J. Ruppert. A Delaunay Refinement Algorithm for Qual-
ity 2-Dimensional Mesh Generation.Journal of Algorithms,
18(3):548–585, May. 1995.

[24] P. Sander, Z. Wood, S. Gortler, J. Snyder, and H. Hoppe.
Multi-chart Geometry Images.Proc. Symposium on Geometry
Processing 2003, pages 146–155, 2003.

[25] J. Sethian.Level Sets Methods and Fast Marching Methods.
Cambridge University Press, 2nd edition, 1999.

[26] A. Sheffer and J. Hart. Seamster: Inconspicuous Low-
Distortion Texture Seam Layout.Proc. IEEE Visualization
2002, pages 291–298, 2002.

[27] A. Srivastava, W. Mio, X. Liu, and E. Klassen. Geomet-
ric Analysis of Constrained Curves for Image Understanding.
Proc. IEEE VLSM 2003, Sept. 2003.

[28] V. Surazhsky, P. Alliez, and C. Gotsman. Isotropic Remesh-
ing of Surfaces: a Local Parameterization Approach.Proc.
12th International Meshing Roundtable, Sept. 2003.

[29] J. Tsitsiklis. Efficient Algorithms for Globally Optimal Tra-
jectories.IEEE Trans. on Automatic Control, 1995.

[30] R. Ulichney. The Void-and-Cluster Method for Generating
Dither Arrays.Proc. IS&T Symposium on Electronic Imaging
Science & Technology, San Jose, CA, 1913(9):332–343, Feb.
1993.

[31] E. Zhang, K. Mischaikow, and G. Turk. Feature-based sur-
face parameterization and texture mapping.accepted to ACM
Transaction on Graphics, 2004.

8

