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Abstract. Ardon et al. [2] presented an implicit method for surface
segmentation in 3D images. The boundary of the surface is assumed to
be constrained by two given curves in the image. In this work we adopt
the afore approach to interpolate two given digital curves lying on parallel
planes, by introducing an artificial image potential, which is based on a
triangular facet surface interpolation technique.

1 Introduction

Let us be given two digital contours I' and A, i.e. two closed ordered sets of
black voxels on a white background, lying on the planes z = rp and z =7, of a
3D image Q;qr, which discretizes the volume 2 C IR®, with p, ¢ and r being the
number of voxels distributed equidistantly along the x, y and z axis, respectively.
We wish to construct a surface that interpolates the data sets I" and A.

A similar formulation to the afore digital contour interpolation problem can be
found in the construction of a gradual transformation from the closed polygon,
Pr to the closed polygon Pa, most widely known as the morphing problem.
Following Efrat et al. [11], this tranformation can be expressed as a mapping:

M(Pr,Pa) = {u(t), t €[0,1], such that u(0) = Pr,u(1) = Pa},

which can be computed by solving the following two problems: (a) The correspon-
dence problem, where an explicit mapping between Pr and P,, is established,
by specifying two functions c,(u) : [0,1] — Pr and cs(u) : [0,1] — Pa. (b) The
vertex path problem, where we seek for the trajectory that connects c,(u) with
cs(u) (see also [15]). If this path is a straight line, then it is easy to find examples
with self intersections. The authors of [11] assert that if one adopts the policy
of moving ¢, (u) to cs(u) along the Euclidean shortest path, from c,(u) to c5(u)
that avoids Pr and P, then it is guaranteed that all intermediate morphs are
simple, since the shortest paths do not cross each other, although two such paths
may have a common sub-path.
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Hence, in order to achieve a solution to the digital contour interpolation
problem, free of self intersections, we seek for a method that constructs surfaces
from 3D images, that contain geodesic paths connecting the digital contours I’
and A. The method presented in [2] might give us the opportunity to solve the
problem with implicitly defined surfaces, as it possesses this property.

2 Preliminaries

In order to segment a given 2D or 3D image [ : {2 — IR, a common approach is
to define a Riemannian manifold, called potential function, P = P(I): 2 — R,
such that features in I will be captured on P. This, of course, is ensured with an
“appropriate” definition of the function P, which takes into account the nature
of the features we aim to follow.

More specifically, after the classic work of Kass et al. [16] in 2D image segmen-
tation methods the objective is to compute an active contour, C(s), s € [0, L],
located on the surface P, such that minimizes the energy functional:

L
E(C) = /0 P(C(s))ds. (1)

Towards this aim, Cohen & Kimmel, in [8], presented a segmentation method,
which computes the active contour connecting two given points, P, Po on P.
The authors show that a globally minimal curve for (1) is obtained by following
the opposite gradient direction on the minimal action map Up,(Q) (see [18])
which is defined by:

L
U, (@) = o) P qonr &)

inf
C(0)=P1,C(L)
The minimal path C(s), from P; to P is then obtained by solving the problem:

dC(o)

o= —VUp,(C(0)), with C(0) = Py, and setting C(s) = C(L—0) (3)

According to the analysis in [19] the minimal action map Up, is the solution of
the following eikonal equation:

|VUp,|| = P, with Up, (P;) = 0. (4)

An extension of the above results for 3D images is presented in [1]. Given a
3D image, I, and the corresponding potential, P, the Euler-Lagrange equations
of the energy functional E in the 3D space are:

VP(C)-a=P(C)x and VP(C)-b=0, (5)

where the vectors n, b and the scalar x denote the normal, the binormal and
the curvature of C, respectively. It was proved that if Up, is the solution of the



eikonal equation (4), then every curve C(s) that is a solution of the ordinary
differential equation (3) is also a solution of the Euler-Lagrange equations (5).

This result paved the way to define and compute the globally minimal path
between a point P and a curve I" on the Riemannian manifold P. The minimal
action map with respect to I" and P is defined as the function

1
Ur(P) = min (C) = min / P(C(t)|IC' ()] dt, (6)

where C(t), t € [0, 1] is any curve from the point P to the curve I'. Note that,
by the definition of C, the minimal action map Up(P) is equal to Ug(P) for
some Q € I'. Thus, Ur satisfies the eikonal equation:

IVUr|| = P, with Ur(Q) =0, VQeT. (7)

Going one step beyond, let us assume that the point P belongs to a set A.
Having solved (7) all the minimal paths from each point in A to the curve I',
can be computed using (3). Let us denote this set of paths by SFA. It can now
be undrestood that if the points in A form a curve, then the set S& consists of
all the minimal paths, Clé(s), between the points of the two curves I' and A.
Next, in [2] a function ¥, was defined on the image domain, such that its zero
level set contains all the paths in S&, i.e. ¥(C#(s)) = 0. Assuming that ¥ is
continuously differentiable, the following necessary condition was obtained:

C{(s)
ds

¥(C2(s)) = 0 = V¥(CH(s)) =0= V¥(P) -VUr(P)=0, (8)

for every point P € 514. Demanding that ¥ satisfies a relation similar to (8),
everywhere in {2, a sufficient condition for the minimal paths to be contained in
¥ = 0 is given by the following transport equation:

V¥(P) - VUr(P)+ G¥(P)) =0, ¥(Q)=0, VYQEeA, (9)

where the function G is such that G(0) = 0 (e.g., G(¥) = a¥(P)). In fact it
was proved that if ¥ satisfies (9) then for all points P of its zero-level set, the
minimal path joining P with the curve I" is contained in the zero level set of ¥.
This, in turns, proposes to solve equation (7) and then compute ¥ through (9).

Note that the equations (7) and (9) can be solved over the nodes of 2.,
which discretizes {2. In view of this, the point-sets I and A form two digital
contours, which in turn implies that the afore method establishes essentially an
interpolation between the two given digital contours. This allows us to employ
it in the digital contour interpolation problem, provided that I" and A lie on
the parallel planes z = r and z = r, and no potential function is given. Since
the surface ¥ = 0 contains all the minimal paths from the digital contour I" to
the digital contour A, we can allegate that solving the problems (7) and (9) we
obtain an interpolating surface free of self-intersections.



3 An Artificial Image Potential

The need for an artificial image potential, other than constant, can be explained
as follows: if P is constant, then the induced Riemannian manifold is a hyper-
plane in IR*. Thus, the minimization of the energy functional (1) leads to a set
of straight lines in IR®, which start from the point set (contour) A and end on
the points of the contour I'; having the minimum length. Suppose now that the
contour I is translated onto the plane z = rp until one point p of it is closer
to all points of the set A. Then, the surface that contains all minimal paths is
conic with its apex at P and base the set A. In that case all the points of I" but
P are not interpolated by the surface ¥ = 0. Thus, the problem is to introduce
an artificial potential function, by using only the given information of I" and A.

Let us suppose that we are given a matching between the two given point
sets (pixel sets) I" and A. Then, we can easily define the set of minimal paths
S4 through equation (3) for any potential function, P. If P is constant, then
the minimal paths are the straight lines which connect the points of the two
point sets (the pixel centers) according to the preassumed matching, thus a C°
surface containing all the minimal paths can be a triangular facet surface that
interpolates I" and A. The main disadvantage with such a construction is that
self-intersections cannot be avoided in general (see [14]).

However, since there are interpolation techniques which can easily construct
triangular facet surfaces that interpolate the given point sets, the above remarks
make us think that it is preferable to compute the potential P through the
construction of such a surface, say S. Since S consists of triangles, it can easily be
implicitized on the grid, 2/ . This can be achieved, for example, by computing

pqr-
the euclidean distance function, D, of S, on the grid nodes P, i.e.

D(P.S) =min|[P -S|, VP € £/ (10)

Then, regardless the matching we chose between the points of I" and A, if one
traverses the minimal path from a point on A to some point on I and the surface
intersects itself, the minimal path is chosen so as to have a common sub-path
after the intersection point, thus avoiding self-intersections. This suggests that
the surface S could be the Riemannian manifold on which the minimal paths lie,
i.e. the unsigned distance D can play the role of the discrete potential P at the
image discretized domain 2,,,,..

3.1 Interpolating two Polygons with C° Triangular Facet Surfaces

Previous Work. The construction of the surface S can be formulated as follows:
Problem 1. Given the ordered closed planar point sets:
Pr={Pr; €F? j=0,...,n—1}and Po = {Pay € E? k=0,...,m—1},

which belong to the planes z = 7 and z = 74, respectively, construct a C°
surface interpolating them and consists of triangles with vertices in Pp and Pa.



The total number of such triangulations is % Among them, one has
to compute the optimal, according to some objective function, which quantifies
the quality of these triangulations. Apparently, the quality of such a surface
depends mainly on the relative twist between the points of the two contours. This
in turns lets us entitle the objective function as a twist minimization criterion.

Keppel introduced in [17] a representation of all continuous solutions, with
the aid of a toroidal graph, i.e., a binary matrix, K, «,,, where the indices j, k
of its elements are regarded as j = mod(j,n) and k = mod(k,m). If K, = 1,
then the points P ; and P4 are connected. If Kj; = 1 and K; 41 5 = 1, then
the points Prj, Pr ;i1 and Py form a triangle. (Analogously, if Kj, = 1
and K; ;41 = 1, then the points Pr;, Paj and Prg4q form a triangle). Each
triangle arrangement is represented by a set of unitary elements in this matrix.
Keppel proved that for acceptable triangulation, these elements form a monotone
path in the graph. Thus, the optimum surface can be obtained by searching
among all monotone paths in the toroidal graph K, x,.-

The methods for computing such paths can be divided into two categories: the
exhaustive search methods (e.g, [17, 13]) that evaluate the final surface according
to some global criterion, and the methods based on weighted graphs (e.g., [6,
4,12]) according to which a weight is assigned on each graph node and then
starting from the least one, the whole path is computed by choosing in each
step, among the neighboring nodes, the one with minimum weight.

The methods based on weighted graphs reduce effectively the computational
cost, but since they are depending on the selection of the nodal weights, may
yield surfaces that do not interpolate all points in Pr and Pa. Our intension is
to propose a nodal weight definition, which resolves such ambiguities.

Our Method. In order to introduce our method, let us further restrict our-
selves to convexr contour data sets. In [6,12] the weight at the node K;j of the
toroidal graph, is the length ||Pp; — Pax|[. Thus, by definition, the final re-
sult depends on the relative position of the sets Pr and Pa. The method of
[4] proposes a translation of the polygons so as their centers, Ap and A A coin-
side. Thus, the square of the afore defined distance for the translated polygons,
with respect to the initial points is equal to ||(Pr; — Ar) — (Pax — AL =
I(Pry; — A + [|(Pak — Al = 2(Pr; — Ar) - (Pay — Aa). Then, set-
ting —(Pr; — Ar) - (Pax — Aa) as nodal weight, the path is computed by
choosing the minimum weight at each step. We propose as weight function the
dimensionless quantity:
(Prj—Ar) - (Pax—Aax)

- , 11
Pry —Arl||[Pay— Aall ()

which is equal to the negative cosine of the angle formed by the vectors: P ; —
Ar,j=0,....n—1and Pay —Aa, k =0,...,m — 1, in [0,7]. Since the
cosine is a decreasing function in [0, 7], the proposed weight can equivalently
be defined as the least angle, ¢(6r,;,04 k) formed by two lines with directions
given by Pr; — Ar and Pa ; — A A, where 0 ; denotes the polar angle of the



point P ; with respect to a coordinate system whose origin is Ar ;. (Analogous
definition holds for 64 ).

We connect the point P ; with the point P 4 i (analogously the point P j
with Pr;), when the index k (index j) is such that solves the following problems:

min  ¢(0r;,0a%) and  min  ¢(0r;,0a%). (12)
k=0,....m—1 7=0,...,n—1

We set the weight at every node Kji equal to the angle ¢(8r;,04 ). Then,

K;r = 1 for all couples of points that constitute the set of solutions of the

problems (12). Now, we can easily establish that the solution has the following

properties (see, e.g., Fig.3.1):

i. In every row and every column of the toroidal graph there exists at least one
unitary node, since Vj we have computed the corresponding index k and Vk
we have computed the corresponding j.

ii. The unitary nodes of the graph are ordered monotonically. The proof is
simple, if one realizes that for each particular connection between P, P 4,
and Pr,,Pa 4,, every point Pr; which is in between Pr,, and Pr,, must
be connected with a point which is in between P4 4, and P 4 4,, since both
polygons share the same orientation and are convex.

iii. Solving the problems (12) does not imply that all the nodes of the monotone
path in the graph have been computed. It is possible to be left with couples
(p1,q1) and (p1 +1,q1 + 1) but none of (p1,q1 + 1) and (p1 +1,q1).

Fig. 1. Left: The connections between the points of two convex polygons, as obtained by
solving the problems (12). Right: The toroidal graph of the connections. The unitary
nodes are illustrated by spheres, the computed triangle edges by blue lines and the
possible triangle edges by red lines.

If we interprete geometrically the afore properties, we may assert that up to
this point we have constructed a surface which interpolates the point sets Pr and
P and consists of triangular and rectangular patches. The final triangulation
can be obtained by tracking all the rectangular patches (i.e. where the property



(iii) holds) and triangulating them, based on the least nodal weight. Constructing
the surface in this way, O(nm) operations need to be performed, but this cost
can effectively be reduced.

Towards this aim, we define the circular lists: Ly = {Gp)j}?;ol and Lo =
{GA,k}Zl:_Ol of the polar angles of the points of the two initial point sets, with
respect to their centers. Note that the elements of these lists have a circularly
increasing order. We find the element of the list Ly with the least value and we
set the head of L at its position. Then, we compute the index ¢ which solves
(12) for j = 0 and we set the head of L at £. (We also reorder accordingly the
elements of the point sets Pr and PA). Now, we know that the element Kgo of
the graph belongs to the set of solutions of the problem. Note that up to this
point, the operations done are O(n + m).

Say now that the node K;; belongs to the solution set of the problems (12),
i.e. Kj, = 1. We consider only the possible connection of this to the nodes K1 ,
K x+1 and K41 k41, knowing that due to the properties (i)-(iii), at least one of
them belongs to the solution nodes. Thus, we begin from the node Kyg, which
is already computed, and at each step we compare the weights given by the
function ¢(-, ), only for the afore mentioned three neigboring nodes. In case the
least node is K;41 x+1, we also insert in the path the one of the other two that
has the least weight. Apparently, the path computed this way will traverse the
nodes of the solution of the problems (12), and since the nodes to be computed
are exactly (n 4+ m), it readily follows that the complexity of the algorithm is
O(n + m). Now, we can state the following result:

Lemma 1. A C° triangular faced surface that interpolates any two convex pla-
nar polygons, with n and m points and satisfies the criteria (12) can be computed
after O(n +m) operations. Moreover, the space needed for the whole process is
of O(n+m).

If one or both polygons are not convex, we can map them onto their con-
vex hulls and apply the algorithm to the trasformed polygons. The output
of the alogrithm is actually a point matching, thus the final surface can be
constructed by adopting this matching. The use of such a technique was first
proposed and implemented in [12] but their method increases the computa-
tional cost. Alternatively, in order to eliminate the cost of this mapping, we
project all the points of the non-convex segments, P;,5 = S +1,...,E — 1,
to the corresponding convex hull seggnent PsPpg, according to rule given by:
P, =(1-t;)Ps+t;Pgr, t;= ZZ;’\*’EET||1|°1:$1—;25!||' Computing the convex hull
of a polygon by using the algorithm of [21] needs O(n) operations, hence we
can state that the results of the Lemma 1 still hold in the general case of non-
convex polygons. It is worth to remark that this algorithm although is of linear
complexity, the criterion is not local (in the sense that the same result is ob-
tained following the exhaustive search procedure) in constrast to all up today
published algorithms, except of the one given in [24] also for convex polygons.
Finally, the result, i.e. the point matching, is independent of any translation of
the initial data and moreover independent of an isotropic scaling of the initial




data sets, thus it satisfies the criteria given by [24]. Note also that the whole
method emulates the algorithmic procedure proposed by [5].

The Discrete Potential Function. Since the surface S consists of (n + m)
triangles, the minimum Euclidean distance (10) from every point of a grid 2.
to S can be found in (n 4+ m) operations, thus the total number of calculations

for the discrete image potential becomes of O(pgr(n + m)).

4 Numerical Solution of the Eikonal and the Transport
Equation

Both equations (7) and (9), belong to the class of Hamilton-Jacobi stationary
equations and shall be considered simultaneously. The conditions under which
the solution of a numerical approximation of any Hamilton-Jacobi equation con-
verges towards the so-called viscosity solution can be found in [9] and [10].

In [25,2] a first order upwind scheme employed in order to solve equation
(9). According to them, the numerical Hamiltonian of (9) can be written, for
GW) = aV, as

(kPR W) - (UP) ", (Ur)y, (Ur)2?*) + a7+ = 0. (13)

where the subscripts denote the partial differentation with respect to x, y and
z. Approximating the derivatives by biasing the finite difference stencil in the
direction where the characteristic information is coming from, lets us write the
product WLk (Up)bik as:

Wi’j’k(UF)i’j’k _ {!I/j_’i:(UF).ZEvJvk = —(UF)l 3J» kWiZ;A(Iﬂ;llJJz lf (Up)zj]vk < 0
g : W UP)R = ()RS i (U) ik > 0

or
Llv,z‘,j,k(UF)LJ'JC — |(Up)uk|w where [ = {Z +1, if (Ul”)gsﬂc <0
© @ @ Az : i—1, if (Up)i?* >0

(14)
Applying the above to (13) and solving it with respect to ¥2J* we obtain:

|:WI7];/€(UF) Lk + i Jk|(UF) |+W%J7K‘(UF) ”‘I}

vt = s ) O W] (15)
2 r 2
(W) O]y Oy o)
fore =0,....p—1,5=0,...,g—1and k£ = 0,. — 1, with I, J and K

being deﬁned in analogous to (14) manner, accordmg to the sign of the nodal

derivatives of U LI with respect to x,y and z, respectively.
For the elkonal equation (7) the scheme proposed by Rouy & Tourin [22],

3 max(max((Up) vk )7—min((Up)ﬁXk, ))2:(13%’6)27 (16)

X={z,y,2}



leads to a quadratic equation, with respect to (Ur)7'¥. Both equations (15) and
(16) can be solved iteratively by updating their grid values until they converge,
according to some predefined accuracy.

An ultimately efficient approach to solving them is based on the so-called fast
marching method, which was introduced by Sethian [23] for the eikonal equation
(16). Realizing that the solution of the eikonal equation represents the distance
map on the (hyper)-surface P from the boundary curve I' (see [19] and [7]) it
is to be expected that the information propagates from the smaller values, near
the boundary I', to the larger ones as we move far from it. In other words, since
the characteristics of the eikonal equation are straight lines (see [20]) emanating
from the boundary I', the numerical solution can be built ”outwards” from the
smallest values, as Sethian pointed out. The idea is to sweep the front ahead,
by considering a set of points in a narrow band around the existing front, and
to march this narrow band forward, freezing the values of existing points and
bringing new ones into the narrow band structure. The key is in the selection
of which grid point in the narrow band to update. The answer is that the point
having the smallest value (i.e. the closest to the already calculated points) in this
narrow band around the front is the one that cannot be affected by the other
points next to it, thus its value must be correct.

Returing back to the discrete transport equation (15) an extremely fast con-
vergence can be achieved by visiting the points in the order they are reached
by the characteristic curves, in an analogous way to that of the fast marching
method for the eikonal equation (see [25,2]). Considering the characteristics of
the equation (9) we obtain that the absolute values of whik decrease, as we
move from the boundary to the zero-level set of ¥, provided that the coefficient
« is greater than zero, thus in each step we update the values of ¥»7* on a nar-
row band of nodes, using the values of U»7* that have already been calculated
(solved), starting from the boundary of the domain, via equation (15). Then, we
consider as solved the point, whose value is closest to solved points, i.e., the one
with the maximum absolute value in the narrow band.

Regarding the boundary conditions, since we concern only for the zero level
set of ¥, and the condition ¥ = 0 on I, following [2] we define the closed set:

V,={P e, : DP,I)<n),

qrr °
where 7 is a real positive value. We impose ¥ to be equal to the signed distance
between P and I" on the nodes of V N £, . and equal to £min(D(P,I")),
P € (2. on the rest of the boundary nodes of 2, ., by choosing the negative
sign for the nodes exterior to I' and the positive sign for those interior to I
Note also that I" can be on the boundary of {2, while A must be entirely inside
(2. Numerical experimentation has shown that visually acceptable results can be
achieved if we extend the grid -Q;/;qr in the z direction, so as A lies in the middle
z-plane. Finally, we should remark that the algorithm yields a different solution,
if we compute the surface containing the minimal paths Sk, instead of the one
containing S7. The authors of [3] raise this asymmetry by exploiting both the
minimal action maps Upr and Ua, which is defined analously to Up.



5 Examples

In what follows we have taken the digital contours I" and A to lie on the planes
z=rr and z = ra, with rr < ra and the coefficient « in equation (15) to be
equal to 0.1. The grids are relatively coarse, ranging from 50 <+ 70 nodes in the
z and y directions and 20 nodes in the z direction.

The first example (see Fig.5) can be characterized as a “simple case” where
the triangular facet surface has no self-intersections. In the example shown in

Fig. 2. Ex. 1: The C° triangular facet surface and the implicit surface ¥ = 0.

Figs.5-5 the triangular surface has a widely spread self-intersection region, due
to the interpolated contours, which are far from being convex. The method
yields a surface with no self-intersections. The third example (see Fig.5) is an

0

Fig. 3. Ex. 2: The C° triangular facet surface and the implicit surface ¥ = 0.

interpolation of two contours of U as S like shapes. It shows that “morphing”
cannot be achieved always due to the fact that in some cases the resulting surface,
although it has no self-intersections, appears to have holes, i.e., disconnected
cross sections in the area of self-intersection of the triangular surface. This means
that the particular image potential function dictates the minimal paths to go
around the self-intersection area, thus generating a hole in the surface.



clejepaq ({1,

Fig. 4. Ex. 2: Intermediate slices of the implicit surface, from the contour I" to A.
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Fig. 5. Ex. 3: The C° triangular facet surface and the implicit surface ¥ = 0.

6 Conclusions

We presented an implicit method to interpolate two digital contours on par-
allel planes, employing the 3D image segmentation technique of [2]. In order
to guarantee that the voxels of both contours will always be interpolated, we
introduced an artificial potential function. Towards this, we developed an in-
terpolation method, that matches all the pixel centers through a C° triangular
facet surface, and set the potential function to be the eucledean distance to this
surface. The method results to non self-intersecting surfaces. However, when the
polygons, connecting the contour voxel centers, are far from convex, it cannot
always produce morphs that preserve the connectedness of the given contours
along each intermediate slice, which in turns arises a question on how can the
potetial function be improved, so as to stably accomplish an acceptable morphing
between I and A. This remains an open question.

The idea behind this work was to set up processes for interpolating sets of
pixels/voxels following minimal paths on some appropriately defined manifolds.
The idea seems to be fruitful and it might pave the way to solve even more
difficult interpolation problems in the future.
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