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R�esum�eUn contours actif ou snake est une courbe r�eguli�erequi se d�eforme pour repr�esenter le contour d'un objetpr�esent dans une image. Le d�eplacement d'un snake aucours du temps est r�egi par la minimisation d'une fonc-tionnelle, en r�esolvant une �equation d'�evolution qui, �ala limite, donne une solution du probl�eme de minimi-sation. La fonctionnelle n'�etant pas convexe, il n'estpas sûr que le minimum soit obtenu de cette fa�con, etla solution d�epend de l'initialisation de la courbe. Siles algorithmes convergent g�en�eralement, il n'y a quasi-ment pas de preuve math�ematique pour la convergencede l'algorithme vers une solution. On propose doncun algorithme assurant la convergence du snake versle minimum de la fonctionnelle en un certain sens,en s'inspirant de l'algorithme de non convexit�e gradu�ee(G.N.C.) pour l'�energie de Blake et Zisserman.Mots cl�es : Contours Actifs, Mod�eles d�eformables,carte de distance, minimisation d'�energie.1 IntroductionThe use of energy{minimizing curves, knownas \snakes", to extract features of interest inimage has been introduced by Kass, Witkinand Terzopoulos [1], based on the use of de-formable models [2]. Further improvements ofthis model were successively done by many au-thors [3, 4, 5, 6] and many other contributors.Recently, a di�erent approach was introducedwhich de�nes the curve as a level set of a surface[7, 8]. One di�culty with minimizing the snakeenergy is that the potential term is not convex,while the smoothing term is quadratic. Thesame problem arises in minimizing the energyof Blake & Zisserman [9], �tting a deformablemembrane to an image allowing discontinuities.There, the smoothing term is bounded, in orderto introduce discontinuities. This makes the en-ergy non convex because of this smoothing term,while the data term is quadratic. To obtain theminimization of this non convex energy, theymodify the smoothing term to get a convex en-ergy and then use the Graduated Non Convexityalgorithm (G.N.C.). We use the same idea butapply it to the potential term.

AbstractAn active contour or snake is a smooth curve thatdeforms to represent the boundary of an object in an im-age. The deformation of a snake is de�ned by the min-imization of an energy, solving the evolution equationthat gives, as steady state, a solution of the minimiza-tion problem. Since the functional is not convex, it isnot sure that the minimum can be obtained this way, andthe evolution depends also of the curve initialization. Ifthe algorithms generally converge, there is no mathemat-ical proof of convergence of algorithms to a solution. Wepropose an algorithm that ensures the convergence of thesnake to a minimum of the functional in some way, basedon the Graduated Non Convexity algorithm (G.N.C.) ofBlake et Zisserman's energy.keywords : Active contours, deformable models, dis-tance map, energy minimization.2 Motivation2.1 Active Contour ModelsThe contour model, as introduced in [1], isa curve v(s) = (x(s); y(s)) that minimizes anenergy of the following form:E(v) = Z
 w1kv0(s)k2 + w2kv00(s)k2 + P (v(s))dswhere P is the potential associated to the exter-nal forces.If v is a local minimum for E, it satis�es theassociated Euler-Lagrange equation:( �(w1v0)0 + (w2v00)00 = �rP (v) = F (v)v(0); v0(0); v(1) and v0(1) given. (1)As explained in [3, 4], the energy is not con-vex, because of the potential term and there maybe many local minima of E. To �nd a good con-tour in a given area, we suppose we have a roughestimate of the curve. We impose the conditionto be \close" to this initial data by solving the



associated evolution equation :8>>>><>>>>: @v@t � (w1v0)0 + (w2v00)00 = F (v);v(0; s) = v0(s);v(t; 0) = v0(0); v(t; 1) = v0(1);v0(t; 0) = v00(0); v0(t; 1) = v00(1): (2)A solution to the static problem (1) is achievedwhen the solution v(t) stabilizes.2.2 Attraction PotentialAs introduced and used in [3, 10, 4], the po-tential is derived from a set S of already ex-tracted edge points. The di�culty is then tosolve the problems of segmentation and recon-struction from this unstructured set of points(see [4, 11]). The potential is a function of thedistance d (computed from [12, 13]) to the clos-est edge point. For example, a gaussian functionmodels weak strings that break when too long :P (v) = �e��d(v)2Remark that for the potential de�ned by P (v) =g(d(v)), the force becomes F (v) = �rP (v) =�g0(d(v))rd(v). We can see that krd(v)k = 1outside the skeleton of S. In our case, the forcebecomesF (v) = �rP (v) = �2�d(v)e��d(v)2rd(v);So a good choice of � permits to control thenorm of the attraction force.2.3 Local and global minimumWith the classic approaches, the solution de-pends on the initialization, and the curve maybe trapped in a local minima. Thus, the start-ing curve has to be close enough to the solution.In previous work, various approaches were usedto avoid being too much sensitive to the initial-ization and avoid local minima (balloon in [3],homogeneity of the inside region [14], geodesicapproach [15]). In this paper, we study a way toapply the idea of the G.N.C. (Graduated NonConvexity) like Blake & Zisserman [9] for thediscrete approach of the Mumford& Shah en-ergy [16]. The main idea is that one term is\very" convex while the other lacks convexity.So, the non convex term is slightly modi�ed ina way such that the sum of the two terms Ec isconvex. Then, after �nding the minimum for Ec,the minimum is found for a sequence of problemsfor which a progressive variation of the energyis made until the original problem is solved.

While in [9], the regularization term is nonconvex and the potential term is quadratic, inthe snake energy, it is the contrary. The regu-larization term is quadratic and the potential isnot convex. The idea is then to modify the po-tential using the same kind of function, but witha larger smoothing to make the energy convex.Our work can give some justi�cation to the al-gorithm used in [17].3 Convexity of the discrete energyThe convexity of the energy was also stud-ied in [18], but with a di�erent kind of poten-tial to detect thick curves. A di�erent approachto make convex our minimization problem usingauxiliary variables is introduced in [11] givinginterpretation of many two-step algorithms.We now present our approach which is ex-plained in more details in [19].3.1 Discretization of the Active contourWe �rst formulate the discretization of theequation by �nite di�erences. Representing thecurve by a set of N nodes vi = (xi; yi) 2 IR2,V = (x0; :::; xN; y0; :::; yN) 2 IR2(N+1);A snake is obtained as the minimum of Ed de-�ned from IR2(N+1) to IR :Ed(V ) = Er(V ) + Ep(V )Where Er(V ) is :Nw12 NXi=1 kvi�vi�1k2+N3w22 N�1Xi=1 k�2vi+vi�1+vi+1k2;Ep(V ) = 1N NXi=1P (vi):A minimum V of Ed must verify the Euler-Lagrange condition.If we de�neB1 = 0BBBBBB@ 2 �1 0�1 . . . . . .. . . . . . �10 . . . 2 1CCCCCCAB2 = 0BBBBBBBBBBB@ 6 �4 1 0�4 . . . . . . . . .1 . . . . . . . . . . . .. . . . . . . . . . . . 1. . . . . . . . . �40 1 �4 6 1CCCCCCCCCCCA



for i = 1; 2 Ai =  Bi 00 Bi !A = Nw1A1 +N3w2A2F = �1N (@P@x (v0); :::; @P@x (vN); @P@y (v0); :::; @P@y (vN));then the Euler{Lagrange condition (1) becomes :AV = F (V )After formulating the evolution problem using�nite di�erences with time step � we obtain asystem of the form(Id+ �A)vt = (vt�1 + �F (vt�1)); (3)where Id denotes the identity matrix. Thus, weobtain a linear system and we have to solve apentadiagonal banded symmetric positive sys-tem. The solution is usually obtained using aLU decomposition of (Id + �A). As shown in[10], the use of an integration on a segment be-tween two nodes for computation of the forceterm enables to use much less nodes, in a waysimilar to the �nite elements [4].3.2 Condition for ConvexityTo study the local convexity of the energy, weneed to calculate its Hessian matrix:If we set Qk;i = 8><>: 1 if k = i�1 if k = i+ 10 elseRk;i = 8><>: 2 if k = i�1 if k = i+ 1 or k = i+ 10 elseWe have A1 = Q tQ, and A2 = R tR and theHessian matrix H of the energy functional E isH = Q tQ+R tR +H(P ) = Hreg +HP ;where HP is the Hessian matrix of the potential.The energy E is convex if and only if its Hessianmatrix H is positive. It is simple to show thatLemma 3.1 If A and B are two real symmetricmatrices, the smallest eigenvalue of A + B islarger than or equal to the sum of the smallesteigenvalues of A and B.

We show that HP =  � �� 	 !where �;�;	 are diagonal matrices.QtQ;RtR and H(P ) are real and symetric withrepectively smallest eigenvalues �1; �2; �3.So, a su�cient condition for H to be positive,is: �1 + �2 + �3 > 0: (4)Thus, we need to calculate �1; �2; �3. And then,we want to use (4) to �nd a condition underwhich the potential is convex.A1 and A2 are Toeplitz matrices. Using [20], wecan calculate their smallest eigenvalues �N1 and�N2 :N2�N1 and N4�N2 converge fairly fast to valuesclose respectively to �2 and �4 and therefore, inpractice we can simplify the calculus by settingN2�1 � �2and N4�2 � �4. This also corre-sponds to the continuous case. Then, we have:Theorem 1 Let �3 be the smallest eigenvalueof the Hessian matrix of the potential,if �3 > �2w1�2 � 2w2�4; then E is convex.We now want to calculate �3. Let ci be the cur-vature at the closest edge point to vi : p(vi), weshow that, if �k3 is the kth eigenvalue of HP ,mink f�k3g � mini f2�die��d2idi � 1ci ; 2�e��d2i (1 � 2�d2i )gIf we suppose that the largest curvature c =maxi fcig, satis�es:c < S = e 74q!1�2 + !2�4;then we have:Theorem 2If � < 12(!1�2 + !2�4); then E is convex.In fact, in a way similar to [18], this only meansthat the energy is convex in a neighborhood ofthe minimum. The set of nodes have to be farenough from the skeleton of S, this is usually thecase almost immediately since skeleton pointsare maxima of distance and thus unstable forthe minimization. This ensures convergence tothe minimum when the curve is close enough to



the solution. This is a result that justi�es thefact that many algorithms converge to an equi-librium. In the numerous works on active con-tour models, (except in [18, 7]), there is almostno justi�cation showing such a property.4 Varying Scale Algorithm.The energy E is approximated by a new func-tional which is now convex in the neighborhoodof the solution and hence descent on E mustconverge to the minimum.We consider E as a function of �: E = E(�).Therefore, the original discrete energy E :=E(�0) is not convex because �0 is \too large".Let E := E(�1), where �1 < 12(w1�2 + w2�4);be the convex approximation of the the discreteenergy.Then, the strategy is to use a whole sequence offunctionals E(�(p)) for 0 � p � K. These arechosen such that E(�(0)) = E(�1), the convexapproximation to E, and E(�(K)) := E(�0), theoriginal energy. In between, �(p) increases, be-tween �1 and �0.The algorithm analog to G.N.C consists in thesuccessive optimization of the whole sequenceE(�(p)), one after the other, using the result ofone optimization as the starting point for thenext.i. choose K, the number of iterations. Thesmoothing discretization step will be j�0��1jKand �(0) := �1. This de�nes �(p), for allp = 0; ::;K.ii. choose V 0, the initial curveiii. for all p = 0; ::;K, starting with V p, we min-imize E(�(p)) using (2), we obtain V p+1.iv. V K+1 is the solution for the minimization ofE(�0)5 ConclusionWe showed a way to modify the attraction po-tential in order to make the energy locally con-vex. This gives a mathematical justi�cation tothe fact that the algorithm converges to a min-imum of the energy. To minimize an energy ofthis kind, a varying scale algorithm is presented.It begins with the convexity hypothesis satisfyedand then makes the scale vary from this initialscale to the original scale of the problem.

References[1] M. Kass, A. Witkin, and D. Terzopoulos. Snakes:Active contour models. IJCV, 1(4):321{331, 1988.[2] D. Terzopoulos. The computation of visible-surfacerepresentations. IEEE PAMI, 10(4):417{438, July1988.[3] L. D. Cohen. On active contour models and bal-loons. CVGIP:IU, 53(2):211{218, March 1991.[4] L. D. Cohen and I. Cohen. Finite element methodsfor active contour models and balloons for 2-D and3-D images. IEEE PAMI, 15(11), November 1993.[5] F. Leymarie and M. D. Levine. Tracking deformableobjects in the plane using an active contour. IEEEPAMI, 15(6):617{634, 1993.[6] M.-O. Berger and R. Mohr. Towards autonomy inactive contour models. In Proc. ICPR, pages 847{851, Atlantic City, 1990.[7] V. Caselles, F. Catt�e, T. Coll, and F. Dibos. Ageometric model for active contours. NumerischeMathematik, 66:1{31, 1993.[8] R. Malladi, J. A. Sethian, and B. C. Vemuri. Evolu-tionary fronts for topology-independent shape mod-eling and recovery. In Proc. ECCV, pages 3{13,Stockholm, Sweden, May 1994.[9] A. Blake and A. Zisserman. Visual Reconstruction.The MIT Press, 1987.[10] A. Gorre. Etude de quelques probl�emes li�es aumod�eles de contours actifs. Technical report, DEADauphine, Septembre 1992.[11] L. D. Cohen. Auxiliary variables and two-step itera-tive algoritms in computer vision problems. Techni-cal report, Ceremade, F�evrier 1995. MD 9511, Proc.ICCV'95.[12] G. Borgefors. Distance transformations in arbitrarydimensions. CVGIP, 27:321{345, 1984.[13] P. E. Danielsson. Euclidean distance mapping.CVGIP, 14:227{248, 1980.[14] L. Cohen, E. Bardinet, and N. Ayache. Surface re-construction using active contour models. In Proc.SPIE 93 Geometric Methods in Computer Vision,San Diego, CA, July 1993.[15] L. Cohen and R. Kimmel. Edge integration us-ing minimal geodesics. Technical report, Ceremade,Janvier 1995. MD 9504.[16] D. Mumford and J. Shah. Boundary detection byminimizing functionals. In Proceedings of CVPR,San Francisco, June 1985.[17] G. Whitten. A framework for adaptive scale spacetracking solutions to problems in computational vi-sion. In Proc. ICCV, pages 210{220, Osaka, Japan,December 1990.[18] C. Davatzikos and J. Prince. Adaptive active con-tour algorithms for extracting and mapping thickcurves. In Proc. CVPR, pages 524{529, New York,June 1993.[19] L. Cohen and A. Gorre. On the convexity of theactive contour energy. Technical report, CERE-MADE, 1995. To appear.[20] G. Szego and U. Grenader. Toeplitz forms and theirapplications. University of California Press, 1958.


