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Résumé

Un contours actif ou snake est une courbe réguliére
qui se déforme pour représenter le contour d’un objet
présent dans une image. Le déplacement d’un snake au
cours du temps est régi par la mintmisation d’une fonc-
tionnelle, en résolvant une équation d’évolution qui, a
la limite, donne une solution du probléme de minimi-
sation.
pas sur que le mintmum sott obtenu de cette facon, et
la solution dépend de linitialisation de la courbe. Si
les algorithmes convergent généralement, @l v’y a quasi-
ment pas de preuve mathématique pour la convergence
de Ualgorithme vers une solution. On propose donc
un algorithme assurant la convergence du snake vers

La fonctionnelle n’étant pas convexe, il n’est

le minimum de la fonctionnelle en un certain sens,
en s’inspirant de Ualgorithme de non convexrité graduée
(G.N.C.) pour Uénergie de Blake et Zisserman.

Mots clés : Contours Actifs, Modéles déformables,

carte de distance, minimisation d’énergie.

1 Introduction

The use of energy—minimizing curves, known
as “snakes”, to extract features of interest in
image has been introduced by Kass, Witkin
and Terzopoulos [1], based on the use of de-
formable models [2]. Further improvements of
this model were successively done by many au-
thors [3, 4, 5, 6] and many other contributors.
Recently, a different approach was introduced
which defines the curve as a level set of a surface
[7, 8]. One difficulty with minimizing the snake
energy is that the potential term is not convex,
while the smoothing term is quadratic. The
same problem arises in minimizing the energy
of Blake & Zisserman [9], fitting a deformable
membrane to an image allowing discontinuities.
There, the smoothing term is bounded, in order
to introduce discontinuities. This makes the en-
ergy non convex because of this smoothing term,
while the data term is quadratic. To obtain the
minimization of this non convex energy, they
modify the smoothing term to get a convex en-
ergy and then use the Graduated Non Convexity
algorithm (G.N.C.). We use the same idea but
apply it to the potential term.

Abstract

An active contour or snake is a smooth curve that
deforms to represent the boundary of an object in an tm-
age. The deformation of a snake is defined by the min-
wmization of an energy, solving the evolution equation
that gives, as steady state, a solution of the minimiza-
tion problem. Since the functional s not convez, it is
not sure that the minimum can be obtained this way, and
the evolution depends also of the curve initialization. If
the algorithms generally converge, there is no mathemat-
teal proof of convergence of algorithms to a solution. We
propose an algorithm that ensures the convergence of the
snake to a minimum of the functional in some way, based
on the Graduated Non Converity algorithm (G.N.C.) of
Blake et Zisserman’s energy.

keywords : Active contours, deformable models, dis-
tance map, energy minimization.

2 Motivation
2.1 Active Contour Models

The contour model, as introduced in [1], is
a curve v(s) = (x(s),y(s)) that minimizes an
energy of the following form:

E(v) = /Q wi[o'($)]]* + wal|0"(s)[|* + P(v(s))ds

where P is the potential associated to the exter-
nal forces.

If v is a local minimum for £, it satisfies the
associated Fuler-Lagrange equation:

—(wv") + (wv")" = =V P(v) = F(v)
v(0),v'(0),v(1) and v'(1) given.

(1)

As explained in [3, 4], the energy is not con-
vex, because of the potential term and there may
be many local minima of K. To find a good con-
tour in a given area, we suppose we have a rough
estimate of the curve. We impose the condition
to be “close” to this initial data by solving the



associated evolution equation :

A solution to the static problem (1) is achieved
when the solution v() stabilizes.
2.2 Attraction Potential

As introduced and used in [3, 10, 4], the po-
tential is derived from a set S of already ex-
tracted edge points. The difficulty is then to
solve the problems of segmentation and recon-
struction from this unstructured set of points
(see [4, 11]). The potential is a function of the
distance d (computed from [12, 13]) to the clos-
est edge point. For example, a gaussian function
models weak strings that break when too long :

P(U) — _e—crd(v)2

Remark that for the potential defined by P(v) =
g(d(v)), the force becomes F(v) = =V P(v) =
—¢'(d(v))Vd(v). We can see that ||Vd(v)]] =1
outside the skeleton of §. In our case, the force
becomes

F(v) = =VP(v) = =20d(v)e " Vd(v),

So a good choice of o permits to control the
norm of the attraction force.

2.3 Local and global minimum

With the classic approaches, the solution de-
pends on the initialization, and the curve may
be trapped in a local minima. Thus, the start-
ing curve has to be close enough to the solution.
In previous work, various approaches were used
to avoid being too much sensitive to the initial-
ization and avoid local minima (balloon in [3],
homogeneity of the inside region [14], geodesic
approach [15]). In this paper, we study a way to
apply the idea of the G.N.C. (Graduated Non
Convexity) like Blake & Zisserman [9] for the
discrete approach of the Mumford& Shah en-
ergy [16]. The main idea is that one term is
“very” convex while the other lacks convexity.
So, the non convex term is slightly modified in
a way such that the sum of the two terms F. is
convex. Then, after finding the minimum for .,
the minimum is found for a sequence of problems
for which a progressive variation of the energy
is made until the original problem is solved.

While in [9], the regularization term is non
convex and the potential term is quadratic, in
the snake energy, it is the contrary. The regu-
larization term is quadratic and the potential is
not convex. The idea is then to modify the po-
tential using the same kind of function, but with
a larger smoothing to make the energy convex.
Our work can give some justification to the al-
gorithm used in [17].

3 Convexity of the discrete energy
The convexity of the energy was also stud-
ied in [18], but with a different kind of poten-
tial to detect thick curves. A different approach
to make convex our minimization problem using
auxiliary variables is introduced in [11] giving
interpretation of many two-step algorithms.
We now present our approach which is ex-
plained in more details in [19].
3.1 Discretization of the Active contour
We first formulate the discretization of the
equation by finite differences. Representing the
curve by a set of N nodes v; = (x;, ;) € IR?,

V=(20,e0, TN, Y0, --r YN) € ]RQ(N‘H),

A snake is obtained as the minimum of F, de-

fined from R*N*Y to IR :

Ey(V) = E.(V) + Ep(V)
Where E,(V) is :
Ny N N3w, N-1

5 Z loi—vial*+—;

—1

=1

B(V) = 3 2P0

A minimum V of E; must verify the Fuler-
Lagrange condition.

It we define
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for:=1,2

A= Nw1A1 + N3w2A2
—1 0P opP opP opP

F = W(a—x(vo), ceey a—x(UN), a—y(vo)a ey a—y(vN))v

then the Euler—Lagrange condition (1) becomes :
AV = F(V)

After formulating the evolution problem using
finite differences with time step 7 we obtain a
system of the form

(Id+ A" = (V" '+ 7F (")), (3)

where Id denotes the identity matrix. Thus, we
obtain a linear system and we have to solve a
pentadiagonal banded symmetric positive sys-
tem. The solution is usually obtained using a
LU decomposition of (Id + 7A). As shown in
[10], the use of an integration on a segment be-
tween two nodes for computation of the force
term enables to use much less nodes, in a way
similar to the finite elements [4].

3.2 Condition for Convexity

To study the local convexity of the energy, we
need to calculate its Hessian matrix:
If we set

1 k=1
Qri=4q —1 ifk=141
0 else
2 k==
Rkﬂ': —1 ifk=t4+1lork=1+1
0 else

We have A; = Q'Q, and Ay = R'R and the

Hessian matrix H of the energy functional F is
H=QQ+R'R+H(P)=H,., + Hp,

where Hp is the Hessian matrix of the potential.
The energy FE is convex if and only if its Hessian
matrix H is positive. It is simple to show that

Lemma 3.1 If A and B are two real symmetric
matrices, the smallest eigenvalue of A + B is
larger than or equal to the sum of the smallest
eigenvalues of A and B.

We show that
> U
Hp = ( r o )
where ¥, I', U are diagonal matrices.
QQ, R'R and H(P) are real and symetric with
repectively smallest eigenvalues A1, Ay, As.
So, a sufficient condition for H to be positive,
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A+ A+ A3 > 0. (4)

Thus, we need to calculate Ay, Az, As. And then,
we want to use (4) to find a condition under
which the potential is convex.

Ay and A, are Toeplitz matrices. Using [20], we
can calculate their smallest eigenvalues A\ and
AN

NZAY and N1\ converge fairly fast to values
close respectively to 7% and 7% and therefore, in
practice we can simplify the calculus by setting
N?)\, ~ w?and N*)\, ~ 7* This also corre-

sponds to the continuous case. Then, we have:

Theorem 1 Let A3 be the smallest eigenvalue
of the Hessian matriz of the potential,

if A3 > —2win? — 2wy, then E is convez.

We now want to calculate 3. Let ¢; be the cur-
vature at the closest edge point to v; : p(v;), we
show that, if A% is the k%" eigenvalue of Hp,

2
20d;e=7%

R 20e 7% (1 — 20d2)}

mkin{)\g} > min {

It we suppose that the largest curvature ¢ =
max; {¢; }, satisfies:

T
c < S =etyJurr?+ wyrt,

then we have:

Theorem 2
1
If 0 < §(w17r2 +wort), then E is convex.

In fact, in a way similar to [18], this only means
that the energy is convex in a neighborhood of
the minimum. The set of nodes have to be far
enough from the skeleton of &, this is usually the
case almost immediately since skeleton points
are maxima of distance and thus unstable for
the minimization. This ensures convergence to
the minimum when the curve is close enough to



the solution. This is a result that justifies the
fact that many algorithms converge to an equi-
librium. In the numerous works on active con-
tour models, (except in [18, 7]), there is almost
no justification showing such a property.

4 Varying Scale Algorithm.

The energy E is approximated by a new func-
tional which is now convex in the neighborhood
of the solution and hence descent on K must
converge to the minimum.

We consider E as a function of o: F = E(o).
Therefore, the original discrete energy £ :=
E(c%) is not convex because ¢° is “too large”.
Let E := E(o'), where o' < 1(wi7? + wor?),
be the convex approximation of the the discrete
energy.

Then, the strategy is to use a whole sequence of
functionals E(O'(p)) for 0 < p < K. These are
chosen such that E(c®) = E(o'), the convex
approximation to £, and E(c®)) := E(a), the
original energy. In between, o(?) increases, be-
tween o! and o°.

The algorithm analog to G.N.C consists in the
successive optimization of the whole sequence
E(c®), one after the other, using the result of
one optimization as the starting point for the
next.

i. choose K, the number of iterations. The
0 1
smoothing discretization step will be %

and o := ¢'. This defines ¢ for all

p=0,., K.
ii. choose V. the initial curve

iii. forall p =0,.., K, starting with V', we min-
imize E(c®) using (2), we obtain V?*!,

iv. VE+L ig the solution for the minimization of

E(c)

5 Conclusion

We showed a way to modify the attraction po-
tential in order to make the energy locally con-
vex. This gives a mathematical justification to
the fact that the algorithm converges to a min-
imum of the energy. To minimize an energy of
this kind, a varying scale algorithm is presented.
It begins with the convexity hypothesis satistyed
and then makes the scale vary from this initial
scale to the original scale of the problem.
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