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2 CEREMADE, CNRS UMR 7534, Université Paris-Dauphine, 75775 Paris Cedex, France

Received 1 December 2005; Revised 30 May 2006; Accepted 31 May 2006

Important attributes of 3D brain cortex segmentation algorithms include robustness, accuracy, computational efficiency, and
facilitation of user interaction, yet few algorithms incorporate all of these traits. Manual segmentation is highly accurate but
tedious and laborious. Most automatic techniques, while less demanding on the user, are much less accurate. It would be useful
to employ a fast automatic segmentation procedure to do most of the work but still allow an expert user to interactively guide
the segmentation to ensure an accurate final result. We propose a novel 3D brain cortex segmentation procedure utilizing dual-
front active contours which minimize image-based energies in a manner that yields flexibly global minimizers based on active
regions. Region-based information and boundary-based information may be combined flexibly in the evolution potentials for
accurate segmentation results. The resulting scheme is not only more robust but much faster and allows the user to guide the
final segmentation through simple mouse clicks which add extra seed points. Due to the flexibly global nature of the dual-front
evolution model, single mouse clicks yield corrections to the segmentation that extend far beyond their initial locations, thus
minimizing the user effort. Results on 15 simulated and 20 real 3D brain images demonstrate the robustness, accuracy, and speed
of our scheme compared with other methods.

Copyright © 2006 Hua Li et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Three-dimensional image segmentation is an important
problem in medical image analysis. Determining the loca-
tion of the cortical surface of the human brain from MRI im-
agery is often the first step in brain visualization and analysis.
Generally, the normal human brain consists of three kinds
of tissues: white matter (WM), gray matter (GM), and cere-
brospinal fluid (CSF). Due to the geometric complexity of
the human brain cortex, manual slice by slice segmentation
is quite difficult and time consuming. Thus, many semiau-
tomatic or automatic segmentation methods have been pro-
posed in recent years.

The active contour model, which was first introduced
in [1] as “snakes,” is an energy minimization method and
has been widely applied in medical imaging. Cohen first
extended snakes to 3D models and also used them for 3D
medical image segmentation [2–4]. Malladi et al. [5] also1
showed their application to 3D medical image segmentation.
Afterwards, they proposed a hybrid strategy of level set/fast
marching segmentation for 3D brain cortex segmentation
[6]. In their method, a small front is initialized inside the de-
sired region, and then the fast marching method [7] is used

to greatly accelerate the initial propagation from the seed
structure to the near boundary, which gives a fast and rough
initialization to a costly segmentation. Then the narrow band
level set method [8] is used to achieve the final result.

In addition to the above method, numerous contribu-
tions [4, 9–19] have been made on the segmentation of com-
plex brain cortical surfaces based on active contour models.
Davatzikos and Bryan [9] used the homogeneity of intensity
levels within the gray matter region to introduce a force that
would drive a deformable surface towards the center of the
gray matter, and built the cortex representation by growing
out from the white matter boundary. Based on this parame-
terization, the cortical structure is characterized through its
depth map and curvature map. This model explicitly used
the structural information of the cortex. However, close ini-
tialization and significant human interaction are needed to
force the ribbon into sulcal folds.

Pham and Prince proposed an adaptive fuzzy segmen-
tation method [15] for brain cortex extraction from images
which have been corrupted by intensity inhomogeneities. In
their method, the minimized objective function has two ad-
ditional regularization terms added to the gain field, which
is different from object functions in standard fuzzy C-means
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algorithms [20]. Their method iteratively estimates the fuzzy
membership functions for each tissue class, the mean intensi-
ties of each class, and the inhomogeneity of the processed im-
age, and models the intensity inhomogeneities to a smooth-
ing varying gain field. They reported that their method yields
lower error rates than standard fuzzy C-means algorithms
[20].

Lately, Xu et al. [13] described a systematic method for
obtaining a surface representation of the geometric central
layer of the brain cortex. It is a four-step method includ-
ing brain extraction, fuzzy segmentation, isosurface gener-
ation, and a deformable surface model using gradient vec-
tor flow [21]. They defined the central cortical layer as the
layer lying in the geometric center of the cortex, and applied
a deformable surface model on the membership functions
computed by the adaptive fuzzy segmentation [15] instead
of image intensity volumes. Han et al. [18] also proposed
a topology-preserving geometric deformable surface model
for brain segmentation.

Teo et al. [11] proposed a four-step segmentation method
based on deformable models. They first segmented white
matter and cerebral spinal fluid regions by anisotropic
smoothing of the posterior probabilities of different prede-
fined regions, then selected the desired white matter compo-
nents and verified and corrected the white matter structure
based on cavities and handles. Finally a representation of the
gray matter was created by constrained growth starting from
the white matter boundary. Their work focused on creating a
representation of cortical gray matter for functional MRI vi-
sualization. Dale et al. [12] concentrated on cortical surface-
based analysis. They started by deforming a tessellated ellip-
soidal template into the shape of the inner surface of the skull
under the influence of MRI-based forces and curvature re-
ducing forces. White matter was then labeled and the cortical
surfaces were reconstructed with validation of topology and
geometry.

MacDonald et al. [16] proposed to use an intersurface
proximity constraint in a two-surface model of the inner and
outer cortex boundaries in order to guarantee that surfaces
do not intersect themselves or each other. Their method was
an iterative algorithm for simultaneous deformation of mul-
tiple surfaces formulated as an energy minimization prob-
lem with constraints. This method was applied to 3D MR
brain data to extract surface models for the skull and the cor-
tical surfaces, and it took advantage of the information of
the interrelation between the surfaces of interest. However,
its main drawbacks include an extremely high computational
expense and the difficulty of tuning the weighting factors of
the cost function, due to the complexity of the problem.

Zeng et al. [14] used the fact that each cortical layer has a
nearly constant thickness to design a coupled surfaces model,
in which two embedded surfaces evolve simultaneously, each
driven by its own image-based forces so long as the intersur-
face distance remained within a predefined range. They mea-
sured the likelihood of a voxel to be on the boundary between
two issues and used this as a local feature to guide the surface
evolution. Gomes and Faugeras [22] also implemented the
above coupled surfaces model with a different scheme that

preserves the level-set surface representation function as a
distance map, so that reinitialization is not required every it-
eration. Goldenberg et al. [17] proposed a similar coupled
surfaces principle and developed a model using a variational
geometric framework. In their method, surface propagation
equations are derived from minimization problems and im-
plemented based on a fast geodesic active contours approach
[23] for improving computational speed.

Kapur et al. [10] presented a method for the segmenta-
tion of brain tissues from MRI images which is a combina-
tion of EM segmentation, binary mathematical morphology,
and active contours. EM segmentation is used for intensity-
based correction and data classification. Binary morphology
and connectivity is used for incorporation of topological in-
formation, and balloon-based deformable contours [3] are
used for the addition of spatial information to the segmenta-
tion process. Cristerna et al. [19] proposed a hybrid method-
ology for brain multispectral MRI segmentation, which cou-
ples a Bayesian classifier based on a radial basis network with
an active contour model based on cubic spline interpolation.

Many other automatic methods for brain cortex segmen-
tation using T1-weighted or multispectral MR data were
also proposed such as histogram threshold determinations
[24, 25], fuzzy set methods [15, 26], Bayesian methods
[27], Markov random field methods [28–31], expectation-
maximization (EM) algorithms [10, 32], and so on.

These methods were aimed at segmenting the brain tis-
sues automatically, and eliminating or nearly eliminating
user interaction for choosing the parameters of the auto-
matic process, setting initial surfaces for surface evolution, or
restricting regions to be processed. However, there is some-
thing to be said for allowing trained users to guide the seg-
mentation process with their expert knowledge of what con-
stitutes a correct segmentation. Methods that allow simple
and intuitive user interaction (while minimizing the need for
such interaction as much as possible) are therefore poten-
tially more useful than totally automatic methods given the
importance of high accuracy and detail in cortical segmenta-
tion.

In this paper, we propose a novel 3D brain cortex seg-
mentation scheme based on dual-front active contours which
are faster and yield flexibly global image-based energy mini-
mizers related to active regions compared to other active con-
tours models. This scheme also adapts easily to user interac-
tion, making it very convenient for experts to guide the seg-
mentation process by adding useful seed points with simple
mouse clicks. This scheme is very fast and the total computa-
tional time is less than 20 seconds. Experimental results on 15
simulated and 20 real 3D brain images demonstrate the ro-
bustness of the result, the high reconstruction accuracy, and
the low computational cost compared with other methods.

This paper is organized into the following sections. In
Section 2, we review the dual front active contour model and
a number of its properties. In Section 3, we extend dual-front
active contours to 3D brain cortex segmentation. Section 3.1
introduces the overall diagram of 3D brain cortex segmen-
tation based on dual-front active contours. Section 3.2 de-
scribes how to choose active regions and potentials for the
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dual-front active contours based on histogram analysis. In
Section 4, we show experimental results on various simulated
and real brain images as well as comparisons with other cor-
tex segmentation methods. We also demonstrate some of the
features and properties of our scheme such as simple and
useful user interactions and high computational efficiency.
Finally, conclusions and future research work are presented
in Section 5.

2. DUAL-FRONT ACTIVE CONTOURS

The basic idea of dual-front active contours was proposed in
[33, 34] for detecting object boundaries. It is an iterative pro-
cess motivated by the minimal path technique [35] utilizing
fast sweeping methods [36, 37]. In this section, we give a re-
view of dual-front active contours.

2.1. Background-minimal path techniques

Since dual-front active contours are motivated by the min-
imal path technique proposed by Cohen and Kimmel [35,
38, 39], we give a brief summary of this technique in this
subsection. Their technique is a boundary extraction ap-
proach which detects the global minimum of an active con-
tour model’s energy between two user-defined points located
on the boundary, and avoids local minima arising from the
sensitivity to initialization in geodesic active contours [4, 40].
Contrary to energy functionals defined in snakes [1], they
proposed a simplified energy minimization model,

E(C) =
∫
Ω

{
w + P

(
C(s)

)}
ds =

∫
Ω
P̃(C)ds, (1)

where s represents the arc-length parameter of a curve C(s) ∈
Rn. P is a pointwise potential associated to image features,
while w is a real positive constant.

Given a potential P > 0 that takes lower values near the
desired boundary, the objective of the minimal path tech-
nique is to look for a path (connecting two user-defined
points) along which the integral of P̃ = P + w is minimal. In
[35], a minimal action map Up0 (p) was defined as the mini-
mal energy integrated along a path between a starting point
p0 and any point p:

Up0 (p) = inf
Ap0,p

{∫
Ω
P̃
(
C(s)

)
ds
}
= inf

Ap0,p

{
E(C)

}
, (2)

where Ap0,p is defined as the set of all paths between p0 and p.
The value of each point p in the minimal action map Up0 (p)
corresponds to the minimal energy integrated along a path
starting from point p0 to point p.

So the minimal path between point p0 and point p can be
easily deduced by calculating the action map Up0 (p) and then
sliding back from point p to point p0 via gradient descent.

They also noted that given a minimal action map Up0 to
point p0 and a minimal action map Up1 to point p1, the min-
imal path between points p0 and p1 is exactly the set of points
pg which satisfy

Up0

(
pg
)

+ Up1

(
pg
) = inf

p

{
Up0 (p) + Up1 (p)

}
. (3)

A saddle point p′ is the first point where two action maps
Up0 and Up1 meet each other, which means that p′ satis-
fies Up0 (p′) = Up1 (p′) and (3) simultaneously. The minimal
path between points p0 and p1 may also be determined by
calculating Up0 and Up1 and then, respectively, sliding back
from the saddle point p′ on the action map Up0 to point p0

and from the saddle point p′ on the action map Up1 to point
p1 according to the gradient descent. This idea was used in
[39] for finding closed contours as a set of minimal paths
from an unstructured set of points. It was also used in [41]
in order to reduce the computational cost of a variety of fast
marching applications. In order to compute Up0 (p), they for-
mulated a PDE equation:

∂L(v, t)
∂t

= 1

P̃
�n(v, t), (4)

to describe the level sets L of Up0 , where “time” t represents
heights of the level sets of Up0 . v ∈ S1 is an arbitrary param-
eter, and �n(v, t) is the normal to the closed curve L(v, t). By
definition we have Up0 (L(v, t)) = t, and by differentiation of
this equation by t and v it can be deduced that Up0 satisfies
the Eikonal equation

∥∥∇Up0

∥∥ = P̃ with Up0

(
p0
) = 0. (5)

This equation can be numerically solved using the fast
marching method [7] because of its lower complexity com-
pared to the direct front propagation approach implied by
(3) while maintaining the same spirit of front propagation in
the way that the grid points are visited during the marching
procedure.

2.2. Dual-front active contours with flexibly
global minimizers

In this section, we briefly review the dual-front active con-
tour model [34]. We assume that an image I has two re-
gions Rin and Rout with B as their common boundary. We
choose one point p0 from Rin and another point p1 from
Rout, then we define a velocity 1/P̃ taking lower values near
the boundary B and define two minimal action maps Up0 (p)
and Up1 (p) according to (2). Contrary to just considering the
saddle point p′ which satisfies Up0 (p′) = Up1 (p′) and (3) si-
multaneously, we consider the set of points pe which satisfies
Up0 (pe) = Up1 (pe). These points pe form a partition curve
B′ which divides I into two regions. This partition is also a
velocity- (or potential-) weighted Voronoi diagram. The re-
gion containing p0 will be referred to as R′in, while the other
region containing p1 will be referred to as R′out. All points
in R′in are closer (in this weighted sense) to p0 than to p1

and contrariwise for points in R′out. Because the action maps
are potential weighted distance maps which can be endowed
with Riemannian metrics, B′ is called the potential weighted
minimal partition curve.

The level sets of Up0 and Up1 represent the evolving

fronts, and the front velocity 1/P̃ takes on lower values near
B. When an evolving front arrives at the actual boundary B,
it evolves slowly and therefore takes a long time to cross B. By
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Cin
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C
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Replace C with Cnew for the next iteration

Active region location Dual front evolution
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Figure 1: Iteration process of dual front evolution and active region location. (a) An initial contour C separates image I to two regions
Rin and Rout; (b) the curve C is dilated to form a narrow active region Rn; (c) the inner and outer boundaries Cin and Cout of Rn are set as
the initializations of two minimal action maps UCin and UCout , and the set of meeting points of the level sets of UCin and UCout forms a new
minimal partition curve Cnew inside Rn. Cnew divides image I into two regions. Curve C is replaced by curve Cnew for the next iteration.

choosing appropriate potentials when defining Up0 and Up1 ,
we may cause the partition curve B′ formed by the meeting
points of the level sets of Up0 and Up1 to correspond with
the actual boundary B. In other words, we can detect B by
setting appropriate potentials and finding the minimal parti-
tion curve B′.

Now let us consider minimal action maps having a set
of starting points. Similar to the definitions in [39], we let
X be a set of points in image I (e.g., X is a 2D curve or a
3D surface), and define a minimal action map UX(p) as the
minimal energy integrated along a path between a starting
point p0 ∈ X and any point p /∈ X :

UX(p) = min
p0∈X

(
inf
Ap0,p

{∫
Ω
P̃
(
C(s)

)
ds
})

. (6)

We choose a set of points Xi from Rin and another set of
points Xj from Rout, and define two minimal action maps
UXi(p) and UXj (p) according to (6). All points satisfying
UXi(p) = UXj (p) form a partition boundary B′′ and divide
I into two regions. One region contains Xi and the other re-
gion contains Xj . Because UXi(p) and UXj (p) are the poten-
tial weighted distance maps, B′′ is a potential weighted mini-
mal partition of I . With appropriate potentials, it is also pos-
sible that B′′ is exactly the actual boundary B of Rin and Rout.

Therefore, the dual front evolution principle proposed in
[33] is to find a potential weighted minimum partition curve
within an active region.

This principle is shown in Figure 1. A narrow active re-
gion Rn is formed by extending an initial curve C. For exam-
ple, it may be generated from C using morphological dila-
tion. Rn has an inner boundary Cin and an outer boundary
Cout. Two minimal action maps UCin and UCout are defined by
different potentials P̃in and P̃out, respectively, based on (6).
When the level sets of UCin and UCout meet each other, the
meeting points form a potential weighted minimal partition
curve Cnew in active region Rn. The evolution of curves Cin

and Cout and their meeting locations pg can also be obtained
using the “time of arrival” functions which satisfy Eikonal

equations

∥∥∇UCin

∥∥ = P̃in with UCin

(
Cin
) = 0,∥∥∇UCout

∥∥ = P̃out with UCout

(
Cout

) = 0,

UCin

(
pe
) = UCout

(
pe
)

on Cnew.

(7)

Since the dual front evolution is to find the global minimal
partition curve only within an active region, not in the whole
image, the degree of this global minima changes flexibly by
adjusting the size of active regions.

The dual-front active contour model is an iterative pro-
cess including the dual front evolution followed by relocation
of the active region. The minimum partition curve formed by
the dual front evolution is extended to form a new active re-
gion. We extract the boundaries of the new active region, and
define potentials for the evolution of the separated bound-
aries again. Then we repeat the dual front evolution and the
active region location to find new global minimal partition
curves until certain stopping conditions are satisfied. For ex-
ample, we may compare the difference between two consec-
utive minimal partition curves, to determine when we have
converged to a final result.

As shown in (7), two minimal action maps UCin and
UCout may be obtained by solving Eikonal equations. In the
minimal path technique proposed in [35], they used fast
marching methods described in [7] to solve Eikonal equa-
tions. Tsitsiklis [42] first used heap-sort structures to solve
Eikonal equations, Sethian [7] and Helmsen et al. [43] re-
ported similar approaches lately. Fast marching methods are
computationally efficient tools to solve Eikonal equations, in
which upwind difference schemes and heap-sort algorithms
are used for guaranteeing the solution is strictly increasing
or decreasing on grid points. The computational complex-
ity of fast marching methods is O(N logN), where N is the
number of grid points, and logN comes from the heap-sort
algorithm.

Another algorithm for solving Eikonal equations is the
fast sweeping method presented in [37, 44]. It is for com-
puting the solution of Eikonal equations on a rectangular
grid based on iteration strategies. In fast sweeping methods
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(a) (b) (c)

(d) (e) (f)

Figure 2: The segmentation result on a 2D synthetic image based on dual-front active contours. (a) The original image and the initial curve
(the red line), (b) the black region is the defined active region which is extended from the initial curve using morphological dilation, (c) the
new formed global partition curve within the active region after dual-front evolution, (d) to (f) the different new global minimal partition
curves after 5, 10, 15 iterations.

[37, 44], the characteristics are divided into a finite number
of groups according to their directions and each sweep of
Gauss-Seidel iterations with a specific order covers a group of
characteristics simultaneously. 2n Gauss-Seidel iterations (n
is the spatial dimension) with alternating sweeping order are
used to compute a first order accurate numerical solution for
the distance function in n dimensions. Fast sweeping meth-
ods have an optimal complexity of O(N) for N grid points,
which are extremely simple to implement in any dimension,
and give similar results as fast marching methods. The details
of fast sweeping methods may be seen in [37, 44].

Both fast marching methods and fast sweeping methods
can be used in the dual front evolution for finding the min-
imal partition curve in an active region. In this paper, the
dual front evolution scheme utilizes fast sweeping methods
because of its low complexity O(N), where N is the number
of grid points in Rn. Because the low computational cost of
fast sweeping methods is maintained, and the calculation of
all minimal action maps can be finished simultaneously, the
complexity of the dual front evolution is still O(N), where N
is the number of grid points in an active region. The 3D dual
front evolution scheme is shown in the appendix.

In dual front active contours, potentials may combine re-
gion and edge-based information. For example, we may con-
sider the mean values μin, μout, the variance values σ2

in, σ2
out of

region (Rin−Rin∩Rn) and region (Rout−Rout∩Rn) to decide
the evolution potentials for the labeled points (x, y) as

P̃in(x, y) = wr
in f
(∣∣I(x, y)− μin

∣∣, σ2
in

)
,

+ wb
in g
(∇I(x, y)

)
+ win if l(x, y) = lin,

P̃out(x, y) = wr
out f

(∣∣I(x, y)− μout
∣∣, σ2

out

)
,

+ wb
out g

(∇I(x, y)
)

+ wout if l(x, y) = lout,

(8)

where ωr
in and ωr

out are positive weights for the region-
based terms, ωb

in and ωb
out are positive weights for the edge-

based items, and ωin and ωout are positive constants for con-

trolling the smoothness of the partition curves. We choose
g(∇I(x, y)) as a positive decreasing function of the image
gradient, and f as a function related to the region-based in-
formation. As with any segmentation algorithm, the optimal
set of parameters is very application-dependent.

In Figure 2, we give the segmentation process on a 2D
synthetic image to show the basic principle of dual-front ac-
tive contours. Here we use morphological dilation to define
the active region for each iteration. The structuring element
for morphological dilation was a 15 × 15 circle mask. For
this example, the potential at a point (x, y) was P̃(x, y) =
(|I(x, y) − μl| + 0.1), where μl is the mean value of points
having the same label l as the point (x, y).

2.3. Properties of dual-front active contours

The dual front active contour model has several nice prop-
erties. First, the final contour is not just a local minimizer.
It possesses a controllable global minima related to certain
active regions which vary according to the user-specified
amount of dilation used to form the active regions at each
step. The result of the dual front evolution is a potential
weighted global minimum partition curve within an active
region. So the size and shape of active regions affect the fi-
nal segmentation result. This ability to gracefully move from
capturing minima that are more local to minima that are
more global makes it much easier to obtain “desirable” min-
imizers (which often are neither the most local nor the most
global).

In Figure 3, we demonstrate that by choosing different
active regions with different sizes, dual-front active contours
may achieve different global minima within different active
regions. Here, the potential at a point (x, y) was defined as
P̃(x, y) = |I(x, y) − μl| + (1 + |∇I|)2/10 + 0.1, where μl is
the mean value of points having the same label l as the point
(x, y).
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(a) (b) (c)

(d) (e) (f) (g)

Figure 3: By choosing active regions with different sizes, the dual-front active contour model may achieve different global minima related
to different active regions and iteration times. (a) The original image with the initialization. (b) The corresponding gradient information.
(c) Segmentation result using a 5 × 5 structuring element with 15 iterations of morphological dilation. (d) Segmentation result using a
7 × 7 structuring element with 15 iterations of morphological dilation. (e) Segmentation result using an 11 × 11 structuring element with
15 iterations of morphological dilation. (f) Segmentation result using a 15 × 15 structuring element with 15 iterations of morphological
dilation. (g) Segmentation result using a 23× 23 structuring element with 15 iterations of morphological dilation.

Most edge-based active contour models [4, 40] were de-
signed to find local minima of data-dependent energy func-
tionals with the hope that reasonable initial placement of the
active contour will drive it towards a “desirable” local mini-
mum rather than an undesirable configuration that can oc-
cur due to noise or complex image structure. The minimal
path technique proposed by Cohen and Kimmel [35, 38, 39]
attempts to capture the global minimum of an active con-
tour model’s energy between two user-defined points. Fur-
thermore, a large class of region-based models, such as [45–
47], have utilized image information not only near the evolv-
ing contour but also image statistics inside and outside the
contour in order to improve the performance. Most of these
more global region-based energy functionals assume highly
constrained models for pixel intensities within each region,
and require a priori knowledge of the number of region
types. Sometimes, though, minimizers that are too global (or
region-based energies using information that is too global)
are just as undesirable as minimizers that are too local.

An example of this is illustrated in Figure 4. In this figure,
we compare geodesic active contours [40], the minimal path
technique [35], Chan-Vese’s method [45], and Mumford-
Shah method [47] with dual-front active contours. The test
image is part of a 2D human brain MRI image, and the ob-
jective is to find the interface of gray matter and white mat-
ter. The image size is 80×80 pixels. The structure element for
morphological dilation in dual-front active contours is a 5×5
circle. As this figure indicates, dual-front active contours can
control the degree of global or local minima which are re-
lated to active regions, find correct boundaries, and perform
better than the other methods.

Second, the computational cost of dual-front active con-
tours is reduced significantly. The iteration process in dual
front active contours causes the initial and intermediate
curves move in large “jumps” in order to arrive at the ob-
jective boundary, which substantially reduces the number of
iterations needed to converge. We also use a fast sweeping nu-
merical scheme [37] for the dual front evolution because of
its lower complexity (O(N), where N is the number of grid
points in the band). As a result, the dual-front active contour
model enjoys a low complexity of O(N).

Third, dual-front active contours provide an automatic
stopping criterion. In the dual front evolution, whenever two
contours from the same group meet, they merge into a single
contour. On the other hand, whenever two contours from
different groups meet, both contours stop evolving and a
common boundary is formed by their meeting points auto-
matically. The iterative process of dual-front active contours
stops when the difference between two consecutive minimal
partition curves is less than a predefined amount.

Fourth, in dual-front active contours, we provide a very
flexible way to define active regions. Generally, we use mor-
phological dilation to generate an active region around the
current curve. In this way, the size and shape of the active
region can be controlled easily by adjusting the associated
structuring elements and dilation times. However, by regard-
ing the active region as a restricted search space, we may use
methods such as those presented for active contours with re-
stricted search spaces in [48–51] to form the active regions.

A final observation to make about the dual-front active
contour model is to note that while it is vaguely related to
a variety of couple surface models [14, 16, 17, 22] discussed
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(a) (b) (c) (d) (e)

Figure 4: Comparison of different segmentation results for the white matter and gray matter boundary using different active contour models.
The gradient information used in panels (a), (b), and (e) is shown in Figure 3. The top row shows the original image and initializations.
The bottom row shows the corresponding segmentation results. (a) Geodesic active contours suffer from undesirable local minima; (b)
the minimal path technique relies on the location of initial points and strong gradient information; (c) and (d) Chan-Vese method and
Mumford-Shah’s method find more global minima over the whole image. (e) Improved edge extraction using dual-front active contours
with the same initialization used for geodesic active contours.

in Section 1, it is an altogether different approach. Coupled
surfaces models were proposed to evolve a pair of curves
together to find a pair of desired contours while exploiting
some sensible constraints between the two curves as they
evolved. The dual front active contour model, however, seeks
to find a single potential weighted minimal partition curve
within an active region, which is formed by the meeting
points of dual evolving curves. By iteratively forming a new
narrow active region based on the current partition curve
and then using the dual front evolution to find a new parti-
tion curve, dual-front active contours can find the boundary
of a single desired object. Furthermore, the “dual fronts” can
be generalized to multiple fronts. The boundaries of an ac-
tive region may be composed of multiple separating curves,
each independent curve evolves with different potential and
different label, whenever two (or more) evolving curves meet
each other, both (or more) curve evolutions stop at the meet-
ing points. All the meeting points form a partition curve au-
tomatically. The full details are outlined in the appendix.

3. CORTEX SEGMENTATION BY DUAL-FRONT
ACTIVE CONTOURS

3.1. 3D brain cortex segmentation with flexible
user-interaction

Due to the complex and convoluted nature of the human
brain cortex and partial volume effects of MRI imaging, the
brain cortex segmentation must be considered in three di-
mensions. In this section, we give a 3D brain cortex segmen-
tation scheme based on dual-front active contours.

Generally, in dual front active contours, morphological
dilation is used to form an active region from an initial

Table 1: Comparison of tissue segmentation results of our method.
Dual-front active contour (1) using morphological dilation to gen-
erate the active regions and (2) using histogram analysis to generate
active regions.

Rate

Dual-front Dual-front

active contours (1) active contours (2)

CSF GM WM CSF GM WM

TP (%) 96.3 78.0 84.3 96.6 93.3 95.1

FN (%) 3.7 22.0 15.7 3.4 6.7 4.9

FP (%) 44.6 13.0 5.7 5.7 5.6 5.8

Overlap metric 0.666 0.689 0.797 0.914 0.883 0.898

curve. However, it is not a good choice to form active re-
gions for segmentation of the brain cortex. One example is
illustrated in Table 1 and the corresponding 3D models are
shown in Figure 9. The test image is generated from the nor-
mal brain database, BrainWeb [52], using T1 modality, 1 mm
slice thickness, 3% noise level, and 20% intensity nonunifor-
mity settings (INU). we assume the brain skull is stripped
and that other nonbrain tissues are also removed. The re-
mainder consists of only three kinds of tissues: WM, GM,
and CSF. The initialization for this segmentation was a sphere
mask centered at (100, 100, 95) with size 75 × 75 × 150.
The potential at a point (x, y, z) was chosen as P̃(x, y, z) =
(|I(x, y, z)−μl|+0.1), where μl is the mean value of the points
having the same label l as the point (x, y, z). The structuring
element used for morphological dilation was a 7×7×7 sphere
mask. We first used dual-front active contours to segment the
CSF boundary, and then processed only the remaining inte-
rior region to capture the WM/GM boundary.
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As shown in Table 1, the quantitative evaluation of the
segmentation result using this morphological dilation is not
very good, as the dilation process is blind to the complex and
convoluted structure of the brain cortex. Because of the con-
voluted geometry of the cortex, each time we dilate the parti-
tion curve to form a new active region for next iteration, the
dilation may change the topology of the partition curve. An
example is illustrated in Figure 5. The 3D models shown in2

panels (a) and (b) of Figure 9 demonstrate the poor perfor-
mance of this morphological approach.

In this scheme, we first assume the brain skull is stripped
and that other nonbrain tissues are also removed. The re-
mainder consists of three kinds of tissues: white matter
(WM), gray matter (GM), and cerebrospinal fluid (CSF). If
an image is noisy, we first preprocess it to reduce the effects.
Next, we divide the whole brain image into four regions: WM
seed voxels, GM seed voxels, CSF seed voxels, and unlabeled
voxels. All the voxels in the same region (WM, GM, or CSF)
have the same label. The background is ignored for the com-
putation. Here, the unlabeled voxels make the “active region”
among the labeled WM, GM, CSF voxels, and the active re-
gion may be composed of isolated points, sets of points, and
so forth. After running the dual front evolution, all the points
in the active region are assigned a label which is one of the
three labels for GM, WM, and CSF. The final grid is there-
fore separated into these three tissue classes.

If this initial segmentation does not give satisfactory re-
sults, users can modify the initial active region just by adding
(or deleting) some labels (via mouse-clicks) as desired, after-
which the dual-front evolution is automatically rerun to yield
an updated segmentation.

3.2. Active region and potential decision based on
histogram analysis

In this section, we describe a method for creating the ac-
tive regions, required by the dual-front active contour, by
analyzing histograms of normal MRI brain images. A his-
togram, which is simply a frequency count of the gray lev-
els in the image, is important in many areas of image pro-
cessing, such as segmentation and thresholding. Analysis of
histograms gives useful information about image contrast.
For 3D T1-weighted brain cortex images, the reasonable con-
trast is obtained between the three main tissue classes in
brain, which are GM, WM, and CSF. Some brain cortex
segmentation approaches [24, 25, 53] were based on auto-
matic gray-level thresholding, and in common, a histogram
is first determined, from which the threshold levels are de-
termined by Gaussian fitting algorithms to produce a binary
mask. Five Gaussian representing three pure tissue classes
(GM, WM, CSF) and two partial volume compartments
(GM/WM, CSF/GM) are fitted at a local level and are used
to generate either discrete or continuous segmentations [24].
But the problems with these methods include their sensitiv-
ity to partial volume effects, which produces speckled regions
in the final segmentation. In order to reduce the impact of
the noise, some Markov-random-field-based methods [28–
31] were proposed.

Figure 7 shows the histogram analysis of these three brain
tissues. panel (a) is the histogram of a sample 3D MRI el-
derly brain image. There are three peaks and two troughs in
this histogram. The locations of these peaks approximate the
average mean values of the GM, WM, and CSF tissues. The
regions around these two troughs correspond to the voxels
located around the boundaries of different tissues. Because of
the effect from noise and partial volume problems, it is hard
to locate the actual boundaries just by simple thresholding.

In this paper, we use histogram analysis for a special pur-
pose. After a histogram is first determined, we may use sim-
ple thresholding to choose regions which include the actual
boundaries instead of the boundaries themselves. We treat all
the voxels in these chosen regions as unlabeled voxels and use
a dual-front active contour to assign a unique label to each
voxel in this region. The 3D dual front evolution scheme is
detailed in the appendix. This process is shown in panel (b)
and panel (c) of Figure 7. By setting different thresholds, a
3D brain image may be divided into GM seeds, WM seeds,
CSF seeds, and unlabeled voxels which comprise two active
regions R1 and R2 around the two troughs in the histogram.
As shown in panel (c) of Figure 7, a 3D brain image may be
separated into different regions by the previous procedure.
The voxels with different gray values represent different ini-
tial CSF, GM, and WM voxels. The most black voxels repre-
sent the unlabeled pixels which compose the active region.
The 3D dual-front evolution scheme may be used to assign
a unique label to each voxel in this active region. For images
with high noise levels, we smooth the image first and then
calculate the histogram. The main purpose of this smoothing
process is to eliminate extraneous peaks/troughs in the his-
togram. Then we may use thresholding to separate an image
into different regions. While smoothing makes some parts of
the boundaries list distinct, quantitative analysis on several
sample images indicate that a limited amount of smoothing
actually improves the segmentation results. The details are
given in Section 4.1.

We use region-based information during the front evo-
lutions in our scheme because the tested MRI images rarely
provide reliable edge information. We calculate the mean val-
ues μCSF, μGM, and μWM, and the variance values σ2

CSF, σ2
GM,

σ2
WM, of the three different seed voxel classes with labels lCSF,
lGM, and lWM. Then the potential for a labeled point (x, y, z)
is set to

P̃l(x, y, z) = ω1 · exp

(∣∣I(x, y, z)− μl
∣∣2

2σ2
l

)
+ ω2

if L(x, y, z) = l
(
l = lCSF, lGM, lWM

)
,

(9)

where I(x, y, z) is the average image intensity in a window
of size 3 × 3 × 3 around the given voxel. ω1 is a real positive
weight for the region-based image potential, while ω2 is a real
positive constant to control the smoothness of the partition
curves obtained from the dual front evolution.
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(a) (b) (c)

Figure 5: Morphological dilation affects the topology structure of evolving fronts and also affects the accuracy of segmentation results. (a)
The formed partition diagram on one slice after a number of iterations, and different regions with different gray values represent different
tissues; (b) the extracted boundary between GM and WM tissues on the same slice as that shown in (a); (c) the formed active region (the
most black region) by dilating the boundary shown in (b).
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Figure 6: Overall diagram of 3D brain cortex segmentation process.

4. EXPERIMENTAL RESULTS

In this section, we validate our approach on various 3D simu-
lated and real MRI brain image data sets. We use T1-weighted
images on account of their better GM/WM contrast [14, 54].
All the experimental results shown in this section are ob-
tained from 3D volume processing directly.

To evaluate the efficiency of our method for every tissue
type T (GM, WM, and CSF), four probabilities are defined:

TP = NB ∩NR

NR
, FN = NR −NB ∩NR

NR
,

FP = NB −NB ∩NR

NR
, OM = TP

1 + FP
,

(10)

where NR is the number of reference ground truth voxels of
tissue T . NB is the number of voxels detected by our algo-
rithm for tissue T . NB ∩ NR is the number of correct voxels
detected by our method for tissue T . TP means true positive,
which is the probability of correct detection relative to the
ground truth for tissue T . FN means false negative, which is
the probability of misdetection relative to the ground truth
for tissue T . FP means false positive, which is the probabil-
ity of false detection relative to the ground truth for tissue
T . OM means overlap metric, which is defined for a given

voxel class assignment as the sum of the number of voxels
that both have the class assignment in each segmentation di-
vided by the sum of voxels where either segmentation has
the class assignment [55]. This measurement is more critical
than comparisons using the volume only, it is the same as the
Tanimoto coefficient [56]. This metric approaches a value of
1.0 for results that are very similar and is near 0.0 when they
share no similarly classified voxels. In the following experi-
ments we use these parameters to quantitatively analyze our
segmentation results.

4.1. Validation on simulated MR brain images

In Figure 8, we present the results of the segmented WM tis-
sues for five different slices of one 3D simulated brain image
provided by BrainWeb [52], which is generated from the nor-
mal brain database using the T1 modality, 1 mm slice thick-
ness, 3% noise level, and 20% intensity nonuniformity set-
tings (INU).

For this segmentation, we use the potentials defined by
(9) with ω1 = 1 and ω2 = 0.1. The size of R1, h1 is equal to
20, and the size of R2, h2 is equal to 10 (shown in Figure 7). In
fact, ω1 and ω2 are two parameters for adjusting potentials,
while h1 and h2 are two parameters for adjusting the size of



10 International Journal of Biomedical Imaging

0 256

(a)

Voxel number

Voxel
intensity

GM

WM

CSF

R1

R2

h2h1

(b) (c)

Figure 7: Active regions are determined by histogram analysis and thresholding of 3D MRI brain images. (a) The histogram of a sample 3D
MRI brain image; (b) the center of R1 is the trough between the CSF and GM peaks, the center of R2 is the trough between the GM and WM
peaks. h1 and h2 decide the size of R1 and R2. (c) The brain image is separated into different regions by thresholding. The most black voxels
represent the unlabeled pixels, and voxels with different gray values represent different initial CSF, GM, and WM voxels.

active regions. The best or most appropriate values for these
parameters have to be chosen for different classes of images.
In this paper, we manually choose these parameters by testing
on a few sample images, and then using the same values for
all of the rest. Adaptive tuning of these parameters is one of
the subjects for future research.

In Table 1, we give the quantitative results of two brain
cortex segmentations on the same 3D simulated image as
that in Figure 8. This 3D simulated brain image is provided
by BrainWeb [52], and is generated from the normal brain
database using the T1 modality, 1 mm slice thickness, 3%
noise level, and 20% intensity nonuniformity settings (INU).
One result is obtained by using dual front active contours
with active regions obtained by morphological dilation. The
second result is obtained by using dual front active contours
with active regions obtained by the same histogram analysis
as in Figure 8. Figure 9 shows the corresponding 3D mod-
els of the segmented GM and WM surfaces from these two
methods explained in Table 1 and from the ground truth
data. From these segmentation results we can see that our
scheme based on histogram analysis performs better than the
dual-front active contours based on morphological dilation.

We also tested our method on 15 3D simulated brain im-
ages provided by BrainWeb [52, 57], which are of T1 modal-
ity, 1 mm slice thickness, different noise levels 1%, 3%, 5%,
7%, and 9%, and different INU settings 0%, 20%, and 40%.
All images are 181×217×181. For this segmentation, we con-
tinued to use the same potentials defined by (9) with ω1 = 1
and ω2 = 0.1. The size of R1, h1 is 20, and the size of R2, h2 is
10.

For images with high noise levels 5%, 7%, and 9%, we
first use the isotropic nonlinear diffusion proposed by Per-
ona and Malik [58] to smooth the images. Since the ground
truth data is also provided by BrainWeb website, it is easy for
us to compare the accuracy from the original images and the
corresponding smoothed image. For the segmented results,
the overlap metrics of three tissues for 5 images with different
noise levels and same 0% INU setting are from 0.813 to 0.944,
the overlap metrics of three tissues for 5 images with differ-

ent noise levels and same 20% INU setting are from 0.814 to
0.914, the overlap metrics of three tissues for 5 images with
different noise levels and same 40% INU setting are from
0.747 to 0.835. In Figure 10, we also show these segmenta-
tion results. In Figure 10, some CSF segmentation results of
images having 0% INU are worse than the results of images
having 20% INU. We think there are three reasons. One is
that the two parameters h1 and h2 are constants. The cho-
sen parameters are not the best or most appropriate values
for processing all the images and segmenting all the tissues.
Furthermore, when we choose these parameters, we consider
more on their performance on the GM and WM segmenta-
tion results than that of the CSF segmentation results. The
best or most appropriate values for these parameters have to
be chosen based on different applications. How to set adap-
tive tuning of these parameters is very application-dependent
and still needs further research work. The second reason is
that we use some smoothing operators to smooth the im-
ages with noise levels 5%, 7%, and 9% first and then segment
them. These smoothing processes may also effect the final re-
sults. Furthermore, CSF tissues are much thinner than GM
and WM tissues, which also may effect the segmentation re-
sults.

4.2. Validation on real MR brain images

To further evaluate our segmentation method under more
realistic conditions, we test it on 20 real MRI brain im-
ages and compare the segmentation results with those of
human experts as well as to those obtained by other seg-
mentation algorithms. These 20 normal MR brain data
sets are provided by the Center for Morphometric Anal-
ysis at Massachusetts General Hospital on the IBSR web-
site http://www.cma.mgh.harvard.edu/ibsr/. The IBSR web-
site also provides the segmentation results on GM, WM, and
CSF tissues from the adaptive MAP method, the biased MAP
method, the fuzzy C-means method, the maximum a poste-
riori probability method, the maximum-likelihood method,
and the tree-structure k-means method on these 20 normal

http://www.cma.mgh.harvard.edu/ibsr/
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(a) (b) (c) (d) (e)

Figure 8: Comparison of the segmentation results from our method with the ground truth data of five slices of one 3D simulated brain image
provided by BrainWeb [52], which is of T1 modality, 1 mm slice thickness, 3% noise level, 20% INU. The image size is 181× 217× 181. The
top row presents the segmentation results obtained from our method. The second row shows the ground truth data provided by BrainWeb
database. The third row shows the false negative difference between the segmentation results from our method and the ground truth data.
The fourth row shows the false positive difference between the segmentation results from our method and the ground truth data. These five
columns correspond to five slices of the test 3D image.

brain-only MR data sets along with the manual segmenta-
tion results on GM and WM tissues from two experts [59].
Since the segmentation results provided by the IBSR website
are measured by two parameters “overlap metric” and “aver-
age overlap metric,” we will also measure the results from our
method by these same two parameters for the sake of mean-
ingful comparison.

Figure 11 shows the overlap metric of CSF, GM, and
WM segmentation results (compared to expert man-
ual results) on 20 normal brains for various automatic
segmentation results provided by IBSR, for the hid-
den Markov method [28] provided by the FMRIB web-
site (http://www.fmrib.ox.ac.uk/fsl/), and for our proposed
scheme. For the segmentation of these real brain images,
we still use the potentials defined by (9) with ω1 = 1 and

ω2 = 0.1. The size of R1, h1 is 20, the size of R2, h2 is 10.
Figure 12 shows the average overlap metric of GM and

WM segmentation results on these 20 normal brains pro-
vided by the IBSR website for various methods. The figures
show that the overlap metric and the average overlap met-
ric of the segmentation results from our method are either
higher than or at least close to the other methods. However,
the computational time for our method is around 20 sec-
onds, which is much faster than other methods.

In these comparisons shown in Figures 11 and 12, in
addition to the comparison with the methods provided by
IBSR [55, 60], we also compare our method with other three
recently proposed methods, the Bayesian method proposed
in [27] (MPM-MAP); the coupled surfaces method [14]
(ZENG), and the hidden Markov method [28] (FAST). This

http://www.fmrib.ox.ac.uk/fsl/
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(c) (d)
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Figure 9: Comparison of the 3D models of GM and WM surfaces from our method and from the ground truth data. The test image is the
same as in Figure 8. (a) and (b) are the 3D models of the GM and WM surfaces obtained from our method using morphological dilation; (c)
and (d) are the 3D models of the GM and WM surfaces obtained from our method using histogram analysis; (e) and (f) are the 3D models
of the GM and WM surfaces from the ground truth.

study is just the initial step of our research work on brain im-
age analysis. We will still work on it, and try to improve the
model’s robustness and the segmentation’s accuracy further.

4.3. Simple and useful user interaction

In the previous two subsections, various segmentation re-
sults of our scheme on simulated and real 3D brain datasets
are shown, and simple thresholding operators are used for
defining active regions in the dual-front evolution. Gener-
ally, most automatic techniques, while less demanding on the
user, are much less accurate. It would be useful to employ
a fast automatic segmentation procedure to do most of the
work but still allow an expert user to interactively guide the
segmentation to ensure an accurate final result. An attractive
feature of our scheme is that it is extremely simple for users
to add seed points just by mouse clicks to yield corrections
to the segmentation that extend far beyond their initial lo-
cations (due to the flexibly global nature of dual front active

surfaces), thus minimizing the user effort. Figure 13 shows 3
an example of this interaction.

In Figure 13, we use the same image as the one used
for the test shown in Figure 8. One slice of the test 3D im-
age (panel (a)), the ground truth data for the WM tissue in
this slice (panel (b)), and the 3D model of the ground truth
WM tissue (panel (c)) are shown in the first row. The sec-
ond row shows the segmentation result using dual-front ac-
tive contours, in which active regions are chosen based on
automatic thresholding. In this test, we set a different ac-
tive region between the WM and GM tissues by changing
the size and location of R2 according to Figure 7. The most
black region in panel (d) presents unlabeled voxels in the
active region, and different regions with different gray val-
ues represent different tissues’ initial seed points. panel (e)
shows the segmentation result. The 3D model of the seg-
mented WM is shown in panel (g). These figures illustrate
that if automatic thresholding cannot provide enough WM
seed points, the segmented WM tissue may be incorrect. So
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Figure 10: Overlap metric for CSF, GM, and WM segmentation on simulated brain images provided by BrainWeb website. The different
noise levels are 1%, 3%, 5%, 7%, and 9%. The three curves labeled INU0, INU20, and INU40 represent the overlap metric of the segmenta-
tion results of the images with 0%, 20%, and 40% INU settings based on our proposed method. (a) The overlap metric of CSF segmentation
results for images with different noise levels (1%, 3%, 5%, 7%, and 9%) and different INU settings (0%, 20%, and 40%). (b) The overlap
metric of GM segmentation results for images with different noise levels (1%, 3%, 5%, 7%, and 9%) and different INU settings (0%, 20%,
and 40%). (c) The overlap metric of WM segmentation results for images with different noise levels (1%, 3%, 5%, 7%, and 9%) and different
INU settings (0%, 20%, and 40%).

in addition to employing a fast automatic segmentation pro-
cedure to do most of the work, it would be useful to still al-
low an expert user to interactively guide the segmentation
to ensure an accurate final result. We show segmentation
result after user interaction in the third row of Figure 13.
As shown in panel (h), the user interaction simply consists
of a few mouse clicks to add some new seed points. We
then run the dual-front evolution again to segment the GM
and WM. The segmented boundary of GM/WM is shown
in panel (i), the extracted WM tissue and the correspond-
ing 3D model are shown in panel (j) and panel (k). The fig-
ures show that the accuracy of the result after user interaction
is much better than that just based on automatic threshold-
ing.

We provide a flexible way to combine histogram analy-
sis and dual-front active contours. We may first set certain
predefined parameters such as the different weights in po-
tentials, and the width of h1 and h2, then do histogram anal-
ysis and the dual front evolution to obtain the segmentation
result directly. We may also do histogram analysis separately
and let experts choose appropriate parameters for the dual-
front evolution based on histogram analysis and their experi-
ence. In most fully automatic methods, users need to repeat
the whole process to obtain different results, and it is hard to
tune the associated parameters flexibly. But our method pro-
vides a fast automatic segmentation procedure to do most of
the work but still allow an expert user to interactively guide
the segmentation to ensure an accurate final result.
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Figure 11: The overlap metric of CSF, GM, and WM segmentation results on 20 normal real brain images for various segmentation methods.
The results of some automatic segmentation methods provided by IBSR. AMAP: adaptive MAP; BMAP: biased MAP; FUZZY: fuzzy c-means;
MAP: maximum a posteriori probability; MLC: maximum-likelihood; TSKMEANS: tree-structure k-means; FAST: hidden markov method
[28]; DFM: our scheme.

4.4. Computational time

Another nice property of our method is its high computa-
tional efficiency. We test our method on 15 simulated 3D MR
brain images provided by BrainWeb [57], and 20 real normal
3D MR brain images provided by IBSR website. The average
computational time is around 20 seconds on a 2.5 GHz Pen-
tium4 PC processor, out of which the average computational
time for the histogram analysis is about 5 seconds and the av-
erage computational time for the dual front evolution is less
than 15 seconds.

Since most methods introduced in Section 1 were tested
on different images and run on the different processors, it
is hard for us to give exact quantitative comparisons on the
computational time between our method and these other
methods. Here we just give a brief discussion on the compu-
tational time reported for various cortex segmentation meth-
ods.

We downloaded the software for the hidden Marko-
vian method from the website of the FMRIB Software Li-
brary (http://www.fmrib.ox.ac.uk/fsl/) to compare its com-
putational speed with our method. On the same computer,

http://www.fmrib.ox.ac.uk/fsl/
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Figure 12: Average overlap metric for GM and WM segmentation on 20 normal real brains for various segmentation methods. The results
of some automatic segmentation methods were provided by IBSR or related papers. For each method, the left column represents the average
overlap metric of GM segmentation, the right column represents the average overlap metric of WM segmentation. For our method, the
left column represents the average overlap metric of GM segmentation, the right column represents the average overlap metric of WM seg-
mentation. AMAP: adaptive MAP; BMAP: biased MAP; FUZZY: fuzzy c-means; MAP: maximum a posteriori probability; MLC: maximum-
likelihood; TSK-MEANS: tree-structure k-means; FAST: hidden Markov method [28]; ZENG: coupled-surface method [14]; MPM-MAP:
Bayesian method [27]; DFM: our scheme.

the average computational time for the hidden Markovian
method for same test images was around 550 seconds. Xu’s
method [13] combined the adaptive fuzzy C-means algo-
rithm [15]; they reported that the computational time for the
final deformable surface algorithm was about 3 hours using
an SGI workstation with a 174 MHz R10000 processor.

For the coupled surface method proposed by Zeng et
al. [14], it was reported that for a 3D image of the whole
brain with a voxel size of 1.2 × 1.2 × 1.2 mm3, their algo-
rithm runs in about 1 hour on a SGI Inigo2 machine with a
195 MHz R10000 processor for the implementation of skull
stripping, cortex segmentation, and measurement simulta-
neously. Goldenberg et al. [17] also adopted the coupled sur-
faces principle and used the fast geodesic active contour ap-
proach to improve the computational time for cortex seg-
mentation. They reported that the computational time of
their method was about 2.5 minutes for a 192 × 250 × 170
MR image of the whole brain on a Pentium3 PC. But they
did not give the quantitative analysis of the segmentation re-
sults.

Teo et al. [11] reported that their entire procedure takes
about 0.5 hours. Prior to the procedure, gray matter needs
to be identified manually in a single occipital lobe of one
hemisphere using rudimentary segmentation tools, which
requires about 18 hours for an expert. Much of the time is
spent on visually inspecting connectivity and ensuring topo-
logical correctness. In MacDonald’s method [16], the pro-
cessing time for each object was reported to be 30 hours on
an SGI Origin 200 R10000 processor running at 180 MHz.

Dale et al. [12] reported that their entire procedure runs au-
tomatically in about 1.5 hours. Kapur et al. [10] reported that
their method required about 20 minutes to process a single
3D image.

In Marroquin’s method [27], it was reported that the av-
erage total processing time (including registration for peel-
ing the skull and nonbrain material and segmentation) on 20
normal brain data sets from IBSR is 29 minutes on a single
processor of an SGI ONYX machine. In the adaptive fuzzy
C-means algorithm (AFCM) [15], they reported that exe-
cution times for 3D T1-weighted MR data sets with 1 mm
cubic voxels are typically between 45 minutes and 3 hours
when using full multigrid AFCM, and that execution times
are between 10 minutes and 1 hours when using truncated
multigrid AFCM. In the graph-based topology correction al-
gorithm (GTCA) [18] proposed by Han et al., they reported
that the processing time depends on the total number of fore-
ground/background filters required. For the brain volumes
with typical size 140 × 200 × 160 used in their experiments,
each filter took less than 3 minutes on an SGI Onyx2 work-
station with a 250 MHz R10000 processor, and the total pro-
cessing time for each brain volume took less than 10 minutes.
Normally, manual segmentation of one type tissue segmen-
tation for an experienced person is about 18 hours.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel scheme for 3D brain cor-
tex segmentation based on dual-front active contours and
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 13: Simple user interaction can improve the segmentation accuracy dramatically (see text). (a) One slice of the original 3D brain
image, (b) the ground truth data of WM tissue in the slice shown in panel (a), (c) the corresponding 3D model of ground truth data of
WM tissue, (d) based on histogram analysis, the whole brain is divided into GM tissue, WM tissue, CSF tissue with different gray values,
and unlabeled tissues in active regions with the most black values, (e) the segmentation result by using dual-front active contours, (f) the
segmented WM tissue (the white part), (g) the 3D model of segmented WM tissue, (h) manually added seed points for WM tissue, (i) the
new segmentation result with added seed points, (j) the segmented WM tissue, (k) the corresponding 3D model of the segmented WM
tissue, (l) the blue line is the zoom-in of the user added seed points in panel (h).

local histogram analysis. The experimental section illustrated
several advantages of our scheme. The first is that our scheme
exhibited better results than most other methods when tested
on 20 real normal brain images as demonstrated in Figures 11
and 12. The second is that the average computational time of
our method is less than 20 seconds, which is much faster than
most other methods, as discussed in Section 4.4. The third is
that our method facilitates optional user interaction which is
crucial when highly accurate results are needed, as it allows a
trusted and trained user to guide the segmentation processes.
This is discussed and illustrated in Section 4.3.

Our future research work will continue on the follow-
ing aspects because of the complexity and variety of medi-
cal brain images. Since the dual-front active contour model
is fast and easy to implement, it is easily combined with other
preprocessing and postprocessing methods to improve the
segmentation accuracy further. From the segmentation re-
sults shown in Section 4, we can see, for images with high
INU settings and high noise levels, the segmentation re-
sults are not as good. We will work on combing our current
model with INU bias compensation methods and smooth-
ing methods to improve its performance in these conditions.
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In recent years, several methods have been proposed to cor-
rect INU settings [15, 26], and some other methods were
also proposed to remove image noise. We will investigate on
how other methods might be used in conjunction with our
model.

Second, we have just used potentials based on region-
based information because the interfaces between dif-
ferent tissues in the tested images were not very clear
(due to partial volume effects). However, edge-based in-
formation is important and widely exploited for im-
age segmentation and feature extraction. We are work-
ing on developing more robust local edge operators, and
combining them with region-based information in our
potentials to further improve the accuracy of our re-
sults.

Third, our model can be generalized to multispectral
data sets commonly used in MR imaging. When process-
ing such data sets, vectors may be used to represent in-
tensities of image voxels instead of scalars, and how to
design appropriate potentials and active regions for this
case is a very interesting topic needing further investiga-
tion.

Fourth, we use histogram analysis to determine the ac-
tive regions. The test images in this paper are normal elderly
brain images, but young normal histograms have small CSF
compartments compared to those seen in the elderly his-
tograms. Additionally, in diseased brains, the contrast be-
tween gray and white matter is considerably reduced, and
the two histogram peaks sometimes merge. In fact, when
we tested our method on two of the 20 real MR brain im-
ages, we had to choose the cutoff values for the active regions
manually. Now, we are working on finding better methods
to choose active regions for improving the method’s general-
ity.

APPENDIX

A. 3D DUAL-FRONT EVOLUTION SCHEME

Initialization

Label map L: Initial contours B1, . . . ,Bn with labels li, . . . , ln;
otherwise, l(p) = −1.

Action map U : for any point p of the initial contours, set
U(p) = 0; for other points, set U(p) = ∞.

Potentials P̃li(p): which is calculated based on the label li
of the point p.

Input: active region Rn in image A (I× J×K), initial label
map L, initial action map U .

Sweeping forward loop

(1) For each point x(i, j, k) in Rn, calculate its new label and
new action value by the ordering i = 1 → I , j = 1 → J ,
k = 1 → K , as the following steps:

(i) the new label of x is the label of the point, which has
the smallest U value among the point x and its 6-

connected neighbors,

xmin =
{
x | u(x)

= min
(
ui, j,k,ui−1, j,k,ui+1, j,k,ui, j−1,k,ui, j+1,k,

ui, j,k−1,ui, j,k+1
)}

;

lnew
i, j,k = l

(
xmin

)
;

(A.1)

(ii) calculate the new potential hnew
i, j,k of point x, and find

three minimum U in the 6-connected neighbors of
point x:

hnew
i, j,k = P̃lnew

i, j,k
(i, j, k);

a = min
(
ui−1, j,k,ui+1, j,k

)
; b = min

(
ui, j−1,k,ui, j+1,k

)
;

c = min
(
ui, j,k−1,ui, j,k+1

)
;

(A.2)

(iii) arrange a, b, and c as UA ≤ UB ≤ UC , and calculat-
ing new U from the current value of its 6-connected
neighbors:

(a) if |UA −UB| ≥ hnew
i, j,k, ui, j,k = UA + hnew

i, j,k,
(b) if |UA −UB| < hnew

i, j,k, Δ1 = 2(hnew
i, j,k)2−(UB−UA)2,

(c) if
√
Δ1 ≤ 2UC − (UA + UB), ui, j,k = (UA + UB) +√

Δ1/2,
(d) if

√
Δ1 > 2UC − (UA + UB), Δ2 = (UA + UB +

UC)2 − 3(U2
A + U2

B + U2
C − (hnew

i, j,k)2),

ui, j,k =
(
UA + UB + UC

)
+

√
Δ2

3
, (A.3)

– updating ui, j,k: unew
i, j,k = min(ui, j,k,u).

(2) Repeat the above computation 23 times with alternating
sweeping orders.

Output is the label map L which divides the active region
Rn to n regions.
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