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Approximation de donn�ees 2-D et 3-D �a l'aided'hyperquadriques hybridesR�esum�e : Nous pr�esentons dans ce rapport un nouveau mod�ele de courbes et surfacesimplicites. Ce mod�ele est bas�e sur les hyperquadriques permet un contrôle local et global dela forme et mod�elise une grande vari�et�e de formes. Ce mod�ele d'hyperquadriques hybridesest d�e�ni en introduisant d'une mani�ere implicite quelques propri�et�es locales dans une repr�e-sentation globale. Un des avantages de ce mod�ele consiste en la repr�esentation de propri�et�eslocales et globales par une �equation implicite permettant de caract�eriser la forme de l'objetpar l'interm�ediaire des param�etres du mod�ele independemment de la r�esolution num�erique.L'approximation des donn�ees est obtennue par la minimisation d'une �energie mod�elisant uneforce d'attraction independement de la description implicite de la forme.Apr�es avoir examin�e les propri�et�es g�eom�etriques des hyperquadriques et l'�evolution de laforme par rapport aux param�etres du mod�ele, nous avons d�e�ni un algorithme permettantd'am�eliorer l'approximation des donn�ees en rajoutant des termes �a la repr�esentation impli-cite. Cette approche g�eom�etrique permet une description �able de donn�ees et un contrôle dunombre de param�etres en fonction de la pr�ecision souhait�ee.Mots-cl�e : Courbes et surfaces implicites, Mod�eles param�etriques, Mod�eles D�eformables,Potentiels d'attraction, Segmentation, Reconstruction de surfaces



A Hybrid Hyperquadric Model for 2-D and 3-D Data Fitting 11 IntroductionUsing a shape representation in computer vision became a natural approach to describeand characterize a set of 2-D or 3-D data. Among the di�erent approaches described in thecomputer vision research, we can classify these approaches in two distinct classes: free formmodels and parametric models. The �rst one refers to the spline model de�ned through itslocal degree of freedom allowing the modelling and the representation of a wide variety ofshapes. In the spline model, the local properties stem from the local de�nition of the shape.This allows the reconstruction of a wide variety of surfaces represented by dense data. Inthe past years several authors [5, 6, 10, 18] have illustrated the use of free form model inimage processing for modelling and characterizing image structures. On the other hand, theparametric model are de�ned in a global manner i.e. we have a unique equation chracterizingthe surface. The di�erent types of equations (algebraic,polynomial...) allow to characterizethe shape through a small set of parameters. Several models were used : Algebraic surfacesof high degree [15],planar, quadratic, superquadric [1, 12, 14] and also hyperquadric [9, 8]patches. The global de�nition of these models has proved it usefulness for de�ning a globalconstraint on the shape and for �tting very sparse data. Nevertheless, the choice of a modeldepends on the application and on the type of data the model have to deal with.In this paper we address the problem of de�ning local property on a global shape model.More precisly, we establish how to de�ne implicitly local properties in a global shape model.Several attempts were made to allow global and local shape control. In [17] the authors mergea global and a local model by de�ning a displacement �eld from a superquadric shape to �t2-D and 3-D data. This displacement measuring the disparity between a superquadric andthe �tted data, is not described through a spline model and cannot be represented througha small set of parameters.De�ning implicitly local properties on a global shape model yields a shape model de�-ned through a unique set of parameters independently on the sparseness of the data. Thisallows to describe global and local properties through a unique implicit equation yielding arepresentation of the shape by means of its parameters.RR n�2188



2 Isaac COHEN, Laurent D. COHENIn this paper we de�ne a hybrid (global/local) geometric representation of implicit curvesand surfaces. This representation allows us to de�ne global and local constraints on the reco-vered shapes through a single parametric model. This model is based on the the hyperquadricmodel introduced by Hanson [9]. Recently, Han et al [8] have used an hyperquadric model forshape recovery. But the hyperquadric model does not allow the de�nition of local propertiesand remains a global convex shape model. On the contrary the hybrid hyperquadric modelallows a local control of the shape, and the recovery of non-convex smooth shapes. The shaperecovery from image data is done through a numerical parameterization of the recovered sur-face and the minimization of an energy, modelling the attraction to data independently ofthe implicit description of the shape. After studying the geometry of hyperquadrics and howtheir shape deforms when we modify slightly its implicit equation, we are able to de�ne analgorithm for automatic re�ning of the �t by adding an adequate term to the implicit repre-sentation. This geometric approach allows an e�cient description of the data points and anautomatic tuning of the �t according to the desired accuracy.This new approach allows to consider very complex implicit surface description of ar-bitrary degree. It represents an alternative to some approaches based on the eliminationtheory [16, 11] dedicated to polynomials of integer degree. The numerical parameterizationenables also the use of the classic deformation primitives such as tapering, axial twist andbending [2]. Although some of these deformed shapes can be obtained through the proposedhybrid model, these primitives can be inserted directly in the numerical parameterization ofthe hybrid model to complete a wide range of shape modelling.The work reported in this paper represents three major contributions.� We de�ne a new geometric representation of implicit curves and surfaces modelling awide variety of shapes. The new model enhances the classical hyperquadric model sinceit allows an implicit de�nition of local properties like concavities.� This new description is used for shape recovery from image data through a numericalparameterization of the recovered surface and the minimization of an energy, modellingthe attraction to data independently of the implicit description of the shape. Inria



A Hybrid Hyperquadric Model for 2-D and 3-D Data Fitting 3� We have de�ned an algorithm for automatic re�ning of the �t by adding an adequateterm to the implicit representation. This geometric approach allows an e�cient des-cription of the data points and an automatic tuning of the �t according to the desiredaccuracy.Finally we propose a new numerical parameterization allowing an e�cient description of theshape characterized by the implicit equation.The paper is organized as follows. Section 2 is on hyperquadrics model, focusing on thecomparison with superquadrics, the de�nition of the hyperquadric model and on the useof a numerical parameterization. Section 3 explains the new hybrid hyperquadric model indetail. Section 4 is about �tting hybrid hyperquadric to data based on an energy minimizationapproach, it describes also a new geometric approach for an automatic re�ning of the �t byadding terms in the implicit representation. Section 5 is about �tting very sparse data and�nally section 6 describes a new numerical parameterization allowing an e�cient descriptionof more general shapes. Illustrations and experimental results are given in the di�erentsections to enlighten the model and the geometric methods used.2 The Hyperquadric ModelIn Computer Vision, most works using implicit surface models are based on superquadrics.These surfaces are included in a more general class of shape modelling, the hyperquadricmodel [9]. Before describing this model we recall �rst the de�nition of superquadrics. Inthe following we present the 3-D surface models of superquadrics and hyperquadrics butnaturally these models are de�ned and used similarly for 2-D curve modelling as showed inthe examples and experimental results.2.1 MotivationThe superquadrics are de�ned by the implicit equation:���� xs1 ����1 + ���� ys2 ����2 + ���� zs3 ����3 = 1; (1)RR n�2188



4 Isaac COHEN, Laurent D. COHENor through the parameterization:8>>>>><>>>>>: x(�; ') = s1sign(cos � cos') jcos � cos'j�1y(�; ') = s2sign(sin � cos') jsin � cos'j�2z(�; ') = s3sign(sin') jsin'j�3 (2)where �i = 2=i, � 2 [0; 2�[ and ' 2 [��=2; �=2].These surfaces are �tted to the data through the minimization of di�erent criteria de-pending on available data. All works reported on superquadric surfaces use the explicitparameterization of the surface. This parameterization is not available for hyperquadricsand induces a di�erent approach for data �tting. An explicit parameterization of the shapehas a major advantage: It alleviates the �tting process (whatever the chosen criterion is)since it gives an explicit control of the parameters de�ning the model, and also makes easierthe use of deformation primitives [2].Nevertheless, the limitations of superquadric models are due to the small set of allowableshapes, since the model is constrained by a few global parameters (such as radii, aspectratios...) and consequently have a small number of degrees of freedom.Our goal is to de�ne implicitly some local properties on a global shape model. Theadvantage of such an approach is that the shape is still de�ned by a unique set of parametersindependently of the chosen numerical resolution. The main point of this property is that thelocal control of the shape does not depend on the data resolution as in the case of deformablesuperquadrics [17] or spline models.We propose a new method for de�ning implicitly local properties in a global shape model.This method applies to a wide variety of implicit function modelling (quadrics, superquadrics,algebraic surfaces). However, we choose a hyperquadric global shape model [9], since itincludes most implicit models and have a wide variety of allowable shapes.2.2 HyperquadricsThe hyperquadrics are obtained by considering a sum of an arbitrary number of linear termsraised to powers [9]. This generates shapes whose bounding polytopes have arbitrary numberof faces. Inria



A Hybrid Hyperquadric Model for 2-D and 3-D Data Fitting 5A hyperquadric model is de�ned by the set of points satisfyingH(x; y; z) = NXi=1 jHi(x; y; z)ji = 1: (3)where Hi is a 3-D a�ne form:Hi(x; y; z) = (aix+ biy + ciz + di) ; (4)where ai; bi; ci; di and i are constants (i > 0).Since H(x; y; z) = 1 and all jHiji are positive functions, we have for all i,jHi(x; y; z)j � 1: (5)This last equation de�nes a strip bounded by the two hyperplanes Hi(x; y; z) = 1 andHi(x; y; z) = �1. The hyperquadric is thus included in the intersection of these strips whichcan be an arbitrary convex polytope (see �gures 5 and 9 below).If all the exponents i are greater than 1, H is a convex function and the inside set 
de�ned by: 
 = n(x; y; z) 2 IR3 s.t. H(x; y; z) � 1o ; (6)is convex. Alternatively, if some exponents are less than 1, we can recover non-convex shapes,although this introduces some singularities in the shape and makes the computation of theset of points (x; y; z) solution of Eq. (3) very unstable.Unlike the superquadrics, hyperquadrics do not have a general explicit parameterizationbecause the number of terms N exceeds in general the number of spherical variables. Hencethe solutions of Eq. (3) are only obtainable through a numerical solution, which we detailsin the next section.In Figure 1 we represent some 2-D hyperquadrics de�ned with three, four, and �ve terms,none of them is symmetric. This last feature clearly discriminates the hyperquadrics fromthe superquadrics model. Figure 2 shows some 3-D surfaces obtained with 5 and 6 terms,each line represents the same hyperquadric obtained with di�erent exponents.RR n�2188



6 Isaac COHEN, Laurent D. COHEN
Figure 1: Some examples of 2-D hyperquadrics. The �gure represents three hyperquadricsobtained with 3, 4 and �ve terms with exponents greater than one.2.3 Hyperquadrics Numerical RepresentationAn e�cient approach to solve Eq. (3) numerically is to consider a radial parameterization ofthe hyperquadric: 8>>>>><>>>>>: x(r; �; ') = r(�; ') cos � cos'y(r; �; ') = r(�; ') sin � cos'z(r; �; ') = r(�; ') sin' (7)where r(�; ') � 0, � 2 [0; 2�] and ' 2 [��=2; �=2]. This parameterization is de�ned bysearching for each (�; ') a scalar r(�; ') minimizingjH(X(r; �; '))� 1j2 (8)where X = (x; y; z). This minimization is done for each node (�j; 'k) of a rectangular gridby using a Levenberg-Marquardt method [7].Although the hyperquadric equation (3) can de�ne some shape deformations like tapering,the numerical parameterization gives a much more common approach for shape deformationsand a control of these deformations. Indeed one can easily deform a shape from its para-meterization [2] and have an intuitive control of the deformations rather than to use somealgebraic properties of the parameters de�ning the hyperquadric. These algebraic propertiesare not easy to obtain since we can have an arbitrary number of linear terms Hi raised toarbitrary exponents. Inria



A Hybrid Hyperquadric Model for 2-D and 3-D Data Fitting 7

Figure 2: 3-D hyperquadrics obtained with 5 terms (top) and 6 terms (bottom). The surfaceson the right were obtained by choosing exponents lower than one for one 3-D linear form.3 The Hybrid Hyperquadric ModelWe now present our new method for de�ning implicitly local properties in a global shapemodel. This approach could also apply to a wide variety of implicit function modelling (qua-drics, superquadrics, algebraic surfaces). However, we choose a hyperquadric global shapemodel [9], since it includes most implicit models and have a wide variety of allowable shapes.In the hyperquadric model the shape is de�ned globally by the di�erent linear forms.These forms de�ne the convex bounding polytope which gives a geometric description ofthe shape. As we have seen this model allows to describe a wide variety of shapes since wecan use an unlimited number of linear forms. However, the de�nition of non-convex shapesis still hard to achieve (numerical instability, appearance of cusps) and we cannot controlRR n�2188



8 Isaac COHEN, Laurent D. COHENsu�ciently the shape and the location of the desired concavity. Furthermore the global shapeis modi�ed.The main novelty of our approach is to incorporate in the hyperquadric model an arbitrarynumber of concavities or local proprieties at the desired locations.Given some implicit equations representing di�erent shapes, some authors have proposedto combine them to construct non-convex shapes. This was generally done by combiningelliptic and hyperbolic shapes and computing the intersection of positive and negative vo-lumes. Such surfaces have cusps at the intersection points and the obtained surfaces arenot represented through a unique implicit equation. Furthermore, visualizing these surfacesusually produces artifacts. Instead we use the approach proposed by Hanson [9] based oncombining exponential terms in the hyperquadric equation. This approach is similar to thenegative volumes in the \blobby" model [3].The shape produced by an exponential of hyperquadric is a \hill" centered at the centerof the convex polytope of the hyperquadric. Adding these terms to a hyperquadric equationallows a local control of the shape and the location of these hills. In the following we combinethese exponential shapes with hyperquadrics.A hybrid hyperquadric or a composite hyperquadric is thus de�ned through an implicitequation of the type:H(x; y; z) = NXi=1 jHi(x; y; z)ji + MXj=1 cje� LjXl=0 jKjl(x; y; z)jjl = 1; (9)where Hi and Kjl are 3-D linear forms like those de�ned in Eq. (4), N represents the numberof strips de�ning the hyperquadric, M is the number of concavities used and Lj 's are thenumbers of strips de�ning the shape of each concavity. Remark that instead of using anexponential we could similarly use a function which has the same \bell" shape, like:11 + LXl=0 jKl(x; y; z)jl ;for de�ning the concavities or the local properties of the shape.Hence we end up with a parametric model de�ned by 5� (N + MXj=1Lj) parameters. Theseparameters de�ne the global and the local shape of the hybrid hyperquadric. In the following,Inria



A Hybrid Hyperquadric Model for 2-D and 3-D Data Fitting 9
Figure 3: Inserting di�erent types of exponential functions in a classical hyperquadric shape.This �gure illustrates a hyperquadric de�ned with 5 terms (on the left) with one, two andthree concavities added to the �rst shape. We can note that the de�nition of the concavitiesis local and do not deform the whole shape of the initial hyperquadric.we represent the set of 5 � (N + MXj=1Lj) parameters de�ning the hybrid hyperquadric by avector A.Solution of the implicit equation (9) can be done in di�erent ways. Hanson [9] haveproposed to solve separately the hyperquadric part and the exponential part of the equationand then merge the surfaces patches. This yields a set of points satisfying Eq (9) withoutany global description of the whole shape i.e. we do not have a unique parameterization ofthe obtained surface.To represent the shape of the hybrid hyperquadric, we use the numerical parameterizationgiven in section 2.3. This radial parameterization constrains the set of allowable shape butit is an e�cient representation of the surface. In section 6 we introduce a generalization ofthis approach allowing a parameterization of more complex hyperquadric shapes.In �gures 3 and 4 we show the use of hybrid hyperquadrics for 2-D and 3-D shapemodelling. As showed, we can generate an arbitrary number of concavities and the de�nitionof these concavities remains local and does not modify the global shape of the hyperquadric.With this hybrid model we have de�ned a parametric model which has global and localproperties. The global shape properties are necessary if we wish to constrain the set ofadmissible shapes and the local properties of the model can be used to re�ne locally theRR n�2188



10 Isaac COHEN, Laurent D. COHEN

Figure 4: De�nition of di�erent types of concavities for shape modelling in 3-D surfaces.Here we show some 5 terms hyperquadric surfaces along with two and three exponentialfunctions. In the �rst line we represent the initial hyperquadric and the successive additionof two concavities. This illustrates the wide variety of allowable hybrid hyperquadric shapes.shape. The advantage of this approach is that the description of the shape remains animplicit equation de�ned by a small number of parameters. This new de�nition of localproperties characterizes our model from the other deformable models [6, 18] or deformablesuperquadrics [17] allowing reconstruction of local properties through a large number ofdegrees of freedom of a spline. Inria



A Hybrid Hyperquadric Model for 2-D and 3-D Data Fitting 114 Fitting Hybrid Hyperquadrics4.1 OverviewThe �tting of a hyperquadric surface to 3-D data points consists in recovering the set ofparametersA de�ning the shape of the surface through the implicit Eq. (3). These parameterscan be recovered in di�erent ways. Two methods are usually used for �tting parametricmodels to data points:� Inside-Outside functions: This method (see [14] for an example applied to super-quadrics) is based on characterizing the implicit surface satisfying:H(x; y; z) = 1;where H is de�ned in Eq. (9), as a boundary between points lying inside the hyper-quadric and those lying outside the hyperquadric. Thus, for each 3-D point (x; y; z) wehave the following classi�cation:8>>>>><>>>>>: H(x; y; z) < 1 the point lies inside,H(x; y; z) = 1 the point is on the boundary,H(x; y; z) > 1 the point lies outside. (10)Given a set of 3-D data points, one can use the above classi�cation to �t the hyper-quadric to the data by a least-squares minimization of the inside-outside function. Theparameters recovery is done by minimizing:DXd=0 jH(xd; yd; zd)� 1j2 ; (11)whereD is the number of 3-D data points. Several authors have noted that this criteriondoes not constrain enough the shape recovery of superquadric models [14, 4] since itdoes not measure e�ciently the distance between the surface and the data.� Euclidean distances: This method is based on minimizing the approximate distancebetween the surface and 3-D data points. The hyperquadric surface is de�ned throughan arbitrary number of terms raised to arbitrary powers, thus the exact computation ofRR n�2188



12 Isaac COHEN, Laurent D. COHENthe distance is computationally expensive and sometimes numerically unstable. Insteada �rst order approximation of the euclidean distance from a 3-D point to a zero setof smooth functions is used [15, 8]. Assume X 2 IR3 is a data point close to thehyperquadric surface and suppose p is the closest point to X on the surface (the pointp is not known explicitly) such that H(p) = 1 and krH(p)k 6= 0, thusH(X) = 1 +rH(p)(X � p) +O(kX � pk2):Hence a good approximation of the distance (see [15] for a complete discussion) neara regular point p (i.e. such that krH(p)k 6= 0) is given by:kX � pk ' jH(X)� 1jkrH(X)k ; (12)since the closest point is in the direction ofrH(p) ' rH(X). Fitting the hyperquadricto a set of 3-D data points is done by a least-squares minimization problem:Find the set of parameters A minimizing the distance between the hyperquadricsurface and 3-D data points Xd:DXd=0 jH(Xd)� 1jkrH(Xd)k !2 (13)where D is the number of 3-D data points.Han et al [8] have used this criterion to recover hyperquadric shapes from image data.This approximate distance is biased, since if a data point Xd is close to a critical point(i.e. a point p such that krH(p)k ' 0 and H(p) 6= 1) the ratio given in Eq. (12)becomes large. This limitation constrains the set of admissible shape.For the hyperquadrics, minimizing this approximate distance is safe only in recoveringconvex shapes. In this case, i > 1, 8i = 1::N , thus the polynomial H given by Eq. (3),is strictly convex and krH(p)k 6= 0 except at its center point. This is no longer truefor the hybrid hyperquadric model. With this model we can have critical points whilehaving all the parameters i > 1 due to the exponential functions. An example is givenby the hybrid hyperquadric curve:H(x; y) = x22 + y22 + 12 exp �1 � x2 � y2�; Inria



A Hybrid Hyperquadric Model for 2-D and 3-D Data Fitting 13where we have H(x; y) = 1 for each (x; y) such that x2 + y2 = 1, and over this setwe also have H 0(x; y) = 0. In this case the use of a criterion given by Eq. (12) couldnot provide a solution of H(x; y) = 1. Hence the use of the criterion based on theapproximate distance can give erroneous shapes in the case of hybrid hyperquadrics.We have seen that the above methods are not appropriate for hybrid models, the inside-outside method does not perform well and the second approach could not be used with theexponential functions. In the following we propose a method based on an energy minimizationmethod which characterizes the 3-D data points we are trying to �t.4.2 Energy Minimizing Surface ApproachThe above criteria are relevant only if all data points are supposed to be part of the sameobject. When a segmentation task has to be done simultaneously to �t the model to part ofthe data, the previous approaches are not e�cient.An alternative approach is to use an energy based surface model. This physically basedapproach, used for deformable surfaces �tting [5, 18], constrains the set of admissible func-tions and de�nes a set of applied forces. This model can also be seen as a model of internaland external forces acting on the surface and the �tted surface is obtained through an equi-librium state of these forces. The internal forces are used to de�ne the di�erent degrees offreedom of the surface while the external forces characterize the data to be �tted.In the hybrid hyperquadric model the set of admissible functions is already de�nedthrough the implicit equation (9) and consequently we do not need to use any internal forceto constrain the set of admissible solutions. Henceforth the energy is de�ned only throughthe external forces (like in [19]). Let us consider a potential P characterizing the externalforces (i.e. the applied forces �!f are given by �!f = �rP ). In the forthcoming we will choosea potential P such that a hybrid hyperquadric will �t the data by minimizing the energyassociated to the potential P : E(A) = ZSA P (x; y; z)dxdydz; (14)RR n�2188



14 Isaac COHEN, Laurent D. COHENwhere A is the set of parameters de�ning the hyperquadric H given by Eq. (9) andSA = n(x; y; z) 2 IR3 such that H(x; y; z) = 1o (15)de�nes the hyperquadric surface.Fitting a hybrid hyperquadric to data is then equivalent to �nd the set of parameters Aminimizing the functional E(A) of Eq. (14).4.3 A Numerical Minimization SchemeThe implicit description of the shape of a hybrid hyperquadric and the lack of an analyticalexplicit parameterization make the model much more di�cult to handle. Indeed, we cannotexpress the functional E in terms of the parameters de�ning the hyperquadric independentlyof the chosen potential P . Thus we cannot use a direct gradient based method since we cannotcompute the derivatives: @E(A)@A = @@A ZSA P (x; y; z)dxdydz: (16)This clearly di�erentiates the model from the superquadrics since the explicit parameteriza-tion given by Eq. 2 allows to compute numerically the derivatives, and consequently to usea gradient based method to recover the set of parameters de�ning the superquadric.Instead we propose a two step numerical minimization of the energy E. This method isbased on starting from an initial estimate of the shape,1. deform it according to the applied forces �!f = �rP ,2. recover the hyperquadric parameters by minimizing the functional (11).These two steps are iterated until we reach a minimum of the functional E(A) (14).This method di�ers from the classic ones since it separates the criterion of the goodnessof �t and the recovery of the hybrid hyperquadric parameters. Although we use an inside-outside criterion (11) for the parameters recovery, we do not encounter the problem of howto estimate correctly the euclidean distance between the hyperquadric surface and the datapoints [4, 14, 15] since it is done through the de�nition of the potential P and is independentInria



A Hybrid Hyperquadric Model for 2-D and 3-D Data Fitting 15of the analytic equation of the surface. Also the data set to �t in step 2 is already segmentedand all these data points are relevant for the parameters recovery. This approach is similarto the deformable surfaces model, since we deform the surface according to a potential andthen recover the parameters of the hyperquadrics.This process is equivalent to solve a partial di�erential equation describing the surfaceevolution during the �t. We can write it as:8><>: @A@t +rAE(A) = 0; (x; y; z) 2 SAA0 Initial estimate (i.e initial shape). (17)where A is the set of parameters de�ning the hybrid hyperquadric HA(x; y; z), the parameterA0 de�nes the initial shape and rAE(A) represents the derivatives of the energy (Eq. 16)with respect to the parameter A. A stationary solution of Eq. (17) represents the parametersof the surface �tted to the data points. As noted before, one could solve Eq. (17) if ananalytical description of SA was available. This amounts to have an explicit parameterizationof the hybrid hyperquadrics.4.4 De�ning the Potential PDeforming a shape according to the minimization of a potential becomes a classical approachin image segmentation since the use of \Snakes" [10] and deformable surfaces [5, 18]. Anumber of authors [5, 6] (and references therein) have showed that the use of a potential forcharacterizing the data models a large set of attraction forces and allows to incorporate otherextracted informations such as edge points, distance maps, di�erential characteristics,: : : .The two steps approach presented in the previous section separates the �tting process intotwo independent parts. First, a deformation of the shape according to an attraction force,and a parameter recovery from the deformed shape. Consequently, the shape deformationcan be done according to a criterion which characterizes the data to be �tted. If we wantthe hyperquadric to �t edge points we can use the potential originally used in [10]:P (x; y; z) = � jrI(x; y; z)j2 ; (18)characterizing edge points as the minima of the functional E in Eq. (14). We can alsoconsider edge points given by an edge extractor by smoothing these edge points and considerRR n�2188



16 Isaac COHEN, Laurent D. COHENthe previous potential, or by computing a distance map d which measures at each point thedistance to the closest edge point (see [6] for a discussion on these potentials) and take thepotential: P (x; y; z) = d(x; y; z)2;or consider other types of potentials based on this distance map [5, 6].These potentials de�ne di�erent attraction forces. These forces are obtained by the equa-tion: �!f (x; y; z) = �rP (x; y; z): (19)We have noted in our experiments that the hyperquadric model performs better if the shape isdeformed in the direction of the normal. As expected, the minimization of E for hyperquadricparameters recovery converges in few iterations of the Levenberg-Marquardt method, sincethe shape is parameterized by a radial numerical parameterization. Thus we apply to theshape only the normal component of the force:�!fn (x; y; z) = � �rP (x; y; z) � �!n ��!nwhere �!n is the normal to the hyperquadric, it can be obtained analytically from the implicitequation ofH de�ned in Eq. (9) (see [9]) or numerically from the numerical parameterization.The use of similar potentials in the two steps approach proposed in the previous sec-tion permits the de�nition of di�erent error of �t functions which model several problemsencountered in image processing and extend the classical approach dedicated to data �tting.4.5 Adding terms: Re�ning the �tIn the previous sections we have discussed how to �t an hybrid hyperquadric to data pointsassuming a �xed number of terms in Eq. (9). We now present another contribution fore�ciently adding terms to the hyperquadric equation as they are needed, which means thatterms should be added to re�ne the �tting process. After showing how a hyperquadric isdeformed when adding a power or an exponential term, we give a way to choose these termssuch that the shape deformation is only local. We then de�ne a criterion for automaticallyInria



A Hybrid Hyperquadric Model for 2-D and 3-D Data Fitting 17re�ning the �t. This method is based on a geometric approach characterized by the insideset 
 associated to each hyperquadric. This set is de�ned by:
 = n(x; y; z) 2 IR3 s.t. H(x; y; z) � 1o ; (20)where H is a hyperquadric de�ned by Eq. (3), whereas the shape is de�ned by S given inEq. (15).There are two types of terms that can be added, a power of a 3-D a�ne form or anexponential term. The exponential term allows to introduce concavities in the hyperquadricshape. In the following the added term will be noted H0, and the new hyperquadric is de�nedby: H1(x; y; z) = H(x; y; z) +H0(x; y; z) = 1:Let 
0 and 
1 be the set associated as in Eq. 20 with H0 and H1 respectively. SinceH1(x; y; z) � H0(x; y; z) and H1(x; y; z) � H(x; y; z), the set 
1 is included in the otherones. Hence we have 
1 � 
0 \ 
 and for 
1 to be not empty, 
 and 
0 have to intersect.At points of S where H0 is close to 0, the shape is not changed much while where H0 isgreater it a�ects the shape of S. To introduce a slight deformation in the shape S, we haveto choose H0 small enough all over the set 
 and such its larger values are in the area to bedeformed.4.5.1 Addition of a power termWhen adding to the hyperquadric a power of a 3-D a�ne form likeH0(x; y; z) = ja1x+ a2y + a3z + a4j ;the set 
 \ 
0 must not be empty. The set 
0 is a strip (see Section 2.2) and for each termH0 the center area of this strip represents the smallest values of H0 and the highest valuesare on the hyperplanes. This allows to modify the shape S in a non symmetric manner bychoosing the center of the strip 
0 outside the set 
. Adding such terms with well chosenparameters allows to blunt a part of S while keeping it convex.Han [8] have proposed a method for adding polynomial terms to re�ne the �tting basedon splitting polynomial terms. This split was done on each term and the authors select theRR n�2188



18 Isaac COHEN, Laurent D. COHENterm which has the lower error of �t. This method is computationally expensive and yieldsgenerally a higher number of terms than necessary. In the following we present a methodbased on the error of �t function (14) and a geometric interpretation of the added polynomialterm. This last feature characterizes our approach since it allows a geometric control on theconvex polytope 
.We start the algorithm with a �xed number of terms, once we have attained a minimumof the energy (14) we test the goodness of the �t. If the accuracy of the �t satis�es agiven requirement (typically we compare the energy with a given value), we stop the �ttingprocess, otherwise we add a polynomial term. Adding a polynomial term is done through thede�nition of a function which characterizes the disparities between the hyperquadric surfaceand the data we are trying to �t. These data are not necessarily the exact data points weare trying to �t, since our algorithm (described in section 4.3) is iterative and hence at eachiteration, in the second step, we try to �t the points obtained after applying the force f(Eq. (19)) to the previous hyperquadric surface.We de�ne C = sign��!n � �!f �P; (21)over the whole shape S where �!n is the outward normal and �!f is the attraction force. Thisfunction represents a measure of the relative position of the recovered shape and the initialdata points. Locally it measures if a data point is inside or outside the recovered shape. Thiscriterion is more general than a classical inside-outside function where the points to be �ttedare already known. Its de�nition, based on the force �!f attracting the hyperquadric towardthe data points, measures the relative position between the current hyperquadric and thedata points.If in a given area C is negative, the recovered shape S embodies the data points. To re�nethis �tting we add a power term de�ned in the following way: we choose the point Xd of Swhere C is negative which has a maximal force magnitude. We then consider at this pointthe a�ne plane D1 (or line in 2-D case) a1x+ a2y+ a3z+ a4 = 1 which is orthogonal to theattraction force �!f at this point. The second algebraic equation a1x+ a2y + a3z + a4 = �1is chosen such that 
 is included in the strip 
0. Since we want to a�ect the shape of 
 onlyInria
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D0 D1Xd�!f �!n
Figure 5: An illustration of the geometric approach for adding a power term to re�ne the�tting process. On the left we represent a triangular form (in solid lines) �tted by a two termshyperquadric model (in dashed lines) and the associated strips. The �gure on the right showsthe de�nition of the added power term according to the criterion C (21), D1 and D0 representrespectively the equations H0(x; y) = a1x+ a2y + a3 = 1 and H0(x; y) = a1x+ a2y + a3 = 0associated with the added power term. The convex polytope of the new hyperquadric isdrawn in gray.
RR n�2188
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Figure 6: An example of adding polynomial term. In the left we show the �t of a triangularshape (in black) with an hyperquadric de�ned by two terms (in gray). This triangular shapeis accurately recovered by adding a polynomial term with the proposed approach.locally, we constrain also the strip 
0 to have the opposite side of 
 in the area where H0is small. An illustration of the geometric de�nition of these terms is given in Fig. 5 wherewe also show the change of the convex polytope associated to the hyperquadric when add apower term.In �gure 6 we illustrate this method, the �rst �gure shows the obtained shape withtwo polynomial terms, and as expected the two terms are not su�cient for recovering atriangular like shape. The second �gure shows the obtained shape once we have added aterm by considering the approach explained above. Once we have set the new term, theshape is recovered in few iterations.In �gure 7 we show an example of recovering image boundaries based on hyperquadrics.In this example we process a Magnetic Resonance Image for extracting the contours of aventricle and an auricle. In this �gure the two structures were extracted by using a 6-termshyperquadric. Inria
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Figure 7: Extracting cavities boundaries in a MRI image of the heart.The Fig. 8 shows a new type of remote sensing images. This high resolution radiometerimage obtained with the NOAA-12 satellite measures the sea surface temperature of the westfrench coast. In this type of images we are interested in segmenting the vortex appearing inthe image they correspond to a mix of cold and heat water-fronts. In �gure 8 we show thesegmentation of the vortex edge points with a 3-term hyperquadric model.4.5.2 Addition of an exponential termIn this case we consider: H0(x; y; z) = c e� LXl=0 jKl(x; y; z)jl : (22)Adding an exponential term to the hyperquadric allows to introduce a concavity in the shapeS while keeping a smooth shape. The shape of the concavity is completely de�ned by 
0which is the outside of the hyperquadric given by LXl=0 jKl(x; y; z)jl = log c. If c � 1 then theset 
0 is the full 3-D space. Since H0 has a fast decay in 
0, it deforms the shape S onlylocally to introduce a concavity. In Fig. 9 we have used a 3 terms hyperquadric and added aconcavity through an exponential term. In this example the bounding polygon of 
 de�ningRR n�2188
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Figure 8: Fit of a 3 terms hyperquadric to the edge points of a vortex in a NOAA-12surface sea temperature image of the west french coast. We show an overlay of the obtainedhyperquadric on the image (where the gray level where enhanced to visualize the vortex) toand its edge points.the hyperquadric and of 
0 de�ning the concavity are drawn in gray. Once we have de�nedthe set 
0 it de�nes also the local shape deformation of the initial hyperquadric H.In the �tting process, adding an exponential term to the hyperquadric is based on thesame criterion as de�ned by the function C of Eq. (21). Once we have detected those pointswhere C is negative we choose the point (x; y; z) 2 IR3 such that jCj = P is maximal and de�nea concavity centered at this point Xc = (xc; yc; zc) by choosing appropriately the parametersof the exponential term. Indeed, we consider the point Xd = (xd; yd; zd) given by displacingthe point Xc according to the attraction force. The distance between these two points givesthe half width of a �rst strip centered in Xc and oriented by the hyperquadric tangent at thepoint Xc. The second strip is also centered at Xc and oriented by the hyperquadric normal.Its width is given by searching around Xc the points p1 and p2 minimizing C (21). These twoInria
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Figure 9: This �gure illustrates the geometric de�nition of a concavity through the de�nitionof its domain. The �rst �gure shows the initial hyperquadric de�ned by three terms withits bounding polygon and the ellipse de�ning the concavity. The second �gure shows theobtained hybrid hyperquadric shape. The local control of the shape is given by the localde�nition of the added exponential term. The localization and the size of the ellipse de�nethe local properties of the deformed hyperquadric.strips de�ne a two terms hyperquadric and consequently the shape of the added concavity.An illustration of the de�nitions of these strips is given in Fig.10. In this �gure the datapoints are in solid lines and the recovered hyperquadric before adding exponential term isdrawn in dashed lines.The last coe�cient c in Eq. (22) can also be estimated from the current hyperquadric Hevaluated at the point Xd. We look for c such thatH1(xd; yd; zd) = H(xd; yd; zd) + c e� LXl=0 jKl(xd; yd; zd)jl = 1;which yields: c = (1�H(xd; yd; zd)) e LXl=0 jKl(xd; yd; zd)jl :RR n�2188
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�!nXd Xcp1 p2Figure 10: An illustration of the proposed geometric method for adding a concavity in ahyperquadric shape. The shape to be recovered is drawn in solid lines and the �tted hyper-quadric is given in dashed lines. The gray area represents the bounding polygon of set 
0de�ning locally the shape and the location of the concavity. This set is de�ned by the pointXc (maximal value of C) and Xd is obtained by displacing Xc according to the force �!f .These two points de�ne the �rst strip, the second strip is de�ned by the points p1 and p2(local minima of C) and the outward normal �!n .In the di�erent experiments done with our method, we have found that taking L = 2 yieldsa su�cient variety of allowable shapes. Naturally we can increase this number of term byconsidering a similar approach as described in section 4.5.1.In �gure 11, we tried to �t the data points with a hyperquadric curve (Fig. 11 left). In thisexample we have started the �t with two terms and we have added an other polynomial termending with a representation of the shape obtained with three terms, but the obtained �tis not accurate. Alternatively, by introducing two concavities with our method, as describedabove, we obtain an accurate �t of the data (Fig. 11 right).In �gure 12 we give an example of �tting a hyperquadric surface to 3-D data points.These points were obtained from a 5-terms hyperquadric with 3 concavities. Our hybridInria
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Figure 11: An example of �tting our hybrid model to non convex data points. The �rst �gure(left) shows the obtained three terms hyperquadric. As expected we could not �t accuratelythe data by adding power terms as described in section 4.5.1, contrarily using a hybridhyperquadric model yields an accurate �t of the data. In this example we have started witha 2 terms hyperquadric model and added two exponential terms as described in section 4.5.2.model with the geometric approach of adding polynomial and exponential terms allows torecover accurately the 3-D data points.In the next section we give the mathematical background, showing clearly the localde�nition of the model, allowing to deform locally the shape of a given hybrid hyperquadric.4.5.3 Justi�cation of the local character of the deformationWe suppose a couple (X0; r0) is given where X0 is a point on the hyperquadric and r0 is thedistance to which this point has to be moved. An error � > 0 is admitted for displacementof the hyperquadric points outside a neighborhood of X0.We give here the main idea of the way to choose an extra term being sure that no pointon the hyperquadric outside the ball centered at X0 of radius r0 is moved of more than �.RR n�2188
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Figure 12: A �t of 3-D data points with a hybrid hyperquadric. The obtained surface isrendered, the dots represent the given 3-D data Inria



A Hybrid Hyperquadric Model for 2-D and 3-D Data Fitting 27Lemma 1 There is an �0 > 0 such that if 0 < � < �0, when deforming the hyperquadricH = 1 to the other hyperquadric H = 1� �, no point is moved more than �.We mean by this that the distance between a point of the new hyperquadric and the �rsthyperquadric is less than �. This is due to the continuity of the equation H = � withrespect to � using a radial parameterization for example. This can be seen directly usingthe estimation of the distance (12) of a point X such that H(X) = 1 � � and the �rsthyperquadric S of equation H = 1:d(X;S) ' jH(X) � 1jkrH(X)k = �krH(X)k : (23)This shows that assuming there is no singular point on the hyperquadric, points on the newhyperquadric can be made close enough to the �rst one.Lemma 2 We can choose c and K such that adding to the hyperquadric equation the termH0 = ce�K , the deformation is only local on a radius r0 around X0 to an error within �.Using � given by Lemma 1, we have to choose c such that H0 < � for kX �X0k > r0, Forexample we can take K = kX � X0k2 (in our example, we have in fact two axes and K iselliptic, K = fx� x0r1 g2 + fy � y0r2 g2). We have kX �X0k2 > r20 implies ce�K < ce�r20 . Itis su�cient to choose c satisfying c � �er20 .4.5.4 Adding terms: An algorithmIn this section we describe the algorithm used to add terms in the implicit representation ofthe shape. As mentioned before, adding terms is used to re�ne the �t to obtain an accuraterepresentation of the data. An added term can be of two types: power or exponential term.In the previous sections we have described the geometric de�nition of the coe�cients of theadded term, here we summarize the used algorithm.1. Start the �t with a given number of parameters with a classic hyperquadric,2. Minimize the energy E(A) (14) until we reach a stationary solution (i.e. until theenergy E(A) does not decrease)RR n�2188



28 Isaac COHEN, Laurent D. COHEN3. Test for the accuracy of the �t (typically if the error of �t is smaller than a givenvalue):� while the accuracy of the �t is not su�cient, we add a power term according tothe method described in section 4.5.1 and process stage 2.� while the accuracy of the �t is not su�cient, we add an exponential term to intro-duce concavities according to the method described in section 4.5.2 and processstage 2.5 Hybrid Hyperquadric Fitting FromVery Sparse DataThe hybrid hyperquadric �tting described in the previous sections is based on deforminghyperquadric points according to an attraction force and recovering the hyperquadric para-meters by minimizing the functional (11). This second step have to take into account thesparseness of the data since minimizing functional (11) gives the same weight to all datapoints. Hence if the given data are very sparse we will not recover the shape of the givendata. In some other works the authors �t the shape according to the data lying in the normaldirection of the initial shape but these approaches assume that the location of the data pointsis known. This assumption is not valid when using an energy minimization approach like theone proposed in section 4.2. Nevertheless, in this section we propose a new method for de�-ning the weight for each data point according to the sparseness of the data. This method isbased on the dot product between the outward normal of the shape and the attraction forcederived from the potential P (18). Hence, once we have displaced the hyperquadric pointsaccording to the force �!f (19), we recover the hyperquadric parameters by minimizing:DXd=0 �������� �!f�!f  � �!n �������� jH(xd; yd; zd)� 1j2 ; (24)where D is the number of points tesselating the shape of the hyperquadric.This criterion allows to weight data points according to the attraction force and thehyperquadric normal. Points lying in the normal direction will be weighted to one whileInria
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0 1
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Figure 13: A numerical parameterization of a 2-D hybrid hyperquadric, where the angle� 2 [0; 2�[ is no longer monotonous. In the left we represent a hybrid hyperquadric de�nedby three polynomial term and a concavity term, on the right we represent the function� 2 [0; 2�[ allowing to describe e�ciently the shape of the parametric model.points lying in other directions will be weighted according to the dot product between theattraction force and the normal direction. This weighting function allows to measure thesparseness of the data with regard to the numerical tessellation of the surface.6 Generalization of the Numerical Radial Paramete-rizationThe use of a numerical radial parameterization gives an e�cient description of the shape.This description does not constrain the set of allowable shapes in the case of hyperquadrics,since the recovered shape is convex (for i � 1). When we consider hybrid hyperquadricsshapes, the use of a classical radial parameterization constrains the set of allowable shapes.Indeed the radial parameterization can only describe a curve (or surface) that is star-shapedwith respect to the center point of the parameterization. This means that for all point M 2SA on the hybrid hyperquadric, the line segment joining the center of the parameterizationRR n�2188



30 Isaac COHEN, Laurent D. COHENto M lies entirely within the hyperquadric (in 
) [13]. Hence the radial parameterizationcannot always describe a hybrid hyperquadric shape since all the points satisfying Eq. (9)cannot be \seen" from the center point of the parameterization.A way to overcome this constraint, is to consider a multivalued radial parameterizationof the parameters � and '. For each (�; ') we search the di�erent scalars r minimizingjH(X(r; �; '))� 1j2 (25)where X = (x; y; z) like in section 2.3. But instead of stopping after the �rst solution we goon until the above expression remains monotonous. This corresponds to reach the boundingpolygon of the hyperquadric. Thus the angle � (respectively ') is no longer a monotonousfunction scanning the interval [0; 2�[ (resp. [��=2; �=2[) but depends on the shape of thehybrid hyperquadric. This method amounts to have a multivalued function de�ning theradius of the numerical parameterization. A second step consists in sorting this set of pointsto describe the hyperquadric as a parameterized curve (or surface). We give an illustrationof such a technique in �gure 13 where the variable � 2 [0; 2�[ spans this interval according tothe parameters of the hybrid hyperquadric. The obtained shape cannot be represented witha classical radial parameterization since it is not star-shaped.This new numerical parameterization can be characterized through the de�nition of afunction (u; v) 2 [0; 1]� [0; 1] 7�! (r(u; v); �(u; v); '(u; v)) 2 IR3where (u; v) parameterizes the set of points X = (x; y; z) satisfying equation (9). De�ningsuch a function allows to describe the set of points satisfying the hybrid hyperquadric equa-tion (9) according to di�erent criteria such as arc length, and consequently to incorporatethe characterization of the solutions of equation (9) and the sorting of these points in thesame process.In �gure 14 we give some complex 2-D shape that can be obtained with this new numericalparameterization. This method can handle non connected shapes. This method applies alsofor 3-D hybrid hyperquadric, in this case the surfaces are represented through a Delaunaytriangulation of the set of points satisfying Eq. (9). An example of non star shaped hybridhyperquadric surface is given in �gure 15. In this �gure we show only the isoparametric curvesInria
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Figure 14: Some examples of the shapes that can be obtained with the new numerical para-meterization. This new method allows the description of non star shaped curves and also nonconnected curves. Remark that the density of points depends on the angle between the curvetangent and the line linking a point to the center of the parameterization (in this examplethe origin)de�ning the surface, this illustrates the fact that adding an exponential in a hyperquadricimplicit description can generate non connected shapes which are e�ciently described withthe new multivalued parameterization.7 ConclusionWe have developed a hybrid hyperquadric model with global and local properties inheritedfrom hyperquadrics. This model allows a wide variety of shape modelling including non-convex smooth shapes and is henceforth useful for reconstructing 2-D and 3-D shapes. Anumerical parameterization of the shape and an energy minimization scheme is proposed forparameters recovery, allowing an accurate �t of the data independently of the number of theRR n�2188
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Figure 15: An example of a 3-D non star shaped hybrid hyperquadric surface obtained withthe new multivalued parameterization. In this �gure we show the plot of the surface throughits isoparametric curves illustrating more e�ciently its complex shape Inria



A Hybrid Hyperquadric Model for 2-D and 3-D Data Fitting 33parameters describing the shape. A new geometric approach allows to increase the numberof parameters and to automatically add shape concavities to re�ne the �t. We have alsopresented a new numerical parameterization to handle non connected shapes and non starshaped objects improving the solution of the hybrid hyperquadric equation.The obtained parametric model describes global and local properties through a uniqueimplicit equation yielding a representation of the shape by means of its parameters. Furtherwork should be done in the use of the hybrid hyperquadrics parameters for object recognitionand for characterizing object deformation from its parameters.References[1] A. H. Barr. Superquadrics and angle-preserving transformations. IEEE Computer GraphicsApplication, 1:11{23, 1981.[2] A. H. Barr. Global and local deformations of solid primitives. Computer Graphics, 18(3):21{30,July 1984.[3] J. F. Blinn. A generalization of algebraic surfaces drawing. ACM Transactions on Graphics,1(3):235{256, July 1982.[4] T. E. Boult and A. D. Gross. Recovery of superquadrics from 3-D informations. In Proc.Spatial Reasoning and Multi-Sensor Fusion Workshop, pages 128{137, St-Charles IL, 1987.[5] Isaac Cohen, Laurent D. Cohen, and Nicholas Ayache. Using deformable surfaces to segment 3-D images and infer di�erential structures. Computer Vision, Graphics, and Image Processing:Image Understanding, 56(2):242{263, 1992.[6] Laurent D. Cohen and Isaac Cohen. Finite element methods for active contour models andballoons from 2-D to 3-D. IEEE Transactions on Pattern Analysis and Machine Intelligence,15(11):1131{1147, November 1993.[7] Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical Optimization. AcademicPress, London, 1981.[8] Song Han, Dmitry B. Goldgof, and Kevin W. Bowyer. Using hyperquadrics for shape recoveryfrom range data. In IEEE Proceedings of the Third International Conference on ComputerVision, pages 492{496, Berlin, June 1993. IEEE.[9] Andrew J. Hanson. Hyperquadrics: Smoothly deformable shapes with convex polyhedralbounds. Computer Vision, Graphics, and Image Processing, 44:191{210, 1988.[10] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour models.International Journal of Computer Vision, 1:321{331, 1987.[11] D. Kriegman and J. Ponce. On recognizing and positioning curved 3-D objects from imagecontours. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(12):1127{1137,December 1990.RR n�2188
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