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Summary. Multi-resolution methods applied to active contour models can speed
up processes and improve results. In order to estimate those improvements, we de-
scribe and compare in this paper two models using such algorithms. First we pro-
pose a multi-resolution algorithm of an improved snake model, the balloon model.
Convergence is achieved on an image pyramid and parameters are automatically
modified so that, at each scale, the maximal length of the curve is proportional to
the image size. This algorithm leads to an important saving in computational time
without decreasing the accuracy of the result at the full scale. Then we present a
multi-resolution parametrically deformable model using Fourier descriptors in which
the curve is first described by a single harmonic; then harmonics of higher frequen-
cies are used so that precision increases with the resolution. We show that boundary
finding using this multi-resolution algorithm leads to more stability. These models
illustrate two different ways of using multi-resolution methods: the first one uses
multi-resolution data, the second one applies multi-resolution to the model itself.

1. Introduction

We propose two applications of multi-resolution methods for active contour
models. In section 2 a first model which consists in a multi-resolution ap-
proach of the balloon model, introduced by Cohen [2], is described. Its aim
is to speed-up the process while allowing a constant accuracy of the result.
Then section 3 presents a parametric model based on Fourier descriptors
showing that a multi-resolution algorithm can increase the model stability.
These algorithms are applied for facial features extraction. Their respective
advantages are discussed in the conclusion.

2. A multi-resolution balloon model

2.1 The balloon model

The use of energy-minimizing curves, known as “snakes”, to extract features
of interest in an image has been introduced by Kass, Witkin and Terzopou-
los [6]. Further improvements to this model were successively developed by
many other authors [1, 2, 3, 8].
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The contour model, as introduced in [6], is a curve v(s) = (x(s), y(s))
that minimizes an energy functional of the following form:

E(v) = /Q of[v'(s)[I* + Bllv" (s)II* + P(v(s))ds (2.1)

where P is the potential associated to the image /. Usually P is equal to the
opposite of the square of the image gradient norm:

P=—|VI?

If v is a local minimum for E, it satisfies the associated Euler-Lagrange

equation:
—(av') +(Bv")' = F(v) = =V P(v) (2.2)
+ Cyclic Boundary conditions '

After discretizing equation (2.2) by finite differences we obtain a linear
system:
AV = F,

where A is a pentadiagonal matrix, V' = (v;); is the vector of positions
v; = v(ih), F represents the forces at these points and h is the space dis-
cretization step.

The associated evolution equation (see [2]) may be defined, after temporal
discretization, by:

Vi=(Id+7A) YV rR(VETD) (2.3)

where 7 is the time step, Id denotes the identity matrix, ¢ is the time para-
meterization index and V! describes the curve position at step time ¢.

The balloon model [2] is an improvement of this classical snake model
that modifies the force F' by normalizing the associated potential force and
by adding an internal pressure force:

vP

F= "“W +7(s) (2.4)

where 7(s) is the vector normal to the curve. The first term of equation
(2.4) corresponds to the normalized image force. The second term is the
internal pressure with amplitude ~.
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2.2 Multi-resolution algorithm

A multi-resolution approach for the balloon model consists in solving itera-
tively the problem at successive scales. First, the active contour solution is
searched and found at a coarse scale, needing few discretization nodes and
solved by a small linear system on a small image. Then the solution curve at
this coarse scale is used as initialization at a finer one. This process is itera-
tive. A similar algorithm is presented in [4] for different scales of blurring of
the potential image.

Giving a, (8 and vy as parameters, the initial curve is projected on a coarse
image of size 2V =5 x 2V ~5 and discretized with 2 =9 nodes ; where 27V x 2V
is the size of the original image, 2™ is the number of discretization nodes at
the finest scale and S is the coarsest scale. When the convergence at scale
S is achieved, the same process is applied at a finer scale (S — 1) using the
solution curve obtained at scale S as initializing curve. By propagating this
result from the coarser to the finer scale, we obtain a result on the initial full
scale image without loss of precision. since the convergence process ends at
scale 0 which corresponds to the original image.

Therefore the multi-resolution algorithm may be summarized in the fol-
lowing way : Given the initial guess at scale .S, denoted Vg_,, the iterative
scheme has the following form at scale p, decreasing from S to 0, while the
image size increases from 2V =5 to 2%:

1"/;? - UIJ(V;M)

2.V, = (Id+74)7 (V,7H +7F(V,7) (2.5)
3.Vy is the solution of equation (2.3) at convergence at scale p
where:

— V, is the vector of size 2M =P representing the discrete curve at scale p;
— 11, is the projection from scale p + 1 to scale p;

— F}, is the force vector at scale p;

— A, the stiffness matrix of size 2M=p % 9M=p 4t scale p.

Since the size of the shape to be detected decreases when scale p increase,
the parameter affected to the expansion is calculated at each scale so that
the limit size of the curve is constant among scales. This is achieved by using

a force defined as: vp
Y —
F=_L k.
2 ") o)

When there is no image force (k = 0), it can be shown that the limit curve
is a circle whose size is chosen as a characteristic to be invariant with respect
to scale. To obtain a limit perimeter equal to L, the expansion parameter
must be set to:

(2.6)

v = 4nL(a + 47%B) (2.7)
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In order to have a limit length at scale p equal to %} the expansion value is

equal must be set to of.
Therefore the multi-resolution algorithm may be summarized in the fol-
lowing way:

1. Build the pyramid of images from scale 0 (the original image) to scale S.

2. Given an initial curve Vj,;; at scale 0, construct the curve Vg, by pro-
jecting Vi, in the image at scale S and reducing the number of dis-
cretization points to 2 5.

3. Calculate the solution Vg of the iterative scheme (2.5) at scale S using
Vg1 as initialization.

4. For p decreasing from (S — 1) to 0, calculate, at scale p, the curve vy
(discretized by 2™ P points) using the projection of Vp41 asinitialization.

The main advantage of this method, as expected with multi-resolution
algorithms [10], is to reduce computing costs:

— Initial convergence leads to a rough estimation of the boundary and is
achieved at a coarse scale by solving a small linear system. At a finer scale
the initial curve is already close to the boundary. The number of iterations
to achieve convergence when dealing a large system to solve is thus smaller
than the standard method.

— Since the number of discretization points decreases at the coarser scales,
computation cost at each step of convergence is also smaller than with the
standard method.

Figure 2.1 shows the results of mouth extraction using three consecutive
scales (for representation images have been normalized to the same size).
The computation time needed for convergence has been 55% shorter with
the multi-resolution balloon model than with the standard balloon model.

.

i kelle

Fig. 2.1. Extraction of the mouth. From left to right: initialization at scale 2,
results obtained at scales 2 then 1 and final result at scale 0.
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3. A multi-resolution parametrically deformable model

3.1 Fourier descriptors active contour model

In this section, we present a parametric model based on the elliptic Fourier
description. While in the snake model, the constraints on the global regularity
of the contour are included in the internal energy function, these constraints
may now be included in the parametrical model itself. It is possible to apply
a multi-resolution algorithm to such a model by defining the scale as the
number of harmonics used to describe the curve.

The use of Fourier descriptors for active contour model has been intro-
duced by Staib and Duncan [9] in order to extract an object boundary. Their
method is based on the use of probability distributions on the parameters.

In order to be less sensitive to the initial parameter value, we propose a
variational approach similar to the method used in the snake model [7].

An elliptic Fourier representation of a closed curve is a parametrical curve

v defined by:
z(6) al cos(0k)
0= (19 - > (o). (1)
where Ay, is a 2X2 matrix, N the number of harmonics used to describe the
curve and f# the angular parameterization index.

The curve modeling the boundary of the object is obtained by minimizing
an energy functional similar to the snake energy (2.1):

E(v) = /0 Wp(v(e))uagf) o, (3.2)

where A € RT.

The first term P is an image potential equal to the opposite of the square
of the image gradient (P = —|VI|?) and the second one is an elasticity
term associated to the curve tension. The energy gradient with respect to

the parameters of the model is a vector of size 4N, whose components are

the partial derivatives %—5 with regard to each of the four elements of the IV

matrices Ay:

27
oE P v () n 2)\80(9) ()

o/, da 9000 00

Given an initial set of parameters, the curve v* that is the closest local
minimum of F is obtained by applying a Newton minimization. This leads
to several instability problems when high frequency harmonics are used be-
cause the curve has weak regularity constraints and can be attracted by noise
points. It is thus interesting to apply this model with a multi-resolution algo-
rithm in order to reduce the possibilities that the optimization process tends
to a weak local minimum that is not meaningful.

df, (3.3)
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3.2 Multi-resolution algorithm

On the contrary to the snake model, there is no geometrical constraint term
in the energy functional because it is included within the model. Thus we
restrict the space of admissible curves by defining the number of harmonics
used to describe the curve. The aim of this multi-resolution algorithm is to
obtain a better stability by increasing progressively the number of harmonics.
Using only the first term of the Fourier decomposition defines an ellipse ; this
was used in [5]. The iterative algorithm is as follows:

1. Describe the object shape with an ellipse curve v;.

2. Find a curve v{ described by a single harmonic which is a minimum of
F using vy as initialization.

3. For p increasing from 2 to N, using the curve v;_; as initialization, find
the curve v, described by p harmonics.

Figure 3.1 shows the convergence process of the multi-resolution algorithm
applied to an image of the mouth. The curve is first described by a single
harmonic and evolves from an initial position to a coarse approximation of
the mouth. As the number harmonics increases, the regularity constraints are
smaller and the mouth boundary can be described more precisely. In order to
illustrate the stability gain due to multi-resolution algorithm, figure 3.2 shows
several stages of the convergence process when using standard convergence
method.

Fig. 3.1. Extraction of the mouth using the multi-resolution algorithm. From left
to right: initialization and results obtain with 1, 4 then 9 harmonics.

4. Conclusion

Two different applications of multi-resolution algorithms for active contour
models have been presented in this paper. For the balloon model, the multi-
resolution method is applied to data. Since a large part of the convergence
process is achieved at coarse scales on small images, this algorithm leads to
saving in computational time. Although the expansion parameter is modified



Multi-Resolution algorithms for Active Contour Models 7

— — — ———

f’f"'"',,_._ A

.’ .,-g,\i | t

Fig. 3.2. Extraction of the mouth without the multi-resolution algorithm using 9
harmonics . From left to right: initialization and results obtained at several stages
of the convergence. The right image presents the final result.

so that the maximal length of the curve is proportional to the size of the im-
age, the other parameters bound to the regularity constraints are not modified
when scale changes. With parametrically deformable model using Fourier de-
scriptors the constraints on the global regularity of the contour are included
in the parametrical model itself. Thus, by applying multi-resolution to the
parameters and defining the scale as the size of the Fourier decomposition,
the regularity constraints are determined by the scale. Such an algorithm can
improve the model stability and allows the use of higher frequency harmon-
ics to extract irregular object boundary. However, when extracting highly
irregular boundary, a large number of harmonics are needed and it may be
preferable to use the balloon model which can handle a large spectrum of
shapes with limited number of parameters.
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