
Multi-Resolution algorithms for ActiveContour ModelsBertrand Leroy1, Isabelle L. Herlin1, and Laurent D. Cohen21 INRIA - AIR project, Rocquencourt, B.P. 105, 78153 Le Chesnay cedex, France.email: Bertrand.Leroy@inria.fr, Isabelle.Herlin@inria.fr2 CEREMADE, U.R.A. CNRS 749, Universit�e Paris IX- Dauphine, Place duMar�echal de Lattre de Tassigny 75775 Paris cedex 516, Franceemail: Laurent.Cohen@ceremade.dauphine.frSummary. Multi-resolution methods applied to active contour models can speedup processes and improve results. In order to estimate those improvements, we de-scribe and compare in this paper two models using such algorithms. First we pro-pose a multi-resolution algorithm of an improved snake model, the balloon model.Convergence is achieved on an image pyramid and parameters are automaticallymodi�ed so that, at each scale, the maximal length of the curve is proportional tothe image size. This algorithm leads to an important saving in computational timewithout decreasing the accuracy of the result at the full scale. Then we present amulti-resolution parametrically deformable model using Fourier descriptors in whichthe curve is �rst described by a single harmonic; then harmonics of higher frequen-cies are used so that precision increases with the resolution. We show that boundary�nding using this multi-resolution algorithm leads to more stability. These modelsillustrate two di�erent ways of using multi-resolution methods: the �rst one usesmulti-resolution data, the second one applies multi-resolution to the model itself.1. IntroductionWe propose two applications of multi-resolution methods for active contourmodels. In section 2 a �rst model which consists in a multi-resolution ap-proach of the balloon model, introduced by Cohen [2], is described. Its aimis to speed-up the process while allowing a constant accuracy of the result.Then section 3 presents a parametric model based on Fourier descriptorsshowing that a multi-resolution algorithm can increase the model stability.These algorithms are applied for facial features extraction. Their respectiveadvantages are discussed in the conclusion.2. A multi-resolution balloon model2.1 The balloon modelThe use of energy{minimizing curves, known as \snakes", to extract featuresof interest in an image has been introduced by Kass, Witkin and Terzopou-los [6]. Further improvements to this model were successively developed bymany other authors [1, 2, 3, 8].



2 Bertrand Leroy, Isabelle L. Herlin, and Laurent D. CohenThe contour model, as introduced in [6], is a curve v(s) = (x(s); y(s))that minimizes an energy functional of the following form:E(v) = Z
 �kv0(s)k2 + �kv00(s)k2 + P (v(s))ds (2.1)where P is the potential associated to the image I . Usually P is equal to theopposite of the square of the image gradient norm:P = �jrI j2If v is a local minimum for E, it satis�es the associated Euler-Lagrangeequation: � �(�v0)0 + (�v00)00 = F (v) = �rP (v)+ Cyclic Boundary conditions (2.2)After discretizing equation (2.2) by �nite di�erences we obtain a linearsystem: AV = F;where A is a pentadiagonal matrix, V = (vi)i is the vector of positionsvi = v(ih), F represents the forces at these points and h is the space dis-cretization step.The associated evolution equation (see [2]) may be de�ned, after temporaldiscretization, by: V t = (Id+ �A)�1(V t�1 + �F (V t�1)) (2.3)where � is the time step, Id denotes the identity matrix, t is the time para-meterization index and V t describes the curve position at step time t.The balloon model [2] is an improvement of this classical snake modelthat modi�es the force F by normalizing the associated potential force andby adding an internal pressure force:F = �k rPjjrP jj + �!n (s) (2.4)where �!n (s) is the vector normal to the curve. The �rst term of equation(2.4) corresponds to the normalized image force. The second term is theinternal pressure with amplitude .



Multi-Resolution algorithms for Active Contour Models 32.2 Multi-resolution algorithmA multi-resolution approach for the balloon model consists in solving itera-tively the problem at successive scales. First, the active contour solution issearched and found at a coarse scale, needing few discretization nodes andsolved by a small linear system on a small image. Then the solution curve atthis coarse scale is used as initialization at a �ner one. This process is itera-tive. A similar algorithm is presented in [4] for di�erent scales of blurring ofthe potential image.Giving �, � and  as parameters, the initial curve is projected on a coarseimage of size 2N�S�2N�S and discretized with 2M�S nodes ; where 2N �2Nis the size of the original image, 2M is the number of discretization nodes atthe �nest scale and S is the coarsest scale. When the convergence at scaleS is achieved, the same process is applied at a �ner scale (S � 1) using thesolution curve obtained at scale S as initializing curve. By propagating thisresult from the coarser to the �ner scale, we obtain a result on the initial fullscale image without loss of precision. since the convergence process ends atscale 0 which corresponds to the original image.Therefore the multi-resolution algorithm may be summarized in the fol-lowing way : Given the initial guess at scale S, denoted V �S+1, the iterativescheme has the following form at scale p, decreasing from S to 0, while theimage size increases from 2N�S to 2N :1:V 0p = �p(V �p+1)2:V tp = (Id+ �Ap)�1(V t�1p + �Fp(V t�1p )) (2.5)3:V �p is the solution of equation (2.3) at convergence at scale pwhere:{ Vp is the vector of size 2M�p representing the discrete curve at scale p;{ �p is the projection from scale p+ 1 to scale p;{ Fp is the force vector at scale p;{ Ap the sti�ness matrix of size 2M�p � 2M�p at scale p.Since the size of the shape to be detected decreases when scale p increase,the parameter a�ected to the expansion is calculated at each scale so thatthe limit size of the curve is constant among scales. This is achieved by usinga force de�ned as: F = 2p�!n (s) � k rPjjrP jj: (2.6)When there is no image force (k = 0), it can be shown that the limit curveis a circle whose size is chosen as a characteristic to be invariant with respectto scale. To obtain a limit perimeter equal to L, the expansion parametermust be set to:  = 4�L(�+ 4�2�) (2.7)



4 Bertrand Leroy, Isabelle L. Herlin, and Laurent D. CohenIn order to have a limit length at scale p equal to L02p the expansion value isequal must be set to 2p .Therefore the multi-resolution algorithm may be summarized in the fol-lowing way:1. Build the pyramid of images from scale 0 (the original image) to scale S.2. Given an initial curve Vinit at scale 0, construct the curve V �S+1 by pro-jecting Vinit in the image at scale S and reducing the number of dis-cretization points to 2M�S.3. Calculate the solution V �S of the iterative scheme (2.5) at scale S usingV �S+1 as initialization.4. For p decreasing from (S � 1) to 0, calculate, at scale p, the curve V �p(discretized by 2M�p points) using the projection of V �p+1 as initialization.The main advantage of this method, as expected with multi-resolutionalgorithms [10], is to reduce computing costs:{ Initial convergence leads to a rough estimation of the boundary and isachieved at a coarse scale by solving a small linear system. At a �ner scalethe initial curve is already close to the boundary. The number of iterationsto achieve convergence when dealing a large system to solve is thus smallerthan the standard method.{ Since the number of discretization points decreases at the coarser scales,computation cost at each step of convergence is also smaller than with thestandard method.Figure 2.1 shows the results of mouth extraction using three consecutivescales (for representation images have been normalized to the same size).The computation time needed for convergence has been 55% shorter withthe multi-resolution balloon model than with the standard balloon model.
Fig. 2.1. Extraction of the mouth. From left to right: initialization at scale 2,results obtained at scales 2 then 1 and �nal result at scale 0.



Multi-Resolution algorithms for Active Contour Models 53. A multi-resolution parametrically deformable model3.1 Fourier descriptors active contour modelIn this section, we present a parametric model based on the elliptic Fourierdescription. While in the snake model, the constraints on the global regularityof the contour are included in the internal energy function, these constraintsmay now be included in the parametrical model itself. It is possible to applya multi-resolution algorithm to such a model by de�ning the scale as thenumber of harmonics used to describe the curve.The use of Fourier descriptors for active contour model has been intro-duced by Staib and Duncan [9] in order to extract an object boundary. Theirmethod is based on the use of probability distributions on the parameters.In order to be less sensitive to the initial parameter value, we propose avariational approach similar to the method used in the snake model [7].An elliptic Fourier representation of a closed curve is a parametrical curvev de�ned by: v(�) = � x(�)y(�) � = NXk=0Ak � cos(�k)sin(�k) � ; (3.1)where Ak is a 2�2 matrix, N the number of harmonics used to describe thecurve and � the angular parameterization index.The curve modeling the boundary of the object is obtained by minimizingan energy functional similar to the snake energy (2.1):E(v) = Z 2�0 P (v(�)) + �@v(�)@� 2d�; (3.2)where � 2 <+:The �rst term P is an image potential equal to the opposite of the squareof the image gradient (P = �jrI j2) and the second one is an elasticityterm associated to the curve tension. The energy gradient with respect tothe parameters of the model is a vector of size 4N , whose components arethe partial derivatives @E@a with regard to each of the four elements of the Nmatrices Ak: @E@a = Z 2�0 rP:@v(�)@a + 2�@v(�)@�@a @v(�)@� d�; (3.3)Given an initial set of parameters, the curve v� that is the closest localminimum of E is obtained by applying a Newton minimization. This leadsto several instability problems when high frequency harmonics are used be-cause the curve has weak regularity constraints and can be attracted by noisepoints. It is thus interesting to apply this model with a multi-resolution algo-rithm in order to reduce the possibilities that the optimization process tendsto a weak local minimum that is not meaningful.



6 Bertrand Leroy, Isabelle L. Herlin, and Laurent D. Cohen3.2 Multi-resolution algorithmOn the contrary to the snake model, there is no geometrical constraint termin the energy functional because it is included within the model. Thus werestrict the space of admissible curves by de�ning the number of harmonicsused to describe the curve. The aim of this multi-resolution algorithm is toobtain a better stability by increasing progressively the number of harmonics.Using only the �rst term of the Fourier decomposition de�nes an ellipse ; thiswas used in [5]. The iterative algorithm is as follows:1. Describe the object shape with an ellipse curve v1.2. Find a curve v�1 described by a single harmonic which is a minimum ofE using v1 as initialization.3. For p increasing from 2 to N , using the curve v�p�1 as initialization, �ndthe curve v�p described by p harmonics.Figure 3.1 shows the convergence process of the multi-resolution algorithmapplied to an image of the mouth. The curve is �rst described by a singleharmonic and evolves from an initial position to a coarse approximation ofthe mouth. As the number harmonics increases, the regularity constraints aresmaller and the mouth boundary can be described more precisely. In order toillustrate the stability gain due to multi-resolution algorithm, �gure 3.2 showsseveral stages of the convergence process when using standard convergencemethod.
Fig. 3.1. Extraction of the mouth using the multi-resolution algorithm. From leftto right: initialization and results obtain with 1, 4 then 9 harmonics.4. ConclusionTwo di�erent applications of multi-resolution algorithms for active contourmodels have been presented in this paper. For the balloon model, the multi-resolution method is applied to data. Since a large part of the convergenceprocess is achieved at coarse scales on small images, this algorithm leads tosaving in computational time. Although the expansion parameter is modi�ed
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Fig. 3.2. Extraction of the mouth without the multi-resolution algorithm using 9harmonics . From left to right: initialization and results obtained at several stagesof the convergence. The right image presents the �nal result.so that the maximal length of the curve is proportional to the size of the im-age, the other parameters bound to the regularity constraints are not modi�edwhen scale changes. With parametrically deformable model using Fourier de-scriptors the constraints on the global regularity of the contour are includedin the parametrical model itself. Thus, by applying multi-resolution to theparameters and de�ning the scale as the size of the Fourier decomposition,the regularity constraints are determined by the scale. Such an algorithm canimprove the model stability and allows the use of higher frequency harmon-ics to extract irregular object boundary. However, when extracting highlyirregular boundary, a large number of harmonics are needed and it may bepreferable to use the balloon model which can handle a large spectrum ofshapes with limited number of parameters.101. M. O. Berger and R. Mohr. Towards autonomy in active contour models. InProceedings of the International Conference of Pattern Recognition, pages 847{851, Atlantic City, NJ, June 1990.2. L. D. Cohen. On active contour models and balloons. CVGIP: Graphical modelsand Image Processing, 53(2):211{218, March 1991.3. L. D. Cohen and I. Cohen. Finite element methods for active contour modelsand balloons for 2-D and 3-D images. IEEE Transactions on Pattern Analysisand Machine Intelligence, 15(11):1131{1147, November 1993.4. L. D. Cohen and A. Gorre. On the convexity of the active contour energy. InProceedings of GRETSI, Juan-les-Pins, September 1995.5. K. Deng and J. N. Wilson. Contour estimation using global shape constraintsand local forces. In Proceedings of SPIE, Geometric Methods in ComputerVision, volume 1570, pages 1{7, San Diego, California, U.S.A., July 1991.6. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. InIEEE Proceedings of the International Conference on Computer Vision, pages259{268, London, June 1987.7. B. Leroy, A. Chouakria, I. L. Herlin, and E. Diday. Approche g�eom�etrique etclassi�cation pour la reconnaissance de visage. In Congr�es Reconnaissance desFormes et Intelligence Arti�cielle, Rennes, January 1996.
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