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PABLO ANDRÉS ARBELÁEZ AND LAURENT D. COHEN
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Abstract. We address the issue of low-level segmentation for real-valued images. The proposed approach relies
on the formulation of the problem in terms of an energy partition of the image domain. In this framework, an energy
is defined by measuring a pseudo-metric distance to a source point. Thus, the choice of an energy and a set of sources
determines a tessellation of the domain. Each energy acts on the image at a different level of analysis; through the
study of two types of energies, two stages of the segmentation process are addressed. The first energy considered, the
path variation, belongs to the class of energies determined by minimal paths. Its application as a pre-segmentation
method is proposed. In the second part, where the energy is induced by a ultrametric, the construction of hierarchical
representations of the image is discussed.
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1. Introduction

Image segmentation is a fundamental issue in the field
of computer vision. Its great complexity may be ex-
plained by the fact that structuring visual information
into meaningful regions involves a layer of semantic
understanding of the image content. As pointed out by
a recent study [28], even the evaluation of human seg-
mentation is a challenging problem, where subjectivity
and recognition often prevail over the raw physical data.
Therefore, the integration of prior knowledge appears
as an essential step in the creation of any high-level
computer vision system.

However, a first task is the extraction of the image
structure provided by the interaction between low-level
cues. The present paper addresses the segmentation
problem at this pre-cognitive stage of perception, fo-
cusing on the case of monochrome images. For this
purpose, we propose an extension of the well known
Voronoi tessellation [3, 35] to pseudo-metric spaces,
which we call an energy partition of the image domain.
In this framework, an energy is defined by measuring

the shortest pseudo-metric distance to a fixed source
point. Then, given a set of sources, a tessellation of
the domain is constructed by the assignation of every
point to the closest source. Hence, in this context, the
segmentation issue is transferred to the definition of an
appropriated energy, based on the image data, and the
selection of a set of sources.

The interpretation of vision as an information pro-
cessing task [27] suggests the use of a multilevel strat-
egy to address computer vision problems. Following
this idea, two types of energies are studied. Each en-
ergy acts on the image at a specific level of analysis,
allowing to treat a particular stage of the segmentation
process.

The first type of energies considered is issued from
the study of minimal paths. Their use is often appropri-
ated for a local level of analysis of the image. We intro-
duce a particular energy of this class, the path variation,
which is an extension of the one dimensional total vari-
ation for real-valued functions of two variables. Then,
choosing the intensity extrema as sources, a simplified
version of the original image is obtained. This natural
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reconstruction of the image, referred as the extrema mo-
saic, provides a balance between content conservation
and simplification.

In the second part, we study a class of energies that
present interesting properties for a global level of anal-
ysis. These energies are associated to the ultrametrics
and their definition is equivalent to the construction of a
family of nested partitions of the image domain. Start-
ing from the extrema mosaic, an energy that extracts the
global contrast of the original image is defined. Then,
other ultrametric energies are constructed by using the
internal information of the regions as a complement to
the contrast. Their application to the creation of hier-
archical representations of the image is discussed.

The rest of this paper is organized as follows. The
general framework and the notations are introduced in
Section 2. Section 3 presents the energies derived from
the study of minimal paths. Section 4 is devoted to the
study of the path variation and Section 5 presents the
extrema mosaic. Section 6 begins by recalling the basic
properties of ultrametric spaces; then, a global measure
of contrast for the image is constructed. In Section 7,
the approach is applied to hierarchical segmentation.
Finally, Section 8 contains some concluding remarks.

2. Energy Partitions

In this section, the general framework of energy par-
titions is presented; basic definitions are recalled and
the notations introduced.

Let � ⊂ R
2 be a compact connected domain in

the plane. An application δ : � × � → R
+ is a

pseudo-metric for � [19] if, for any x, y, z ∈ �, the
following conditions are satisfied:

Identity:

δ(x, x) = 0 (1a)

Symmetry:

δ(x, y) = δ(y, x) (1b)

Triangle Inequality:

δ(x, y) ≤ δ(x, z) + δ(z, y) (1c)

Note that the only difference with the definition of a
metric is that the usual Separation axiom was replaced
by the weaker condition (1a). Therefore, considering
the equivalence classes x̂(δ) = { y ∈ � | δ(x, y) = 0}

leads to work directly on the quotient space �̂(δ) =
{x̂(δ) | x ∈ �}.

Thus, the projection of δ on �̂(δ), is, by definition, a
metric for the quotient space. Note that, if δ is already
a metric, then �̂(δ) coincides with the domain. Addi-
tionally, the existence of geodesics for δ is assumed. In
the sequel, the value of δ(x, y) will be referred as the
distance between the points x and y.

The energy induced by a pseudo-metric δ, with re-
spect to a source point s ∈ �, is defined as the single
variable application δs : � → R

+, that measures the
distance to s:

δs(x) = δ(s, x), ∀ x ∈ �.

The energy with respect to a set of sources S = {si }i∈J

is given by the minimal individual energy:

δS(x) = inf
si ∈S

δsi (x), ∀ x ∈ �.

In the presence of multiple sources, a valuable infor-
mation is provided by the influence zone of a source
si , or the set of points that are closer to si than to any
other source, in the sense of δ:

Zi = {x ∈ � | δsi (x) < δs j (x), ∀ s j ∈ S, j �= i}.

Thus, the influence zone, or the zone for short, is a
connected subset of the domain. Their union is noted
by:

Z (δ, S) =
⋃
i∈J

Zi .

The medial set is defined as the complementary set of
Z (δ, S):

M(δ, S) = {x ∈ � | ∃ si , s j ∈ S

: δS(x) = δsi (x) = δs j (x)}.

Hence, a pseudo-metric δ and a set of sources S deter-
mine a tessellation of the domain. In the sequel, such
a tessellation will be referred as an energy partition of
� and will be denoted by �(δ, S):

�(δ, S) = {Zi }i∈J ∪ {M(δ, S)}.

It should be noted that every element of an energy
partition is a union of elements of the quotient space
�̂(δ).
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Figure 1. Sources, Euclidean energy and energy partition.

Figure 1 illustrates these definitions with the canon-
ical Euclidean space and a set of four source points,
S = {s0, s1, s2, s3}, shown on the left. The energy in-
duced by the Euclidean distance, noted by ES , is dis-
played on the middle and the energy partition �(E, S)
is on the right. Since E is a metric on �, the quotient
space �̂(E) coincides with the domain. Additionally,
the medial set M(E, S) (shown in black) corresponds to
the well know Voronoi diagram. Finally, the influence
zones Z (E, S) are in this case convex sets.

Two main differences of our approach with the stan-
dard framework of Voronoi tessellations [3, 35] should
nevertheless be noted. First, by considering pseudo-
metrics, a larger class of spaces can be accessed. Sec-
ond, since we are interested in the application of these
notions to image analysis, we discuss the definition of
pseudo-metrics that depend on the image.

Therefore, in this context, the image segmentation
problem is transferred to the selection of a set of sources
and the definition of a relevant energy, or, equivalently,
a pseudo-metric, determined by the image data. How-
ever, it should be noted that, in practice, digital images
are subsampled on the discrete grid. Consequently, im-
portant parts of the medial set may fall in the intergrid
space. For region based segmentation purposes, an al-
ternative to surround this problem is to consider an
energy partition composed only by zones. Thus, the el-
ements of the medial set that would fall in the grid are
assigned to one of their neighboring influence zones.

Then, an approximation of the image can be con-
structed by the assignation of a model to represent each
influence zone. The model is determined by the distri-
bution of the image values on the zone; simple models
are the mean or median value on the influence zone
and the source’s level. When the model is constant, the
valuation of each zone by its model produces a piece-
wise constant approximation of the image, referred in
the sequel as a mosaic image (which will be illustrated
later in Fig. 4).

3. Path Metrics

A first approach for the definition of a pseudo-metric on
an image domain is the study of paths between couples
of points.

A path between two points x, y ∈ � is a continuous
function γ : [a, b] → � such that γ (a) = x and
γ (b) = y.

The image of γ is then a curve in �. Moreover, if
γ ∈ C1([0, L]) and an arc-length parameterization of
γ is considered (i.e., ‖γ̇ (l)‖ = 1, ∀ l ∈ [0, L]), then L
represents the Euclidean length of the path. The set of
paths from x to y is noted by �xy and �� denotes the
set of paths in �.

A length structure on � [15] designates a map e :
�� → R

+ such that:

1. If γ is constant, then e(γ ) = 0 .
2. If γ is the juxtaposition of γ1 and γ2, then e(γ ) =

e(γ1) + e(γ2).
3. e is invariant under changes of parameterization.

A length structure e can be used to define a pseudo-
metric, which we call the path metric associated to e,
by considering the minimal value of e along all the
paths joining two points:

δ(x, y) = inf
γ∈�xy

e(γ ), ∀ x, y ∈ �.

A case of particular interest occurs when e can
be expressed as the integral of a potential function
P: � × S1 → R

+:

e(γ ) =
∫ L

0
P(γ (l), γ̇ (l)) dl, (2)

where l is the arc-length parameter and S1 is the unit
circle. The energy induced by a metric of this type will
be referred as the potential energy associated to P . In
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this case, x̂(δ), the class of a point x , corresponds to the
largest connected set with null potential that contains
x . Thus, if the potential is strictly positive, the quotient
space �̂(δ) coincides with the domain �.

Furthermore, if P depends only on the position γ (·),
the field of geometrical optics provides the follow-
ing physical interpretation of the energy: the potential
P: � → R

+ can be seen as a refractive field of indices
of an optical medium and δs , called the eikonal in this
context, supplies the optical length of the light rays.
Then, the relation between the energy and the potential
can be expressed by the Eikonal Equation:

‖∇δs(x)‖ = P(x), ∀ x ∈ �, (3)

with boundary condition δs(s) = 0.
In this particular case, the corresponding metric

is known as a weighted distance transform and its
computation can be performed using Sethian’s Fast
Marching method [8, 39]. Noticing that the infor-
mation is propagating outwards from the sources,
the Fast Marching uses an up-wind scheme to con-
struct a correct approximation of the viscosity solution
of (3).

As a simple example, if P ≡ 1, then the correspond-
ing weighted distance,

δ(x, y) = inf
γ∈�xy

∫ L

0
dl,

becomes the geodesic distance, or the Euclidean length
of the shortest path between x and y. Moreover, if the
domain is convex, then δ coincides with the Euclidian
distance.

Weighted distances are widely used in computer vi-
sion, where the issue becomes the definition of a rele-
vant potential from the image data, in order to address
a particular problem. Examples of applications include
shape from shading [20], continuous scale morphology
[21], shape recovery [25], active contour models [8],
differential morphology [26], tubular shape extraction
[11] and perceptual grouping [10].

4. The Path Variation

In this section, the path metric obtained by considering
the total variation on the paths as the length structure
is studied.

4.1. Continuous Domain

For functions of one real variable, the variation is a
functional with known properties [16, 34]. It was in-
troduced by Jordan [18] as follows:

Let f : [a, b] → R be a function, σ = {t0, . . . , tn} a
finite partition of [a, b] such that a = t0 < t1 < · · · <

tn = b and � the set of such partitions.
The variation, or total variation, of f is defined as

the (possible infinite) number given by the formula:

v( f ) = sup
σ∈�

n∑
i=1

| f (ti ) − f (ti−1)|.

For real valued functions of two variables, we pro-
pose to consider the path metric associated to the total
variation, i.e., the minimal variation of the function on
all the paths between two points:

Definition 1. The path variation of a function u :
� ⊂ R

2 → R is defined as:

V (u)(x, y) = inf
γ∈�xy

v(u ◦ γ ), ∀ x, y ∈ �.

The space of functions of bounded path variation of
�, noted by B PV (�), is defined as

BPV(�) = {u : � → R | ∀ x, y ∈ �, ∃ γ̂ ∈ �xy

: V (u)(x, y) = v(u ◦ γ̂ ) < ∞}.

In the sequel, u is supposed to have bounded path vari-
ation. Note that, if u ∈ BPV(�), then the path varia-
tion between any couple of points is not only required
to be finite but also to be realized by a path. Hence,
Definition 1 assumes the existence of geodesics for V .
This assumption is nonetheless reasonable in the case
of digital images.

A path γ is said to be monotone for u if the function
u ◦ γ is monotone. By definition, if a path is mono-
tone for u, then it is a geodesic for V (u). Conversely,
every geodesic for V (u) is a concatenation of mono-
tone paths. Thus, in general, the geodesics of the path
variation are not unique.

In the regular framework, the path variation can be
characterized as a potential energy, in the sense of (2):

Proposition 1. If u ∈ C1(�)∩ B PV (�), then Vs(u),
path variation of u with respect to a source s ∈ �,

is the potential energy associated to P = |Dτ u|, the
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absolute value of the directional derivative of u in the
tangent direction of the path τ .

Proof: The proof follows from rewriting the defini-
tion in the regular case:

If f ∈ C1([a, b]), then its total variation can be ex-
pressed in terms of the derivative [16] by the formula:

v( f ) =
∫ b

a
| f ′(t)| dt.

Thus, if u is a continuously differentiable function,
Definition 1 can be reformulated as:

Vs(u)(x) = inf
γ∈�sx

∫ b

a

∣∣∣∣
〈

Du(γ (t)),
γ̇ (t)

‖γ̇ (t)‖
〉∣∣∣∣ ‖γ̇ (t)‖ dt,

where 〈·, ·〉 denotes the scalar product in R
2.

Hence, considering the arc-length parameter l leads
to the following expression for the path variation:

Vs(u)(x) = inf
γ∈�sx

∫ L

0
|Dτ u(γ (l))| dl,

where τ denotes the unitary tangent vector to the path.

The intuitive interpretation of the path variation is
illustrated in Fig. 2. Consider a particle moving along
the graph of the function u, depicted on the left, and
starting at the source s. Then, as shown on the right,
the value of Vs(u) at a point x represents the minimal
sum of ascents and descents to be travelled to reach x .

Note that, in contrast to the usual extension of the to-
tal variation for functions of multiple variables [36, 37],
the path variation is defined pointwise. Additionally,
V (u) expresses the same geometric notion as the lin-
ear variation, introduced in [23], though in a different

Figure 2. Simple example: graphs of u and Vs (u).

formulation, as a part of a geometric theory for func-
tions of two variables.

The component of u containing x , noted by Kx , des-
ignates the connected component of the isolevel set of
u that contains x . The level of a component K is noted
by u(K ) and Tu denotes the space of components of u.
The components of a continuous function are closed
and pairwise disjoint subsets of �. For continuously
differentiable functions, the components of the non-
singular levels (i.e.: levels t such that 0 /∈ ∇u(u−1(t)))
coincide with the level lines of u and can be represented
as closed Jordan curves.

The importance of the components for the path vari-
ation is expressed by the following proposition, whose
proof is an immediate consequence of Definition 1.

Proposition 2. If u ∈ BPV(�), then the quotient
space for the path variation �̂(V (u)) corresponds to
Tu, the space of components of u.

Thus, x̂(V (u)), the equivalence class of a point x for
the path variation, coincides with its component Kx .
Consequently, each component of Vs(u) is a union of
components of u.

Additionally, for a set of sources S, each element of
the energy partition �(V (u), S) is a union of compo-
nents of the function. Hence, the operator that asso-
ciates �(V (u), S) to the function u is connected [38]
and its application simplifies an image u while preserv-
ing the contour information. Furthermore, the energy
partitions induced by V (u) are invariant under linear
contrast changes and rotations. Therefore, the path vari-
ation presents a particular interest for image analysis.

Figure 3 illustrates the application of the path vari-
ation on two different test functions. On the top
row, a smooth function, given by the simple formula
u(x) = c‖x − s0‖, where the sources, S = {s0, s1}, cor-
respond to the upper left and the lower right corners



48 Arbeláez and Cohen

Figure 3. Energy partitions of the path variation (see text).

of a rectangular domain. From left to right, the graph
of u, the graph of VS(u) and the energy partition
�(V (u), S) = Z0 ∪ Z1 ∪ M can be observed. In this
regular case, the components of the function are nested
and coincide with its level lines. The medial set M ,
shown in black, is the component whose level is the
average of the sources’ levels.

In contrast, the example on the bottom row of Fig. 3
is the piecewise constant function shown on the left.
The corresponding gray levels were set to 0 for the
black, 254 for the white and 127 for the gray. The two
images on the middle show, in black, the level sets
[u ≥ 200] and [u ≤ 100] respectively. Finally, bottom-
right displays the energy partition obtained by taking
the two gray components as sources. Notice that the
component spaces of the two functions have different
topologies: in the first case, Tu is homeomorphic to
a segment while, in the second, it is a finite graph.
As a consequence, in the second example, although
the boundaries of the zones are composed by pieces
of level lines, none of the squares determined by the
energy partition is a level line of the function.

4.2. Discrete Domain

In this paragraph, a discrete interpretation for the path
variation is proposed. For this purpose, we suppose
that the image u is sampled on a uniform grid. A first
remark is that, since the potential of the path variation
in Proposition 1 depends not only on the position but
also on the path direction, the Fast Marching method
cannot be used for its implementation.

Nevertheless, in a discrete domain, the choice of a
digital connectivity determines a notion of component
and of vicinity. Thus, Tu , the component space of the

function u, can be represented by an adjacency graph G,
where the nodes correspond to discrete components and
each link joins two neighboring components. Since the
quotient space for V (u) coincides with Tu , we propose
to construct the discrete path variation directly on G.

A path on G joining the components of two points
p and q is a set of components γ̄ = {K0, . . . , Kn}
such that p ∈ K0, q ∈ Kn , Ki and Ki−1 are neighbors,
∀ i = 1, . . . , n. The set of such paths is noted by �G

pq .
Each element of �G

pq corresponds then to a class of
discrete paths between p and q.

Thus, the expression of the discrete path variation of
u with respect to the source p, evaluated at a point q,
becomes:

Vp(u)(q) = min
γ∈�G

pq

n∑
i=1

|u(Ki ) − u(Ki−1)|.

Hence, the calculation of Vp(u) is reduced to finding
a path of minimal cost on a graph. This classical prob-
lem can be solved using a greedy algorithm [12, 24].
The complexity of this straightforward implementation
for the path variation is then O(N log(N )), where N is
the total number of discrete components of the image.
Furthermore, in the case of gray level images, since u
takes integer values, the sorting step in the update of
the narrow band can be avoided and the complexity is
reduced to O(N ).

5. The Extrema Mosaic

In this section, the path variation is interpreted as a lo-
cal measure of contrast and its associated energy parti-
tions are applied to the simplification of monochrome
images.
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Figure 4. Left: original image and sources. Middle: graph of the energy and energy partition. Right: mosaic images (see text).

Potential energies are often useful for a local level of
analysis of the image. Indeed, since their definition (2)
is based on an integration along the paths, the parti-
tions determined by this type of pseudo-metrics are
very sensitive to the location of the sources.

Therefore, in order to construct a partition based on
the path variation, the set of sources should be physi-
cally representative of the image content. Figure 4 ex-
emplifies this issue on the smooth image u on top-left.
An acceptable segmentation of this “scene” should be
composed by four approximately circular regions on
a gray background. A solution is to consider a set of
sources S composed by the extrema of the four peaks,
representing the “features”, and the border of the do-
main as the source for the background, as shown on
bottom-left. The central column displays, on top, the
graph of the energy VS(u) and, on bottom, the asso-
ciated energy partition �(V (u), S). Finally, the right
column shows two mosaic images obtained by taking
the median value as the model (top) and the source’s
level (bottom). Thus, in the regular framework, the
image extrema appear as natural candidates for the
sources.

The extrema partition of an image u is defined as
the energy partition �(V (u), ext(u)), where ext(u) de-
notes the set of extremal components of the intensity.
A mosaic image determined by the extrema partition
will be called an extrema mosaic of u.

Note that, if two extrema can be joined by a mono-
tone path, then the path variation between them coin-
cides with the absolute value of their gray levels’ dif-

ference. Thus, the path variation can be interpreted as
a local measure of contrast in the image. Additionally,
the application of the extrema mosaic produces a con-
centration of the contrast information in the boundaries
of the zones.

Figures 5 and 6 illustrate the application of our ap-
proach on a real image. Figure 5 shows the original im-
age of size 512×512 and the extrema mosaic, with the
value of the image at the extremum as the zone model.
Figure 6 displays, on top, the detail of size 50 × 50
marked on Fig. 5 and, on bottom, the graph of the de-
tail.

The simplification performed by the method is ex-
pressed by the reduction in the number of compo-
nents; in this case, the original image has 83430 com-
ponents (in 8-connectivity) and the mosaic image has
only 1253. This example illustrates four properties of
the extrema mosaic. First, the previously discussed en-
hancement of the contrast information can be seen on
the detail of the butterfly’s wings. Second, a reduction
of the blur in the background, caused by the absorp-
tion of blurred contours and transition components by
neighboring zones. Third, note how the energy par-
tition preserves the contour information and, particu-
larly, important characteristics of edges such as corners
and junctions. Finally, it can be observed that, in spite of
the simplification, the resolution of the original image
is conserved in the mosaic.

In summary, the choice of the path variation as
the energy and the spatial distribution of the inten-
sity extrema determine an energy partition where a
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Figure 5. Original image and extrema mosaic.

Figure 6. Detail of Fig. 5. Left: Original image. Right: extrema mosaic (see text).

compromise between content conservation and simpli-
fication is obtained. Therefore, the extrema partition
can be interpreted as a decomposition in elemental
zones or as a first level of abstraction of the image
information. In [2], we discussed the application of
this approach, combined with a nonlinear diffusion
filtering, to segmentation problems. In the next sec-
tions, this natural reconstruction of the image is used
as a parameter-free pre-segmentation method, where
the contrast information is enhanced.

6. Ultrametrics

As pointed out in the previous section, the path varia-
tion is an interesting tool for the extraction of the local
geometric structure of an image. However, when an
energy partition with a small number of zones is re-
quired, its sensitivity to the location of the sources may
become a drawback.

Indeed, for a coarse level of analysis of the image, an
energy partition �(δ, S) should be invariant if a source
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si ∈ S is replaced by another point s ′
i ∈ Zi . Unfor-

tunately, this property is generally not satisfied by po-
tential energies. In the next sections, a type of energies
that fulfill this invariance requirement is studied.

6.1. Definitions

The energies considered in this part are associated to a
class of metrics called the ultrametrics. These energies
present a particular interest for segmentation purposes,
as they are closely related to the families of nested
partitions of the image domain. In this paragraph, some
basic properties of ultrametric geometry are recalled.

A ultrametric is a metric for which the usual triangle
inequality (1c) is replaced by the stronger relation:

δ(x, y) ≤ max{δ(x, z), δ(z, y)}, ∀ x, y, z ∈ �.

(1c′)

From a geometric point of view, the previous ultra-
metric inequality can be interpreted as follows: all the
triangles in an ultrametric space are either isosceles or
equilateral.

Furthermore, as a consequence of (1c′), the structure
of neighborhoods in a ultrametric space differs signif-
icantly from the usual Euclidean space. Firstly, all the
points in a ball of radius r and center x , Br (x), can be
considered as the center:

∀ y ∈ Br (x), Br (y) = Br (x). (4)

Additionally, two non-disjoint ultrametric balls are al-
ways concentric:

Br (x) ∩ Br ′ (y) �= ∅ ⇒ Br (x) ⊆ Br ′ (y) or

Br ′ (y) ⊆ Br (x). (5)

Therefore, the set of all the balls of a fixed radius r
determines a partition of the domain.

Furthermore, (4) and (5) imply that considering the
sets of ultrametric balls of radius r , when r is increas-
ing, produces a family of nested partitions of the do-
main. Additionally, the radii of the balls determine a
stratification index for the family of partitions and the
resulting structure is called a stratified hierarchy of
partitions. Conversely, every stratified hierarchy of par-
titions determines a pseudo-ultrametric on the domain.
For further details, the reader is referred to [5].

In our case, if an energy partition �(δ, S) determined
by a pseudo-ultrametric δ is considered, the previous

properties imply that every influence zone can be ex-
pressed as a lower level set of the energy. Moreover,
since the partition does not depend on the location of
the sources inside the zones, the problem of selecting a
set of sources can be addressed in this case through the
choice of a radius r . These particular energy partitions
will be denoted by �(δ, r ).

6.2. A Contrast Ultrametric

In this paragraph, a ultrametric energy that extracts the
global contrast of an image is defined. For this purpose,
the bijection with the class of stratified hierarchies is
fundamental, as it provides a constructive definition for
this type of pseudo-metrics.

Indeed, as a consequence of the properties pre-
sented the previous paragraph, the distance between
two points x ∈ Zi and y ∈ Z j in a ultrametric partition
�(δ, r ) can be expressed as a dissimilarity measure be-
tween the zones Zi and Z j . In the discrete space, this
remark allows to construct the energy through a region
merging strategy.

The idea of progressively merging regions of an ini-
tial partition has been used since the early days of com-
puter vision to address segmentation problems [7, 17].
In general, this type of methods, often called bottom-up
approaches, can be implemented efficiently using a re-
gion adjacency graph (RAG), as described in [13, 41].
A RAG is an undirected graph where the nodes corre-
spond to connected regions of the domain. The links
encode the vicinity relation and are weighted by the
dissimilarity.

Therefore, in this context, the choice of an initial
partition and the definition of a dissimilarity measure
determine an order for the merging. Then, removing the
links of the RAG for increasing values of the dissimi-
larity and merging the corresponding regions produces
a family of nested partitions.

Typically, the dissimilarity expresses a notion of re-
semblance between neighboring regions and many ex-
amples have been proposed in the vast literature on the
subject. A simple case is the difference of the average
gray level in the regions [9, 22, 32], first used in the
classical region growing algorithm [7] and noted by
da . However, many authors take also into account fac-
tors like the variance and the size of the regions [4, 33],
the orientation and the texture [42].

Nevertheless, it should be noted that an arbitrary
dissimilarity does not necessarily coincide with a ul-
trametric. In order to produce a stratified hierarchy of
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partitions, the dissimilarity must be increasing with the
order of merging. Note that this condition is seldom sat-
isfied by the examples found in the literature. When the
dissimilarity is not increasing, a stratification index for
the hierarchy of partitions can still be defined by con-
sidering any increasing function of the merging order.
However, in this case, the resulting ultrametric is no
longer directly related to the dissimilarity.

The goal in this paragraph was to construct a ultra-
metric expressing the global contrast of the original
image. A natural candidate is the dissimilarity da . This
option suffers nonetheless from two drawbacks: first,
da is not increasing and, second, since its definition
uses all the information in the zones, its value may not
reflect the real contrast. Consequently, a merging pro-
cess governed by this dissimilarity can create artificial
contours when the gray level inside the regions varies
gradually.

In order to address these issues, in our case the dis-
similarity was constructed using only boundary infor-
mation and was measured directly on the initial parti-
tion. For the examples presented in this paper, the dis-

Figure 7. Energy partitions associated to the contrast ultrametric δc (see text).

similarity, noted by dc, was defined as the average gray
level difference in the common boundary of the zones,
measured in the extrema mosaic. As a consequence of
this choice, dc is increasing with the merging order and
the corresponding pseudo-ultrametric, noted by δc, is
strongly related to the contrast information provided
by the original image.

Figure 7 illustrates the application of our contrast
measure on a test image. Top-left shows the initial par-
tition, the extrema mosaic of the cameraman. The other
images present three energy partitions for increasing
radii on the ultrametric balls: �(δc, 34) on top-right,
�(δc, 69) on bottom-left and �(δc, 150) on bottom-
right; the maximal value of the stratification index in
this example was 211. It can be observed how the ul-
trametric extracts effectively the contrast information
in the image: as the radius is increased, only the most
contrasted regions remain in the partition, regardless of
their size or homogeneity.

A classical example of ultrametric in mathematical
morphology is derived from the construction of the wa-
tershed transformation [6]. Intuitively, this method can
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be summarized as follows: an image, considered as a
topographical surface, is flooded from its regional min-
ima. The water forms lakes in the valleys and, when two
lakes meet, they are merged. Thus, increasing levels of
water produce coarser partitions. When the image is a
gradient’s modulus, the resulting hierarchy is known as
the dynamics [14]. In terms of a region merging pro-
cess, the initial partition is composed by the catchment
basins of the minima and the dissimilarity is defined as
the height of the lowest pass point between two adja-
cent lakes, i.e., the minimal value of the gradient in the
common border of the regions [30]. Therefore, the dy-
namics hierarchy also induces a ultrametric. However,
since its definition is based on a gradient image, the
result depends on the choice of a discrete approxima-
tion for the gradient. Additionally, the linear smoothing
performed by most gradient operators in order to well-
pose differentiation, may produce a loss of resolution
for this method.

The application of our approach to edge detection,
as well as a comparison with the continuous definition
of the watershed transform can be found in [1].

7. Derived Ultrametrics

The previous section presented the application of the
ultrametric δc to the extraction of the contrast of an
image. This information is often useful to describe the
image structure, as shown on the left column of Fig. 8,
where the energy partition �(δc, 75) and its mosaic im-
age are displayed, for the example in Fig. 5. However,

Figure 8. Limitations of using only the contrast information (see text).

contrast is just one among the factors taken into ac-
count in high-level vision tasks. As an example, the
central column of Fig. 8 shows a critical index for the
contrast ultrametric: on top, the partition �(δc, 128)
can be observed and, on bottom, �(δc, 129). At this
point, the wings of the butterfly merge with the back-
ground. Since the contrast between the light patterns
and the dark wings is greater than the contrast between
the wings and the background, none of the zones de-
termined by the partitions �(δc, λ) corresponds to the
entire butterfly (wings and patterns).

A hierarchy of partitions is an interesting represen-
tation of the image for several applications like content
based image retrieval and object oriented coding. In
such applications, the usefulness of the representation
is measured by its ability to provide a meaningful parti-
tion for any required number of regions. In order to use
our approach in those situations, considering only the
contrast information may prove restrictive. This fact
is illustrated on top-left of Fig. 8, where the partition
�(δc, 203) is displayed. If a description with two re-
gions of this image is required, it seems clear that the
contrast is unsufficient.

In this section, we discuss the definition of ultramet-
rics whose energy partitions represent more accurately
the image structure, when a small number of regions
is required. The bottom-right image of Fig. 8 shows
an example of the energy partitions that will be con-
structed.

For this purpose, other perceptually important char-
acteristics of the zones are taken into consideration,
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in order to complement the boundary information sup-
plied by the contrast. Precisely, an attribute, a positive
real valued function A, is defined for every zone. The
attribute is required to be increasing with the inclusion
order:

r1 ⊂ r2 ⇒ A(r1) ≤ A(r2),

for all connected regions of the domain r1 and r2. In
general, the attribute can be calculated using the inter-

Figure 9. Top: original images. Middle: energy partitions. Bottom: mosaic images.

nal properties of the zone; the simplest example of an
increasing attribute is the area of the zone.

Then, starting from dc, the dissimilarity associated to
δc, a new dissimilarity d ′ can be defined by the formula:

d ′(Z1, Z2) = dc(Z1, Z2) · min{A(Z1),A(Z2)}.

Since A and dc are increasing, d ′ induces a ultra-
metric. This new energy takes into account the internal
as well as the boundary information. For the examples
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Figure 10. Comparison with the volume hierarchy (see text).

presented in this paper, the attribute was defined as:

A(Z ) = A(Z )α,

where A denotes the area of the zone Z and the pa-
rameter α ≥ 0 weights the balance between contrast
and area. Thus, the choice of α can be seen as the
introduction of higher-level information, allowing the
ultrametric to adapt to the image content. The result on
bottom-right of Fig. 8 was obtained with α = 1.

Figure 9 presents two examples of segmentations ob-
tained with this method. The top row displays the origi-
nal images, the central row shows the energy partitions
and, on bottom, the corresponding mosaic images, with
average gray level as the zone model, can be observed.
In these examples, the number of regions was 35 and
the weight α was set to 1, so the attribute is the area
of the zone. Note how, in spite of the low number of
regions and the simplicity of the elements considered
for the definition of the ultrametric, the main features
of the scenes are reconstructed in the segmentations.

The approach presented in this section can be seen
as an extension of the flooding hierarchies used in mor-
phological segmentation [29, 31, 40]. In this method,
during the watershed flooding of a gradient image, the

depth, the area or the volume of the lakes is measured
in order to construct hierarchies of partitions.

Figure 10 compares our method with the flooding
hierarchy determined by the volume. The top-right im-
age shows the result obtained by selecting the 50 lakes
with biggest volume in the morphological gradient of
the image on top-left. The result is unsatisfactory be-
cause large and shallow lakes have bigger volume than
small and deep ones. In contrast, the bottom row shows
the mosaic image and the energy partition obtained
with our method for the same number of zones, with
α = 0.15. This example shows the interest in the in-
troduction of the weight α, in order to allow greater
versatility for the ultrametric to adapt to the type of
image.

8. Conclusion

The present paper discussed the application of energy
partitions to image segmentation. The approach con-
sisted in the formulation of the problem as the tessella-
tion of the image domain determined by an energy and
a set of sources. The study of two types of energies al-
lowed the interaction with the image at different levels
of analysis.
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The examples of energies presented in this paper can
extract the geometric structure of an image when the
objects represented are relatively homogeneous. How-
ever, in order to treat highly textured or noisy images
with these energies, a pre-processing step should be
considered. Alternatively, we are presently working on
the inclusion of the texture information in the definition
of the energy.

Finally, though this paper focused on real-valued im-
ages, a straightforward extension of the method to color
images can be obtained by considering only their light-
ness channel. Additionally, present work also includes
the generalization of our approach to vector-valued
images.
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d’Image et morphologie mathématique,” Ph.D. thesis, Ecole des
Mines de Paris, 1995.

41. T. Vlachos and A.G. Constantinides, “Graph-theoretical ap-
proach to colour picture segmentation and contour classifica-
tion,” in: IEE Proc. Vision, Image and Sig. Proc., Vol. 140,
pp. 36–45, 1993.

42. W. Yu, J. Fritts, and F. Sun, “A hierarchical image segmentation
algorithm,” in: Proc. ICME’02, 2002, pp. 221–224.
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1997. In 2000, he received his M.Sc. degree from the Université
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