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Abstract. We present a new approach to model edges in the image. The
method is divided in two parts: the localisation of possible edge points
and their valuation. The first part is based on the theory of minimal
paths, where the selection of an energy and a set of sources provides
a partition of the domain. Then, the valuation is obtained by the cre-
ation of a contrast driven hierarchy of partitions. The method uses only
the original image and supplies a set of closed contours that preserve
semantically important characteristics of edges.

1 Introduction

The presence of sharp discontinuities in the image intensity seems to play a fun-
damental role for the interpretation of visual information in humans. Therefore,
edge detection became soon a very active field of research in computer vision.
Originally, edge detection techniques were motivated by the generalization to the
plane of signal processing methods and the adaptation of regular analysis tools
to the discrete domain. Thus, differentiation appeared as the natural operation
to address the issue. Many discrete approximations of the gradient and models
for the edges were proposed in the last decades. Examples include zero crossings
of the laplacian [22], maxima in the gradient direction and crest lines of the
gradient. In spite of their variety, a common element for many edge detection
methods remained the use of local image information and a differential approach
[30].

The classical approach to address this problem in the context of mathemat-
ical morphology is the characterisation of edges as the watershed lines of the
gradient image [3]. Among the reasons for the large popularity of this method
one can cite its intuitive definition, efficient algorithms for its implementation
and the fact that the watersheds supply a set of closed contours. In the regular
framework, the watersheds were defined as the skeleton by influence zones of a
determined distance function [25]. These ideas established a bridge with PDE’s
based methods for computer vision and inspired a construction of the watersheds
using curve evolution [21].

Our approach to the definition of edges in the image follows the opposite di-
rection. The starting point is the theory of minimal paths, described in Section
2, where a partition of the domain is determined by the choice of an energy and
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a set of sources. In Section 3, we study an energy called the linear variation, a
generalization of the one dimensional total variation for functions of two vari-
ables. The application of this energy preserves the geometric structure of the
function and allows to work on the original image. In Section 4, the choice of
the image extrema as sources provides a piecewise constant simplification of the
image, whose discontinuities are designated as the extrema edges of the image.
Finally, in Section 5, we consider the valuation of the extrema edges using global
image information. For this purpose, a family of nested partitions, guided by a
notion of contrast, is constructed.

2 Minimal Paths and Energy Partitions

This introductory section presents the mathematical framework for the rest of
the paper. Basic definitions are recalled and the notations settled.

Let Ω ⊂ IR2 be a compact connected domain in the plane and x, y ∈ Ω two
points. A path from x to y designates an injective C1 function γ : [0, L] → Ω
such that γ(0) = x and γ(L) = y. Then, the image of γ is a rectifiable simple
curve in the domain. The path is parameterized by the arclength parameter s,
i.e: ‖γ̇(s)‖ = 1, ∀s ∈ [0, L] and L represents the Euclidean length of the path.
The set of paths from x to y is noted by Γxy.

Definition 1. The surface of minimal action, or energy, of a potential function
P : Ω × S1 → IR+ with respect to a source point x0 ∈ Ω, evaluated at x, is
defined as

E0(x) = inf
γ∈Γx0x

∫ L

0

P (γ(s), γ̇(s)) ds .

When P depends only on the position γ(s) and is strictly positive almost
everywhere, the computation of the energy can be performed using Sethian’s
Fast Marching method [28], as detailed in [6].

The surface of minimal action with respect to a set of sources S = {xi}i∈J

is defined as the minimal individual energy:

ES(x) = inf
i∈J

Ei(x) .

In the presence of multiple sources, a valuable information is provided by the
interaction in the domain of a source xi with the other elements of S, which is
expressed through its influence zone:

Zi = {x ∈ Ω|Ei(x) < Ej(x), ∀j ∈ J} .

Thus, the influence zone is interpreted as the shape associated to xi, determined
the energy and the rest of the sources. The set of influence zones is noted by:

Z(E,S) =
⋃

i∈J

Zi .
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The isoenergy set is defined as the complementary of Z(E, S):

I(E, S) = {x ∈ Ω| ∃i, j ∈ J, i 6= j : ES(x) = Ei(x) = Ej(x)} .

Therefore, the selection of an energy and a set of sources defines an energy
partition Π(E, S) of the domain:

Π(E,S) = Z(E, S)
⋃

I(E,S) .

Energy minimizing paths have been used to address several problems in the
field of computer vision, where the potential is generally defined as a function of
the image. Examples include the global minimum for active contour models [6],
shape from shading [17], continuous scale morphology [18], virtual endoscopy [8]
and perceptual grouping [5].

3 The Linear Variation

In the usual approach for the application of minimal paths to image analysis,
a large part of the problem consists in the design of a relevant potential for a
specific situation and type of images. However, we adopt a different perspective
and use the notions of the previous section for the study of a particular energy,
whose definition depends only on geometric properties of the image.

3.1 Energy Definition

For functions of one real variable, the variation is a functional with known prop-
erties [13], [27]. It was introduced by Jordan [16] as follows:
Let f : [0, L] → IR be a function, σ = {s0, ..., sn} a finite partition of [0, L] such
that 0 = s0 < s1 < ... < sn = L and Φ the set of such partitions.
The variation, or total variation, of f is defined as

v(f) = sup
σ∈Φ

n∑

i=1

|f(si)− f(si−1)| .

If f ∈ C1([0, L]), then the variation can be expressed as:

v(f) =
∫ L

0

|f ′(s)| ds . (1)

The linear variation is a generalization of the total variation for two variable
functions:

Definition 2. The linear variation of a function u : Ω ⊂ IR2 → IR with respect
to a source point x0 ∈ Ω, evaluated at x, is defined as

V0(u)(x) = inf
γ∈Γx0x

v(u ◦ γ) .
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Thus, the linear variation between two points is given by the minimal variation
of the function on all the paths that join them.

Definition 3. The space of functions of bounded linear variation of Ω, noted
by BLV (Ω) is defined by

BLV (Ω) = {u : Ω → IR | ∀x0, x ∈ Ω, ∃ γ̂ ∈ Γx0x : V0(u)(x) = v(u ◦ γ̂) < ∞} .

In the sequel, we suppose that u has bounded linear variation.
If u is a continuously differentiable function, then (1) allows to reformulate

V0(u) as

V0(u)(x) = inf
γ∈Γx0x

∫ L

0

|D ·
γ
u(γ(s))| ds . (2)

Thus, V0(u) may be seen as a surface of minimal action for the potential P =
|Dγ̇u|, the absolute value of the directional derivative of u in the direction of the
path.

The linear variation was introduced by Kronrod in a different formulation,
as a part of a geometric theory for functions of two variables [19]. The intuitive
notion expressed by this concept is illustrated in Fig. 1. Consider a particle
moving along the graph of the function depicted on the left and starting at
the source x0. Then, as shown on the right, the value of V0(u) evaluated at x
represents the minimal sum of ascents and descents to be travelled to attain the
point x.

Fig. 1. Graphs of u and V0(u).

The component of u containing x, noted by Kx, is defined as the maximal
connected subset of Ω such that u(y) = u(x), ∀y ∈ Kx. The importance of this
concept for the linear variation is given by the following proposition, whose proof
is an immediate consequence of Def. 2.
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Proposition 1. The linear variation acts on the components of u:

∀x, y ∈ Ω, Kx = Ky ⇒ ∀x0, V0(u)(x) = V0(u)(y) .

Therefore, each component of V0 is a union of components of the function. Fur-
thermore, for a set of sources S, each element of Π(V (u), S) is also a union
of components of u. Thus, since the energy partitions induced by the linear
variation preserve this geometrical structure of the function, V (u) presents a
particular interest for image analysis.

3.2 Linear Variation and Image Distance

In the context of mathematical morphology, the energy associated to the poten-
tial P = ‖∇u‖, given by the formula:

W0(u)(x) = inf
γ∈Γx0x

∫ L

0

‖∇u(γ(s))‖ ds

has been used to define the watershed transform in a continuous domain [25],
[23]. If, as for the class of Morse functions, u has only isolated critical points,
then W0 induces a distance transform on Ω, called the image distance [25] or
the topographic distance [23].

The relation between W and V in the regular framework is expressed by the
following property:

Proposition 2. If u is a Morse image, u ∈ BLV (Ω) and x0 ∈ Ω, then

|u(x)− u(x0)| ≤ V0(u)(x) ≤ W0(u)(x), ∀x ∈ Ω .

In particular, if x and x0 belong to a line of steepest slope for u, then

|u(x)− u(x0)| = V0(u)(x) = W0(u)(x) ,

The proof of this proposition [1] follows from simple calculus and the fact that
|D ·

γ
(u)| = ‖∇u‖ when γ̇ is parallel to the gradient, by definition .
The behaviour of these two energies can be compared using the test image on

the right column of Fig. 2. In this case, S = {x0, x1}, where x0 is the upper left
and x1 the lower right corners of the domain; the function is given by the formula
u(x) = c‖x−x0‖. The central column shows the effect of the linear variation: as a
consequence of Prop. 1, u and VS(u) have in this example the same components
and only their level is modified. The isoenergy set I(V (u), S), shown on black,
is the component whose level is the average of the sources’ levels. On the right
column it can be observed that, since ‖∇u‖ is constant, WS(u) is proportional
to the Euclidean distance to the closest source and I(W (u), S) corresponds to
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Fig. 2. From left to right. Top: u, VS(u) and WS(u). Bottom: Graph of u, energy
partitions Π(V (u), S) and Π(W (u), S)

the medial line between the sources; however, because of the quantification, the
isoenergy set is absent from the partition. Note that any other function for which
‖∇u‖ is constant would produce the same partition Π(W (u), S). This example
illustrates how Π(V (u), S), the partition induced by V , preserves the image
information better than Π(W (u), S).

3.3 Discrete Domain

Consider now that the image u has been sampled on a uniform grid. As pointed
out in Sect. 1, the image distance W can be implemented using the Fast Marching
method, with complexity O(Mlog(M)), where M is the total number of sampling
points. However, since the potential of the linear variation in (2) depends not
only on the position but also on the path direction, this approach cannot be
used for its construction.

Nevertheless, the election of a digital connectivity defines an adjacency graph
G, where the nodes correspond to discrete components and the links join neigh-
bouring components. Since V acts on the components of the function, we propose
to construct the discrete linear variation directly on G.

A path on G joining the components of two points p and q is a set γ =
{K0, ...,Kn} such that Kp = K0, Kn = Kq, Ki and Ki−1 are neighbours, ∀ i =
1, ..., n . ΓG

pq denotes the set of such paths. Each element of ΓG
pq corresponds then

to a class of discrete paths between p and q.
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Thus, the expression of the discrete linear variation of u at a point q with
respect to the source p becomes

Vp(u)(q) = min
γ∈Γ G

pq

n∑

i=1

|u(pi)− u(pi−1)| ,

where pi ∈ Ki, ∀ i = 1, ..., n.
Hence, the calculation of Vp(u) is reduced to finding the path of minimal cost

on a graph. This classical problem can be solved using, for instance, Dijkstra’s
greedy algorithm [9], [20]. The complexity of this implementation for the linear
variation is then O(Nlog(N)), where N is the total number of discrete compo-
nents of the image. Furthermore, if u takes integer values, the sorting step in
the update of the narrow band can be suppressed and the complexity is reduced
to O(N).

4 The Extrema Edges

4.1 The Extrema Partition

Surfaces of minimal action are often appropriated for a local level of analysis in
the image. This is due to the fact that Def. 1 is based on an integration along
the paths. As a consequence of the oscillatory nature of images, the energies of
this type tend to lose their meaning when the shapes become too large. Besides,
replacing a source xi ∈ S by another point x̂i ∈ Zi usually modifies the energy
partition.

Therefore, the set of sources must be selected with care. Firstly, they should
be physically representative of the image content. Secondly, each significant fea-
ture should contain at least one of them. Since they satisfy these conditions, the
image extrema appear as natural candidates for the sources.

Definition 4. The extrema partition (EP) of an image u : Ω → R is defined
as Π(V (u), ext(u)), the energy partition induced by the linear variation and the
set of extremal components of u.

Thus, Prop. 1 implies that the elements of the EP are unions of components of
u and they can be divided in two types. On the one hand, the influence zones of
the extrema, interpreted as the atoms or elemental shapes of the image. On the
other hand, the elements of the isoenergy set I(V (u), ext(u)) are designated as
boundary components of the atoms.

Figure 3 illustrates our approach on a simple regular case. The function u, on
the left, is a gaussian blob, where the only extremal components are the centre
and the border of the squared domain. The image on the middle shows the energy
Vext(u)(u), rescaled by a factor of 2 for better visualization. On the right, the
extrema partition Π(V (u), ext(u)) is composed by two elemental shapes and a
circular boundary component, fragmented by the quantization.
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Fig. 3. From left to right: test image, energy end extrema partition.

4.2 Definition of the Extrema Edges

The effects of the extrema partition on smooth functions, suggest the use of the
boundary components to model edges. Nevertheless, as shown on the previous
examples, the quantification of levels and the subsampling often result in the loss
of important parts of the isoenergy set. An alternative to surround this problem
is to consider an energy partition composed only by shapes. Consequently, the
elements of the isoenergy set are assigned to one of their neighbouring influence
zones. Then, a shape model, determined by the distribution of the image values on
the shape, can be chosen to represent each influence zone. The simplest models
are constant; examples are the mean or median value on the influence zone and
the value of the image at the source. Therefore, the valuation of each shape in
the energy partition by its model produces a piecewise constant approximation
of the image, designated as a mosaic image. The mosaic corresponding to the
extrema partition will be called the extrema mosaic (EM) of u. Generally, the
intensity at the extremum represents accurately the atom’s levels. In the sequel,
unless stated differently, this election was adopted.

Definition 5. The Extrema Edges of an image u are defined as the discontinu-
ities of its extrema mosaic EM(u).

Note that, since the extrema edges are defined as the boundaries of the atoms,
they provide a set of closed contours. Figure 4 shows, on the left, a real image
and, on the right, its extrema mosaic. In this example, the number of compo-
nents in the simplified image is reduced by a factor of 68. Nevertheless, note how
the extrema edges model accurately the contour information and, particularly,
semantically important characteristics of edges such as corners and junctions.
Furthermore, the method seems to perceptually improve the image. This im-
pression is due to the fact that, since components belonging to blurred contours
and transition zones are generally not extremal, they are absorbed by a neigh-
bouring atom. Consequently, the blur of the original image is reduced. Besides,
the choice of the image value at the extremum as the atom model enhances the
contrast in the extrema mosaic.
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Fig. 4. Image and extrema mosaic

4.3 Extrema Edges and Watersheds

In mathematical morphology, the edges in an image u are usually modelled as
the watershed lines of the modulus of its gradient, g = ‖∇u‖ [3], [26]. Their
construction can then be obtained by a flooding [2]: the image, seen as a topo-
graphical surface, is pierced at its regional minima and progressively immersed
in water. The water floods uniformly the valleys, or catchment basins of the
minima, and, at the points where two lakes meet, a dam is built. When the
surface is totally immersed, the union of the dams forms the watershed lines.
This formulation of the watershed transform allowed efficient algorithms for its
implementation [29] and allowed the formalization of the watersheds in the con-
tinuous domain as the skeleton by influence zones of the image distance [25].
Last, but not least, it suggests the interpretation of the minima of g as the dual
concept of edges: the sources. In our notation, starting at a source x0 ∈ Ω, this
energy can be written as

Ŵ0(g) = W0(g) + g(x0) . (3)

Thus, the energy associated to the segmentation by watersheds of an image u
can be expressed as

Ŵmin(g)(g) = inf
mi∈min(g)

Ŵi(g) ,

where min(g) denotes the set of regional minima of g. This continuous formu-
lation inspired the implementation of the watersheds using the Fast Marching
method [21].

Therefore, Π(Ŵ (g), min(g)), the energy partition associated to the water-
shed transform, has the following interpretation: the isoenergy set I(Ŵ (g),min(g))
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corresponds to the watershed lines of g and represent the edges in u. Besides,
Z(Ŵ (g),min(g)), the shapes of the minima, coincide with the lakes, or catch-
ment basins of the topographical surface.

If we use V instead of W in (3), we obtain the following result, whose proof
[1] is based on Prop. 1 and 2 and the fact that, for Morse images, each catchment
basin corresponds to the set of lines of steepest slope ending at its minimum [25].

Proposition 3. If g is a Morse image and g ∈ BLV (Ω), then

I(V̂ (g),min(g)) =
⋃

x∈I(Ŵ (g),min(g))

Kx

Thus, the isoenergy set of V̂ coincides with the set of components of the
watershed lines. Hence, in the continuous domain, the use of V on the gradient
generally produces edges thicker than the watersheds.

In practice, as happens for the boundary components, the watersheds are
usually fragmented in real images. Therefore, in order to compare the extrema
edges and the watersheds, we use their corresponding mosaics. Indeed, the con-
struction of both mosaics depends on the same factors: the digital connectivity,
the gray level on the shapes and the rule of assignation for the isoenergy set.
However, the fundamental difference is that the former is defined in the original
image, while the latter is built on the modulus of its gradient. Consequently,
the watershed lines depend also on the choice of a discrete approximation of the
gradient. Moreover, gradient operators are sensitive to noise and usually smooth
the image to well pose differentiation. Since the smoothing step implies a loss of
information in the image content, the watersheds suffer from limited resolution
in certain cases. These problems cannot be neglected in fields where the precision
of the extracted features is an essential issue, as in medical image analysis.

Figure 5 depicts the mosaics associated to the different models of edges pre-
sented. The first row shows the original image, a detail of the cameraman, and
the extrema mosaic. The second row depicts, on the left, the watershed mosaic
constructed on the morphological gradient and, on the right, the mosaic corre-
sponding to the choice of V̂ as the energy and the gradient’s minima as sources.
For all the cases 8-connectivity was used, the shape model was the source’s level
and the points in the isoenergy set were assigned to the first source to attain
them. As a consequence of the spatial distribution of the sources and their large
number, all the methods preserve the principal features in the scene, such as
the silhouette of the man. However, the extrema mosaic enhances perceptually
important details such as the mouth or the inner parts of the camera that are
lost in the mosaics of the second row. The loss of information is due to the
absence of regional minima inside those features and, even if the result may
be improved by changing the type of gradient operator or the connectivity, the
problem is intrinsic to the use of the gradient image. Finally, since Prop. 3 im-
plies that the partitions Π(Ŵ (g),min(g)) and Π(V̂ (g),min(g)) differ mainly in
their isoenergy set, the two mosaics in the second row are almost identical.
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Fig. 5. Above: original image and extrema mosaic. Below: mosaics of the energy par-

titions Π(Ŵ (g), min(g)) and Π(V̂ (g), min(g)).

5 Valuation of the Extrema Edges

Once a set of candidates for the edge points has been defined, the next problem
is their valuation. In this section, we propose to construct a contrast driven
hierarchy of partitions to provide global image information for the valuation of
the extrema edges.

The idea of progressively merging regions of an initial partition has been used
for a long time to address image segmentation problems [4], [15], [7], [12]. An
efficient implementation of this idea can be obtained with a graph based region
merging process, as described in [14] and [10]. This type of algorithms works
on a Region Adjacency Graph (RAG), where the nodes correspond to connected
regions of the domain and each region is represented by a model; the links encode
the vicinity relation between regions and are weighted by a dissimilarity measure.
The dissimilarity D is a function defined for every couple of neighbouring regions
and takes values in an interval I = [0, Λ], referred as the set of indices or scales.
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The initial partition, the dissimilarity and the region model determine an
order of merging; the strategy consists on removing the links in the RAG for
increasing values of the dissimilarity and merging the corresponding regions.

For any threshold λ ∈ I, the nodes remaining in the RAG represent a par-
tition Πλ of the domain. Performing the merging until a single region remains
produces a family of nested partitions, or hierarchy, {Πλ}λ∈I where every region
in Πµ is a disjoint union of regions in Πλ, for µ ≥ λ.

The watershed flooding of a gradient image provides a classical example of
hierarchical segmentation: the topographical surface is again flooded from its
minima but, instead of building a dam at the meeting points, the lakes merge.
Increasing levels of water produce coarser partitions and the resulting hierarchy
is known as the dynamics [11]. In terms of a region merging process, the initial
partition is composed by the watershed mosaic and the dissimilarity is defined
as the height of the saddle point between two adjacent lakes, i.e. the minimal
value of the gradient in the common border of the regions [24].

An advantage of using a hierarchy of partitions is that the location of contours
is preserved through the scales. Additionally, when the dissimilarity expresses a
notion of contrast, the concept of saliency of a pixel, defined as the highest index
λ for which the pixel belongs to a contour of Πλ, acquires a particular interest.
The contour map, obtained by the valuation of each pixel by its saliency, is more
than a simple edge map: it provides a compact description of the hierarchy in
a single image. A threshold λ in this image supplies the set of closed contours
of the corresponding partition Πλ. The saliency was used in [26] to valuate the
watershed lines with the hierarchy of dynamics.

In order to strongly relate the process to the information provided by the ex-
trema mosaic and to make the merging order independent of the region model,
we measured the dissimilarity on the initial partition. Moreover, since the pur-
pose of the resulting hierarchy is to valuate the extrema edges, the dissimilarity
was defined using boundary information. A typical choice for the dissimilarity is
the average levels’ difference in the common border of the regions, noted by Da.

Figure 6 exemplifies the approach on the cameraman test image. The first
row shows the extrema mosaic and the contour map for Da in 8-connectivity,
where a low intensity represents a high saliency. The second row depicts, on
the left, the partition for a dissimilarity of λ = 54, with average grey level
as the region model. On the right, the corresponding threshold in the contour
map is shown. Note how the chosen dissimilarity expresses a notion of contrast
between adjacent regions; at the scale presented, only contrasted regions remain,
regardless of their size.

As a last example, Fig. 7 illustrates the accuracy of our approach for an
application in medical image analysis. The goal was to detect a disease called
the drusen - the white spots - in images of the eye fundus, as the one shown on
the top left. The variations in the background’s intensity in retinal angiographies
as well as the absence of abrupt discontinuities in the drusen boundaries make
their extraction a difficult problem with classical edge detection methods. The
top right image shows the contour map of the original image. The image was
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Fig. 6. Row 1: Extrema mosaic and contour map. Row 2: Segmentation for λ = 54 and
corresponding threshold in contour map

rescaled for better visualization, but the scale Λ at which a single region remains
is only 6. Since the transitions in the image are smooth, the resulting contours
are blurred. In contrast, the second row depicts the application of our method.
On the left, we can observe the extrema mosaic, where the drusen can be clearly
distinguished from the background. The right image depicts the contour map of
the EM, where Λ = 58. It can be observed how the method provides the location
and shape of the drusen with precision. Furthermore, their saliency can be used
to measure the magnitude of the disease. In future work, we intend to use our
approach to track the evolution of drusen on time.
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Fig. 7. Row 1: original image and contour map. Row 2: extrema mosaic and contour
map.

6 Conclusion and Perspectives

We presented a new approach to model edges in the image. The method is di-
vided in two parts. First, a set of possible edge points, the extrema edges, is
defined and then a measure of saliency is assigned to every point in this set.
The extrema edges are defined as the discontinuities of the mosaic image associ-
ated to the energy partition Π(V (u), ext(u)). Their valuation is obtained using
global information through a family of nested partitions guided by a notion of
contrast. The method provides a set of closed contours that preserve semantically
important characteristics of edges.

Finally, this paper focused on monochrome images in order to empathize
the mathematical formulation and properties of the extrema partition. However,
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the results presented can be applied to color images directly by considering the
brightness component. The generalization of our approach to color images will
be the subject of our next report.
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