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Abstract Contrast-enhanced ultrasound (CEUS) imaging has lately
benefited of an increasing interest for diagnosis and ietgron plan-
ning, as it allows to visualize blood flow in real-time harssly for

the patient. It complements thus the anatomical infornrmagoovided

by conventional ultrasound (US). This chapter is dedicatekidney
segmentation methods in 3D CEUS images. First we presentaigen
and fast two-step approach to locate (via a robust ellipsstination
algortihm) and segment (using a template deformation freorid the
kidney automatically. Then we show how user interactiomshminte-
grated within the algorithm to guide or correct the segntenan real
time. Finally, we develop a co-segmentation framework ¢jesteralizes
the aforementioned method and allows the simultaneousfusaltple
images (here the CEUS and the US images) to improve the segiment
tion result. The different approaches are evaluated omecalidatabase

of 64 volumes.
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1 Introduction

Ultrasound imaging (US) is a widely used modality due to issa-
tility, low cost and real-time capabilities. Such acquisis have been
for a long time limited to 2D images but the recent developna#i3D
US allowed to consider new problems such as volumetric assa#s
of organs or image registration. In addition to conventidsg, three-
dimensional real-time visualization of vascularizati@ande achieved
with contrast-enhanced ultrasound (CEUS) imaging. Thiserahew
modality provides very useful information for lesions diagis or large
vessels monitoring [1]. Gas-filled microbubbles, actinguaplifiers of
the blood backscattering signal, are used as a contrast &8geause the
bubbles are naturally eliminated by metabolism proces$sissanodality
is considered as completely safe for the patients even witalor liver
failure (unlike contrast-enhanced CT for example).

However the usually poor quality of CEUS images makes any coenp
based analysis challenging: in addition to having powesjokckle
noise, the image is very grainy and almost binary as a refulltia-
sound interactions with individual bubbles. Unlike in centional US
[2], very few segmentation methods of 3D CEUS images have f@en
ported. Among them, Gasnier et al. [3] introduced an intaracap-
proach to segment and analyze tumors in this modality. Heweleir
framework was specific to lesion segmentation, just as thenzatic
methods proposed in [4, 5]. In [6], Ma et al. developped aomatic
algorithm to segment the heart left ventricle. This metfasthough ap-
plicable to other organs, does not provide any natural wagfioe or
correct the result interactively. Besides, it has been desidgor images
acquired with a particular transducer, producing sparseed slices in-
stead of a whole 3D volume.



In this chapter, we address the problem of kidney segmentati3D
CEUS images. This challenging issue is of great importan@ssess
guantitatively the volume of renal tissues. First, we pnésegeneric
and fast approach to automatically segment a kidney in CEUSnes.
Our method consists in detecting it in the image as an eilipsnd
then deforming this ellipsoid to match precisely its bouyd&econd,
we extend this framework in order to take into account othedk of
information :

e user interactions: Because of the poor image quality or pathologies,
image information may be sometimes unreliable and evereatshg.
In such cases, the clinician user should be able to guiderceatdhe
segmentation easily and with a real-time feedback.

e simultaneous use of another imageBecause of shadowing effects,
pathologies and limited field of view, parts of the kidney magy
hardly visible in the image. In such cases even expert usayshave
difficulty delineating the true boundary of the organ by §olely-
ing on one CEUS image. In clinical routine every CEUS acquisiti
is preceded by a conventional US acquisition to locate tdees.

Hence, the latter would be useful to complement the CEUS image

and thus cope with missing and corrupted information.

Prior work on kidney segmentation in CEUS is limited to two off 0
conference papers [7] and [8], of which this chapter is apreded ver-
sion.

The remainder of the chapter is organized as follows. FiraligSec-
tion 2 is dedicated to the description of the material usedudphout
the chapter in validation experiments. In Section 3, weohiice a fast
and robust method to estimate roughly the center, oriemtatnd sizes
of the kidney. This is a done via an original variational feamork for
ellipsoid detection. The outcome of this step is then usethagprior
model of a segmentation algorithm, based on template dettom de-
scribed in Section 4. Because of the inherent ambiguities idE&HEn-



ages, the obtained segmentation may be improved by usirtjcsdd
information. In Section 5, we show how user interactions loarused
inherently in our framework to correct the result in reakd. Then we
extend our approach to multiple images, namely the CEUS antd$h
volumes (Section 6) which are not aligned. Thus a generindmork
for joint co-segmentation and registration is introducad applied to
both the kidney detection and segmentation. We show thatkigg ad-
ditional information into account, the automatic kidnegmeentation is
more robust. Finally, we conclude the chapter by discuspotgntial
improvements.

2 Material

This section describes the material used throughout thptehaOur
database is composed of 64 pairs of CEUS and US volumes agquire
from 35 different patients, via an iU22 ultrasound systemil{ps, The
Netherlands). In order to have a clinically representadizmbase, both
healthy and diseased kidneys were considered. Images weuired
using different probes, namely V6-2 and X6-1 (Philips, Thethér-
lands) US probes, with various fields of view. The volume® sias
512x 510x 256 voxels with different spatial resolutions28 x 0.25 x
0.55 mm in average). The acquisition protocol was as followst,fthe
clinician scouted for the patient’s kidney using convemébUS and
acquired a US volume. Then, 2.4 mL of Sonovue (Bracco, Itaby)-c
trast agent were injected to the patient and a CEUS acquisités per-
formed after a few seconds. Indeed, dynamic CEUS images afirei
show a cortical enhancement shortly followed by a medukenyance-
ment. Better visualization of kidney tissue is then avadalwhen the
contrast agent has diffused as it is completely hyperechbgreas its
fatty surrounding produces no signal. Figure 1 shows a casgraof
US and CEUS images for two patients of our database. Note hbat t
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Fig. 1 Slices of conventional and contrast-enhanced ultrasoOnidn3
ages of the kidney for two different patients (left and rjght

US and CEUS images are not aligned as the clinician may hayrlgli
moved the probe between the two acquisitions.

For each image, an expert was asked to segment the kidneyawith
semi-automatic tool. This segmentation was consideretieagriound
truth. The different approaches described in the chaptebaevaluated
by computing the Dice coefficient between the segmentaéisaltSand
the ground trutlGT, defined as

Vol (SNGT)

Dice(S.CT) =2 355 VoI (GT) °

(1)

where Vo[ X) denotes the volume of a regiofi Thus the higher the
Dice coefficient, the better the segmentation is. In padigthis score
is equal to 1 for a perfect segmentation and 0 for a completety



overlapping segmentation.

All proposed methods were implemented in a C++ prototype had t
computational times will be given for a standard computete{l Core
i52.67 Ghz, 4GB RAM).

3 Kidney detection via robust ellipsoid estimation

Since kidney shape can be roughly approximated by an eidipsioe
kidney automatic detection problem in CEUS images can baliyit
reduced to finding the smallest ellipsoid encompassing wia$ie hy-
perechoic voxels. A large number of methods (e.g. Houghstoams
[9, 10]) has already been proposed to detect ellipses inas§til].
However their extension to 3D, though possible, are usuaiyputa-
tionally expensive mainly because of the number of pararséteesti-
mate (9 for a 3D ellipsoid). Furthermore, they do not exgiiaise the
fact that only one ellipsoid is present in the image. On theeohand,
statistical approaches like robust Minimum Volume ElliigsMVE)
estimators [12] are better suited but require prior knogéedn the pro-
portion of outliers (here the noise, artifacts or neighbgrstructures),
which may vary from one image to another and is thus not aviailaVe
therefore propose an original variational framework, tkabbust and
fast, to estimate the best ellipsoid in an image2 c R3 — R*.

3.1 A variational framework for robust ellipsoid estimatno

In the considered framework, an ellipsoid is implicitly repented using
an implicit functiong : Q — R that is positive inside the ellipsoid and
negative elsewherg can be parametrized by the center of the ellipsoid
c € R® and its sizes and orientations encoded by&BJositive-definite



matrix M. We therefore define the implicit equation of an ellipsoid as
@m(X)=1—(x—c)"M(x—c)=0. (2)

The detection method should be robust to outliers, i.e.hbrigxels
coming from noise, artifacts or other neighboring struesurExclud-
ing those outliers is done by estimating a weighting functiodefined
over the image domai€? into [0, 1]) that provides a confidence score for
any pointx to be an inlier. The ellipsoid estimation is then formulated
as an energy minimization problem with respect,tt andw:

min {Eda (c,M,w) / @M (X w(X) dx 3)

. () (o)}

with @ m(X) =1—(x—¢)'M (x—c)

4 L
and VolM) = gx/ detM -1 the ellipsoid volume

The ellipsoid detection enerdsye is composed of two terms:

e adata-fidelity term: The first term is an integral over the whole im-
age domain2 of the producig v by wl. Note thatwl is highly pos-
itive at voxels that have a high intensity but are not ouslifio min-
imize the energy, such voxels must therefore be includederthe
ellipsoid i.e. wherep is positive.

e aregularization term: The second term penalizes the volume of the
ellipsoid Vol(M) with respect to the domain volum€|. The loga-
rithm provides a statistical interpretation of the problanad eases the
minimization of the energy, as will be seen in the next sutiseclt
is normalized by wl and weighted by a trade-off parameter- 0.



3.2 Numerical optimization

This ellipsoid estimation process can be viewed as fittingaagSian
distribution to the bright pixels of the image by minimiziitg negative
log-likelihood. ThereforeEge has a statistical meaning and whens
fixed, the minimizergc*,M*) of Eg« (-, -, W) have a closed form. Indeed,
c* is the barycenter of all voxels weighted byl (x)w(x) while M* is
the inverse of the covariance mattixf the same data. Besiddge iS
linear with respect tav which is by definition restricted t@®, 1]. There-

fore, at every voxek the minimizerw*(x) is equal to O or 1, depending

only on the sign ofg,m — 1 10g V‘T'g]“) w* is then the indicator of the

current ellipsoid estimation which has been dilated propoately to
U. Its purpose is to remove the contribution of the points Wlace far
away from the current ellipsoid and may hinder its refinment.

The weighting functionvis initialized to 1 everywhere. Minimization
of Ege Is then performed with an alternate iterative scheme thates:
sively updates the variablesM andw, as summarized in Algorithm 1.
As the energyEqg decreases at each step, the algorithm is guaranteed
to converge. In practice, few iterations are required foneogence and
total computational time is less than a second for a 3D image.

The choice ofu is paramount as it controls the number of points that
are taken into account for the ellipsoid matrix estimatibrshould be
set to values close té in 3D and% in 2D (the proof is deferred in the
appendix).

Figure 2 shows such a process for a synthetic 2D image. The firs
ellipse estimate is too large as all voxels are considere¢dabypoints
are progressively eliminated via the weighting functioantil the algo-

1 up to a constant multiplier.



Algorithm 1: Robust ellipsoid detection algorithm
initialization Vxe Q, w(x) <1

repeat
/I Estimation of centec and matrixM

C [Q%V Jo 1(X) w(x) x dx

Mt e 2 o 1(X) w(x) (x—c)(x—c)" dx

/l Update of the weighting functiow for eachx € Q
if (x—c)'M (x—c)<1— plog (%) then
[ w(x)«1
else
| wW(x)«0
until convergence;

rithm converges towards the good solution. We also pressuiits on
real CEUS data in Figure 3. The estimated ellipsoids are ndé¢gtéy
accurate but robust and close enough to be used as an saitiah for a
segmentation algorithm.

4 Kidney segmentation via implicit template deformation

The previously detected ellipsoid will now be deformed tgraent the
kidney more precisely. We follow the template deformaticanfework
described in [13, 14] and extended in [15], as it a very efficreodel-
based algorithm and it has already been applied successifidney
segmentation in CT images [16] .
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Fig. 2 (a) Original 2D synthetic image, corrupted by salt-andgsep
noise. (b) Evolution of the ellipse along the iterationsaaye) and fi-
nal result (green). (c) Ellipse contour and center supewsed on the
productwl at convergence.

Fig. 3 Results of the ellipsoid detection (red) compared to the mulou
truth (green), on slices of the volumes shown in Figure 1.

4.1 Implicit template deformation framework

Implicit template deformation is a framework where an iraplshape
defined by a functiony : Q — R, called thetemplate, is deformed so
that its zero level-set segments a given imag@ — R*. The segment-
ing implicit shape is the zero level set of a functipnQ — R, therefore
defined with respect to this template and a transformatiche@ftpace



Y : Q — Q that becomes the unknown of the problep= @o (. In
our application, the template is the implicit function o&tpreviously
estimated ellipsoigh = @+ m+ andy is sought such that the image gra-
dient flux across the surface of the deformed ellipggisb ¢)~1(0) is
maximum. The segmentation energy is then

E :/ {OIx), BX)) dSX) FAR(Y) , (@
@)= [ (T, 100) IS HARW) L (@)
whereri(x) denotes the vector normal to the surface of the segmentation
at pointx. R(¢) is a regularization term which prevents large devia-
tions from the original ellipsoid. Its choice will be detd in Section

4.2 hereafterA is a positive scalar parameter that controls the strength
of this shape constraint.

Using the divergence theorem, the first data-fidelity term ba
rewritten as

a0 00) 800 == f oo = f g

whereA denotes the Laplacian operator. Introduckighe Heaviside
function H(a) = 1if ais positive, 0 otherwise) yields a more convenient
formulation of the segmentation energy :

Exg() = — [ H(@ow(x) 4100 &x+AR®W) . (6)

4.2 Transformation model

The choice of the space of possible solutiango Problem (6) is, in
our case, intrinsically linked to the notion dgape. A shape can be
considered as a set of objects sharing the same visual aipsutuld



be invariant to geometric transforms such as translataiation, scaling
or shearing. We will refer to such a global transformatiorireespose.

To set up a clear distinction between the pose and the subsesjiape
deformation, similarly to [17], we design our template transformation
modely as a functional composition of a global transformaiiband a
non-rigid local transformatiod (see Figure 4) :

Y=LoG (7)

@oLoG

Fig. 4 Decomposition of the transformatiap. The implicit template
¢ undergoes a global transformatigrand a local deformationd.

Pose. G : Q — Q is chosen as a parametric transform that coarsely
aligns the template with the target surface in the imageillbasically
correct or adjust the global position and scaling of thgostlid, and can
be chosen as a similarity. is thus represented by a matrix in homoge-
neous coordinates defined by 7 paramepets{ pi }i—1...7 and notedjp,.

Deformation. £: Q — Q is expressed using a displacement field
u in the template referential = 1d + u. Similarly to problems in im-
age registration and optical flow algorithms [18}should be smoothly-
varying in space. While adding penalizations on differdrtgams of
u to R(y) is a valid approach, efficient implementations are difficult



to derive. Taking advantage of efficient linear filtering,athness of
the displacement is set as a built-in property defining it as a filtered
version of an integrable unknown displacement field

U0 = Ko #v] () = | Ka(x—y) v(y) dy ®

whereKy is a Gaussian kernel of scate The overall transformation,
that can therefore be parametrizeddgndyv, will be notedyp .

The proposed decomposition allows to define the shape paror t
independently from the pos&® () = R(L). R thus quantifies how

much the segmenting implicit functiop deviates from the prioshape
(. Using theL, norm we choose to constraigttowards the identity :

RL) = 5lL-1dI3 =5 [ ue]? ox ©

The optimization problem to solve finally reads:

min { (U = || M@0 Upu(0) 4100 0 | ke wvI3}

p;v

with Yoy = (ld+u)oGy and u=KgxVv

(10)

4.3 Numerical implementation

Problem (10) is minimized via a standard gradient descemtlsane-
ously on the parameters of the pgigand the deformation field. The
descent evolution equations are obtained by applying ked@f varia-



tions toEsy. We omit the tedious details but the final equations, after a
variable substitution, read

'ap_ oG -1 -1
E——/QCS((R)oﬁ). <D([bO£, (Id+Ju)0_pg > AloG

S

ov _1

i O(@oLl).OwoL .AloG = +AV|xKy

\

(11)
whered denotes the Dirac distribution adg is the Jacobian matrix of
the displacement field.

A quick analysis of Eq. (11) reveals several key aspectstefiecient
implementation. Interpolatingy o £ andUgyo £ over the whole domain
Q would be extremely time-consuming. Nevertheless, sinentulti-
plied by d(@ o L), the warped gradient fieldlg o £ is only needed
on the sef{ @o £ =0} (Figure 5.a) which highly reduces the compu-
tational burden. Moreover, precise knowledge of the wareadtplate
@o L is only necessary near its zero level set. We use a coaifseeto-
approach using octrees. At each level a decision is maderttrefure-
fine the cell depending on the distance measure (Figure Eabjically
dropping complexity. Finally, stemming from the displa@thmodel,
extrapolating image and point-wise forces to the whole sjpads down
to a convolution wittKy (Figure 5.c). In practice, our current 3D imple-
mentation supports up to 100 time steps per second for aetization
of the implicit function on a 64 64 x 64 lattice.



(a) surface/pointwise forces  (b) coarse-to-fingyno L (c) convolved deformation

Fig. 5 Fast template deformation with coarse-to-fine distancgaad
convolutions.

4.4 Results for automatic segmentation in CEUS images

This validation has been performed on the CEUS images of ttasela
presented in Section 2. The completely automatic pipeladedcom-
putational time of around 5 seconds.

Quantitative results are reported in Figure 6. The overalfian Dice
coefficient is 0.69 for the detection and 0.76 for the segatemt and
25% of the database have a very satisfying segmentatiore (@ieffi-
cient higher than 0.85), given the very poor image quality tre pres-
ence of pathologies.

Figure 7 shows the obtained result for the two cases intrediiic
Figure 1. The segmentations are very similar to the grournt and can
be considered as satisfying. Some cases are however micalt{e.g.
Figure 10 in the next section) and will require additiondbmation.
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Fig. 6 Kidney detection (red) and segmentation (blue) resultelims
of Dice coefficients shown as boxplots (left) and histogranmht).

Boxplots show respectively the first decile, the first queytthe me-
dian, the third quartile and the ninth decile. Extreme gt shown
separately.

5 Segmentation with user interactions

The previously described approach is fast and automaticfais in
some difficult cases. Indeed ultrasound shadows or kidnthofmgies
makes the image information unreliable and thus hinder ¢genenta-
tion algorithm. It is therefore important to provide thenatian a way to
guide or correct the segmentation easily and with a rea-feedback.
As proposed in [15], this can be done easily within the impteamplate
deformation framework that was presented in Section 4.



Fig. 7 Result of the automatic segmentation (blue) compared to the
ground truth (green) on a particular slice (top) and in 3Cxt@da).

5.1 User interactions as constraints

In this section, we show how the user can guide the segmemnthti
indicating points that should be inside or outside the segat®n (see
Figure 8).

Consider that the user providéspoints {xc}x € QN in the image
domain labeling each one as inside or outside of the surtaegttact
(which can be done via simple interactions such as a lefk dit an
inside point, and a right click on an outside point). The itipformu-
lation allows to express this information merely as inefjuabnstraints
on the deformed implicit function, at poin{sy} :

Vke [[LN], . @o(x) =0 (12)

wherey = 1 (resp.—1) for inside (resp. outside) points. Note that it is
also possible to specify a point that should be exactly orséggnenta-
tion surface by labelling it as both inside and outside: ti@ihequality
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Fig. 8 User interactions as inside/outside points. (a) Templeterched
without constraints. (b) User indicates points that shbelthside (blue)
and outside (red) the segmentation. (c) New segmentatairstiisfies
these constraints.

constraints are equivalent to an equality constraint. Tlpeiting to-
gether the initial formulation in Eq (6) and the constraiof€Eq (12)
yields a general formulation of implicit template deforiatwith user
interactions, as the following minimization problem :

min {Eag() = [ Hlmo w(x) 4100 dx+AR(Y) |
subject to Vke [LN], w.@oy(xx) >0

(13)

In the next subsection we propose a method to solve this gmobl
efficiently. For the sake of genericity, no assumption is enad the
representation of the deformatigih and the modely = Lo G will be
just a particular implementation of the approach descriterdafter.




5.2 Optimization scheme

SinceEsy(Y) is a non-convex functional and has to be minimized un-
der a set of non-linear constraints, no specifically tadakgorithms are
available. For this matter, we follow a general augmentegrdsagian
methodology [19] and define an equivalent unconstrainetdleno that
can be locally minimized by gradient descent. The constdhiprob-
lem (13) can equivalently be written as an unconstrainedmization
problem of the form

a>0

N

mwin { Eseg(Y) = maX{ Eseg(W¥) — kz ack(y) } } (14)
=1

with ¢ () = W - @o P(Xk)

where oy is the Lagrange multiplier associated to ti8 constraint.
Eq (14) has the same set of solutions as the original probiesg i(13):

if @ satisfies all constraints, then Eseg(W) = Eseg(Y); otherwise
Eseg(Y) is infinite. SinceEsy jumps from finite to infinite values at the
boundary of the feasible set, it is difficult to minimize itash. A more
practical approach is to introduce a smooth approximel%@that de-
pends on a quadratic penalty parameteParameter will be used to
constrain the maximizergay)i to finite values. These multipliers are
estimated iteratively and we introdu(mlj()k the multipliers estimates at
the jtM iteration, in order to define the energy approximation

. _ N 1 N N2
Eseg(W, at) :g‘fg{Eseg(W)—kz Gka(‘l’)—Ek (ak—alo }
= =1 =1
(15)

The maximizing Lagrange multipliers associated to eachstraimt
ck(Y) have a closed-form solution :



jr1
Oy

Substituting (16) i

0 if a} — ve(W) <0
{ ay —ve(y) otherwise. (16)

nto (15) yields the following expressmf the smooth

approximationEgy:

| N |
EY(W.a’) = Esg(y) +3 R (cn(w).al) (17)
=1

with

_ab+ Ya?if va<b
I:V (a7 b) = l 2
— —b? otherwise.
2v

Finally, the alternate scheme described in Algorithm 2, maol the
penalty parametev is gradually increased, will provide a local mini-

mizer of Egy that

eventually satisfies the user constraints. Within this

process, Step (1) is straightforward and Step (2) is verylairto the

gradient descent

proposed in Section 4.3 :

. ‘?p ap K c?g
TG W@ (D £oGin. (1443 T 000 )
ov  ov K

S| 2 M F@0Ime L | K

(18)

Note that the additional terms in Eq (18) are just pointwigetibu-

tions that do not i

nfluence the overall computational time.



Algorithm 2: Augmented Lagrangian Scheme For Inequality Con-
straints
initialization choosev® > 0 and setk, ay + 0,
repeat
choosev! > vt=1,
setj «+ 0,
repeat
(1) @ being fixed, update the Lagrange multipliers
using Eq (16)
(2) al being fixed, updatey by minimizing Ey(y, al)
with gradient descent on Eq (17)
(3) incrementj < j+1
until convergence;

increment «—t+1
until alocal minimum of Es(y) satisfying vk, ci(¢) > Oisfound;

5.3 Influence of user interactions on kidney segmentation@EUS

Validation of the user interactions has been performed ounbaet of
21 CEUS volumes from 21 different patients of our databasee&oh
case, the automatic segmentation has been run and its vessilte-
fined with user interactions from an expert. Figure 9 reptirvésDice
coefficients obtained as a function of the number of clickse Ecore
gradually increases as the user interacts with the algoridtt rapidly
converges: most of the time, less than 3 clicks are needed fairly
precise result (Dice> 0.9) 2. The results also show that even when the
initialization produces a low score, very few interacti@as improve a
lot the segmentation. The influence of user interactionkustiated in
Figure 10, where we show results on a difficult case. The ptis a lot

2 The ground truth may not exactly be reached because of thetttighdperator variability.



of renal cysts that are anechogenic and hinders the autossgimenta-
tions. With 3 clicks, the segmentation is much closer to tioigd truth.

Nevertheless, in some applications user interactions @rpassible
and the segmentation has to be automatic. In the next seet®pro-
pose to improve the kidney segmentation by using simultasigand
automatically the conventional US image.

Fig. 9 Boxplots of the
Dice  coefficient be-
tween the ground truth
and the segmentation a _os
different steps of the pro-
posed algorithm. Boxplots
show respectively the first
decile, the first quartile, os
the median, the third quar- ,| -
tile and the ninth decile.

Extreme points are showr &L
separately. o
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6 Joint co-segmentation and registration

Co-segmentation often denotes the task of finding an objeetaah
Image that shares the same appearance but not necessarsgrtie
shape [20]. Here we look for the exactly same organ in two #sag
but with a different appearance. As simultaneous acqorsif US and
CEUS is not possible on current 3D imaging systems, the twgéna
are in arbitrary referentials and need to be aligned. Howetandard
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Fig. 10 Example of a segmentation with user interactions. (a) Slice
the original CEUS volume. (b) Comparison of the ground trutie€g)
and automatic segmentation (red). (c) Corrected segmentéiue)
with 2 inside points (blue dots) and one outside point (red). dd) 3D
visualization of the ground truth (green), the automatedjrand cor-
rected (blue) segmentation, with constraint points.

iconic registration methods are not adapted since visthle®ires, apart
from the kidney itself, are completely different in US and CEWCo-
segmentation shall therefore help registration, just gst@ation helps
co-segmentation. This calls for a method that jointly perf®these two
tasks (see Figure 11).

Although segmentation and registration are often seen asépa-
rate problems, several approaches have already been ptbfmgper-
form them simultaneously. Most of them rely on an iconic ségition
guiding the segmentation (e.g. [21, 22, 23]). Yet they agstimt the
segmentation is known in one of the images, which is not tee caour
application of co-segmentation. Moreover, as stated befoOEUS/US
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Fig. 11 Joint co-segmentation and registration. Given two difier®n-
aligned images of the same object, the proposed method aisega
menting this object in both images as well as estimatingid tignsfor-
mation between them.

intensity-based registration is bound to fail since visibtructures do
not correspond to each other. Instead of registering thgesahem-
selves, Wyatt et al. [24] developped a MAP formulation tofen reg-
istration on label maps resulting from a segmentation stepever no
shape model is enforced and noise can degrade the resyiS] |Nezzi
et al. introduced a variational framework that consistsfieedure-based
registration in which the features are actually the segimeictive con-
tours.

In this section, we aim at extending both the previously dbesd
kidney detection and segmentation in a 3D CEUS image to a pair o
3D CEUS and US images. To that end, we develop a generic joint co
segmentation and registration framework inspired by [Z8]s results
in a fully automated pipeline to obtain both an improved kgrseg-
mentation in CEUS and US images and a registration of them. B&iit fi
of all, in order to use conventional US, we need to learn hakitiney
looks like in such images.



6.1 Learning appearance in conventional ultrasound

In CEUS images, bright areas indicate the presence of cortgant
which is mainly localized in the kidney. This is why we dirgaised the
image intensity as a voxel probabilities to be inside the@&d However
in conventional US images, this does not hold and we neednsfiorm
the image into a more elaborate kidney probability map.

The kidney appearance has a much higher variability in UQésa
although their structure is consistent: kidneys are alvwaysposed of
a bright sinus surrounded by a darker parenchyma (see FIQ)re\s
intensity itself is not reliable enough, we chose to comiomatiple im-
age features using decision forests [26] to obtain a claskepor map

Pus.

Recent work [27, 28, 29, 30, 31] demonstrated that addingestunl
information allows to improve spatial consistency and thlassifica-
tion performance. Here we propose to exploit the kidneycstine in
a simple yet efficient way. Similarly to the auto-contexifi@vork in-
troduced by Tu et al. [32], contextual information is inchadby using
two classifiers in cascade. A first classification (kidney &sKkground)
is performed in each voxel using a decision forest. Then veetiisse
class posterior probabilities as additional input of a sea@ndom for-
est that will give the final kidney probabilitpys. In the remainder of
the chapter, we will work on this map instead of the origin& tthage.

The features used for the first decision forest were the sitieof the
image and its Laplacian at the considered voxel as well s aeigh-
bors’ within a 7x 7 x 7 local patch, at three different scales=£ 2,4,6
mm). Intensities were normalized in each patch. For thermbéorest,
we added the estimated class posterior as additional clsairaeh for-



est was composed of 10 trees with maximum depth 15.

Fig. 12 Kidney appearance in US images (the kidney boundary is de-
noted in red). (Left) Original images showing the high vhility of

the database. (Middle) Kidney probability given by the fokssifier.
(Right) Final kidney probablityys.

To validate this probability estimation, the patient daisdwas split
into two groups. Results on the whole dataset were then aataising
a two-fold cross-validation. Figure 13 shows the ROC andiBi@n-
Recall curves computed (i) by the first decision forest andifing the
auto-context approach with another forest in cascade. atter Ipro-
vides better kidney probabilities with respect to all reépdrstatistics.
Indeed, taking into account structural information helpsdxample in
distinguishing the kidney sinus from the background or tepchyma
from shadows, and allows a more spatially coherent claasiic (see
Figure 12).

6.2 Generic framework for co-segmentation and registratio

In Sections 3 and 4, we presented two variational methodsgpec-
tively detect and segment the kidney. They both consistekiag ¢ as
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Fig. 13 Comparison of classification results for the single decision
est and the auto-context approach. (Left) ROC Curve. (Rigkpision-
Recall curve.

the minimizer of a functional of the following generic form

Ei(9) = [ 1(000) n(x) dx+R(0) (19

wheref is a real-valued function ang(x) denotes a pointwise score on
whetherx looks like an interior or exterior voxel in the imageThis is

a standard setting in which the optimal implicit functipmust achieve
a trade-off between an image-based term and a regulanzatinR 3.

We are interested in the case where a pair of imdge€2; — R
andl; : Q> — R of the same object are available. If those images were
perfectly aligned, the energy in Eq (19) can be straightéodly gener-
alized to perform co-segmentation :

Ei1(9) = o flo(x)) (N (x) +1,(x)) dx+R(@) . (20)

3 For example, the seminal method of Chan and Vese [33] falls in thingwork withf = H the
Heaviside function and (x) = (1(x) — cint)2 — (1(X) — Cext )% With iy andceq denoting mean inten-
sities inside and outside the target object.



Unfortunately, such an assumption rarely holds in medipaliea-
tions unless the two images are acquired simultaneouslyore mealis-
tic hypothesis is to assume that the target object, seguhéyte, is not
deformed between the two acquisitions, but only undergnesmknown
rigid transformatiorg,. The co-segmentation energy thus reads

Eiuro(9.0) = [ 1(000) (0 dx | (9061 (x)) 1,0 e +R ().

(21)
Note that, after a variable substitution, it can be equividyanritten

B (@.0) = [ 1(900) (0,(x) 411,067 20)) dx+R(9) . (22)

Minimizing E,, j, with respect tap andg; simultaneously can be there-
fore interpreted as performing jointly segmentation (gaand rigid
registration (viag,) . This generalizes a more common co-segmentation
approach (e.g. [34]) where the images are first aligned ireprpcess-
ing step.

In the following, we apply this framework to the robust edigid
detection (Section 3) and implicit template deformatioredi®n 4)
to build a completely automated workflow for kidney segmegatain
CEUS and US images. Note that the kidney, which is surrounged b
a tough fibrous renal capsule, is a rigid organ. The hypathafsnon-
deformation is therefore justified.

6.3 Application to kidney detection

The robust ellipsoid detection setting of Eq (3) falls irte framework
described in Eq (19) with :

o f=Idandr, =—-wl;



e R(@m)=R(M)=p. / IWIog(VO|IQ‘ )>.

Expanding this algorithm to another imaberequires the introduc-
tion of another weighting functiow,. Following Eq (21), we can now
define the co-detection energy as

Eco—det (G, M, W1, W2, Gy ) = / @ (X) Wi (X) 11(x) dx
— /Q @M o Gr (X) Wa(X) l2(x) dx

+U (/QW1|1—|—W2|2) log (ng\l/l)>

with  Vol(M) = 4?71\/ detM—1 the ellipsoid volume
(23)

To facilitate the resolution of such a probleg, - as a rigid trans-
formation - can be decomposed into a rotation and a traoslate
can therefore equivalently write the energy as a functiahetllipsoid
centercy in the second image and the rotation maRix

Eco—det (Ci, Wi, R,M) / @, M l1(x) dx (24)
~ [ e ar 09 w00 12()

+ (/QW1|1+W2|2) log (Voylf()l\‘/l))

Minimization of such functional is done in an alternate #istep pro-
cess:

1. The statistical interpretation still holds for the etiggds centers and
matrix: minimizersc] andc; are weighted centroids while minimizer



M* is related to the weighted covariance matrix of pixels capfiom
both images.

2. The unknown matriRr accounts for the possible rotation between the
two images and can be parametrized by a vector of a@leR3. A
gradient descent is performed at each iteration to minithieenergy
with respect t®.

3. The weightav; andws are finally updated as indicator functions (up
to a slight dilation) of the current ellipsoid estimates.

The complete minimization strategy is summarized in Altpon 3.
This algorithm is computationally efficient : closed-formigions are
available (except foR) and the process, though iterative, usually con-
verges in very few iterations.

Figure 14 shows an example of ellipse co-detection in syiatia-
ages, where the probability of belonging to the target dligaibe image
intensity. Despite the noise, the simulated shadow ancetihaced field-
of-view effect, the co-detection algorithm provides a gestimate on
the ellipse position, size and orientation in both images.

6.4 Application to kidney segmentation

Implicit template deformation, as previously describedeattion 4, is
part of the framework defined in Eq. (19) with :

e f=H andr, = -Al;
A
« R(@oy)=R(L) =7 [£L-1d]3.

We can therefore extend it to co-segmentation using Eq.gtpn-
sidering the following functional



()

Fig. 14 Ellipse detection on two synthetic imageqa) andl, (d). De-
tected ellipses with their center and main axes are showm)irarid
(e) for independent ellipse detection (red) and proposetiadeor co-
detection (blue) compared to the ground truth (green).écp8d image
registered with the estimated transfo@ni. (f) Combination of image
termswily + (Walz) o gr_l used for ellipse estimation at convergence.

Eco—seg((ﬁboﬁog,gr) = Eco—seg(ﬁ,g,gr)
:—/QH(qboﬁog)All(x) dx
—/QH(qboﬁoQ'ogr)Alz(X) dx

A
+§||£—Id||§ . (25)



Algorithm 3: Robust ellipsoid co-detection algorithm
initialization Vx e Q, wi(X) <1, wp(X) < 1
repeat

/I Estimation of centers; andc, and matrixM

C1 @ Jowi(x) 11(X) x dx
C2 4= Taveiz Jo Wa(X) 12(x) x dx
M — m(/ﬂwl(x) 11(X) (x—c¢1) (x—c1) T dx

+/ Wo(X) 1o(X) R (X~ ) (x — )" R k)
JQ

/I Update of the rotation matrix by gradient descent witip gle
repeat
‘ R(@) <R (@ — At UoEco—det (@))
until convergence;
/I Update of the weighting functiong; andw, for eachx € Q
if (x—c)'M (x—c) <1— plog <V°|'[(2'\‘")> then
| wi(X) < 1elsewy(x) <0
if (x—c2)T RTMR (x—¢3) < 1— plog (V‘;'(g“‘“) then
| Wa(X) < 1elsewy(x) < 0
until convergence;

The energyEco—syg is then minimized with respect to the parameters
of G, G, and each component of the vector fieldthrough a gradient
descent similar to Section 4.3.



6.5 Results for kidney co-segmentation in CEUS and US

The average overall computational time for kidney probgbisti-
mation in US, ellipsoid co-detection and kidney co-segragomh was
around 20 seconds with our implementation.

Validation was performed by comparing the co-segmentasipn
proach to a segmentation from a single image (in both CEUS an US
cases). Dice coefficients and relative error on the meadudeey vol-
ume are reported in Figure 15. Using simultaneously the doemgn-
tary information from US and CEUS images significantly immethe
segmentation accuracy in both modalities. More specificttie me-
dian Dice coefficient is increased from 0.74 to 0.81 in CEUS4lue
< 10% and 0.73 to 0.78 in US (p-value 10~%). Furthermore, the
proposed approach provides more reliable clinical infdromaas the
median error on the kidney volume is almost divided by two iHJSE
(29% versus 15%) and in US (25% versus 13%). Figure 16 shosvs th
joint co-segmentation and registration results for one calependent
segmentation fails in both US and CEUS images because of the ki
ney lesion (indicated by the yellow arrow), that looks lilkes tback-
ground in CEUS but like the kidney in US. Conversely, the prepos
co-segmentation manages to overcome this difficulty by d¢oimmdp in-
formation from the two modalities. Furthermore, for thi@eyple, one
can assess the estimated registration by comparing thedocd the le-
sion in the two modalities. Results on another case were &ptagied
in Figure 11.

7 Conclusion

This chapter addressed the problem of kidney segmentatRD CEUS
images. Such a task is challenging because of the noisetifaets and
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Fig. 15 Boxplots of segmentation results for kidney segmentation in
US and CEUS images, in terms of Dice coefficients (a-b) andivela
volume error (c-d). The proposed co-segmentation comgavesably
to independent segmentation with a p-vatu@0—. Boxplots show re-
spectively the first decile, the first quartile, the mediae,third quartile
and the ninth decile. Extreme points are shown separately.

the partial occultation of the organ (due to the limited fieldiiew).

A robust ellipsoid detector has been introduced to coateebte the
kidney. The ellipsoid is then deformed to segment the kidneye pre-
cisely, by maximizing the image gradient flux through thersegta-
tion boundary, using the template deformation framewohis method
yields a fully automatic pipeline that provides a satisfygegmentation
in a large number of cases but may fail when the image infaomas
too ambiguous (shadows, pathologies, etc).

To overcome such difficulties, two extensions of this appholaave
been proposed to take into account additional informatiarst, we
showed how user interactions can be exploited to guide thmee-
tation in real time, by letting the user indicate points tehbuld be
inside/outside/on the segmentation. Then, we introducgenaric co-
segmentation framework that generalizes any segmentateihod to



Fig. 16 Example of joint co-segmentation and registration for a CEUS

(top) and a US (bottom) images. (Left) Comparison of indepahdeg-
mentations (red) and the proposed co-segmentation (blitley&spect
to the ground truths (green). (Middle, Right) Two views of thgistered
volumes that can be assessed by considering the positidre désion
(yellow arrow).

allow the simultaneous use of multiple images (here the CEURize

US images). This results in both a better estimate of thenoghape
and a registration of the images. The two aforementionezheiins are
compatible and including user interactions in multiple g@sawould be
straightforward.

The kidney detection can still be improved by including mamatom-
ical prior knowledge. A possible solution would be to coastrthe el-
lipsoid’s axis lengths or volume to be close to clinicallyanengful val-
ues. Another way is the use of CT images of the same patientriaoex
a tailored model of the kidney and help both the CEUS detectiah
segmentation.



Appendix : Choice of the parametery for ellipsoid detection

The choice ofu in Eq. (3) is paramount as it controls the number of
points that are taken into account for the ellipsoid matsittreation. To
find a suitable value, let us consider an ideal case of an ifgag&vhich
there is one white ellipsoidil{ = 1) on a black backgroundy= 0),
whose implicit function isg, m,. We also assume that the confidence
weight isw = 1 everywhere. Then the matrix estimated by our approach
would be

M* = argmin Ege(Co,M, 1)

-1 (26)
lo( dx
[IJ fQ'O/ ol ~)’ ]
Using the fact thato = 11 (x_c))Tmo(x—c)>0} IS the indicator of the
ellipsoid yields
_f2_1 / T r
=|— X—Cp)(X—cCp) dx| (27
[uVOI( Mo) 1 commgie-cpza) T &N

After a variable substitutior < M é/z(x —Cp), this expression becomes

-1
2 del(Mgl/z) -1/2

S S A xxTdx M,
u Vol(Mg) ° fuxnél}
With Vol (M) = 4r[\/d e(Mg ):—d (Mol/z) we then obtain

« |2 3 ,-1)2 T ~1/2 -t
M*=|— —M, / XX dx M, (29)
p 4an {lixll<1}

~1/2

M* = (28)




Note that the integrafy <1 xxTdx denotes the covariance matrix of
a 3D unit ball, which is actually a scalar matrix that can b&ilgaom-
puted

22t 0 0 100
T _ 35 21 _4_7T
xx' dx = 0 2m535 O = 010 (30)
{1 <1} o o 2r2t) ooz

Combining Eq.(29) and Eq.(30) leads to

* 2 (1 -1 -
o= (sme') o
which yields the following relationship betweéh® andMy :
. 5
M* = EHMO (32)

This shows that the exact solutiy is retrieved foru = % This value
actually depends on the dimension®f Here we assume@ ¢ R3 but
for 2D images, the optimal value would rather floe- %
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