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Abstract Contrast-enhanced ultrasound (CEUS) imaging has lately
benefited of an increasing interest for diagnosis and intervention plan-
ning, as it allows to visualize blood flow in real-time harmlessly for
the patient. It complements thus the anatomical information provided
by conventional ultrasound (US). This chapter is dedicatedto kidney
segmentation methods in 3D CEUS images. First we present a generic
and fast two-step approach to locate (via a robust ellipsoidestimation
algortihm) and segment (using a template deformation framework) the
kidney automatically. Then we show how user interactions can be inte-
grated within the algorithm to guide or correct the segmentation in real
time. Finally, we develop a co-segmentation framework thatgeneralizes
the aforementioned method and allows the simultaneous use of multiple
images (here the CEUS and the US images) to improve the segmenta-
tion result. The different approaches are evaluated on a clinical database
of 64 volumes.
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1 Introduction

Ultrasound imaging (US) is a widely used modality due to its versa-
tility, low cost and real-time capabilities. Such acquisitions have been
for a long time limited to 2D images but the recent development of 3D
US allowed to consider new problems such as volumetric assessments
of organs or image registration. In addition to conventional US, three-
dimensional real-time visualization of vascularization can be achieved
with contrast-enhanced ultrasound (CEUS) imaging. This rather new
modality provides very useful information for lesions diagnosis or large
vessels monitoring [1]. Gas-filled microbubbles, acting asamplifiers of
the blood backscattering signal, are used as a contrast agent. Because the
bubbles are naturally eliminated by metabolism processes,this modality
is considered as completely safe for the patients even with renal or liver
failure (unlike contrast-enhanced CT for example).

However the usually poor quality of CEUS images makes any computer-
based analysis challenging: in addition to having powerfulspeckle
noise, the image is very grainy and almost binary as a result of ultra-
sound interactions with individual bubbles. Unlike in conventional US
[2], very few segmentation methods of 3D CEUS images have beenre-
ported. Among them, Gasnier et al. [3] introduced an interactive ap-
proach to segment and analyze tumors in this modality. However, their
framework was specific to lesion segmentation, just as the automatic
methods proposed in [4, 5]. In [6], Ma et al. developped an automatic
algorithm to segment the heart left ventricle. This method,although ap-
plicable to other organs, does not provide any natural way torefine or
correct the result interactively. Besides, it has been designed for images
acquired with a particular transducer, producing sparse rotated slices in-
stead of a whole 3D volume.



In this chapter, we address the problem of kidney segmentation in 3D
CEUS images. This challenging issue is of great importance toassess
quantitatively the volume of renal tissues. First, we present a generic
and fast approach to automatically segment a kidney in CEUS volumes.
Our method consists in detecting it in the image as an ellipsoid, and
then deforming this ellipsoid to match precisely its boundary. Second,
we extend this framework in order to take into account other kinds of
information :

• user interactions:Because of the poor image quality or pathologies,
image information may be sometimes unreliable and even misleading.
In such cases, the clinician user should be able to guide or correct the
segmentation easily and with a real-time feedback.
• simultaneous use of another image:Because of shadowing effects,

pathologies and limited field of view, parts of the kidney maybe
hardly visible in the image. In such cases even expert users may have
difficulty delineating the true boundary of the organ by solely rely-
ing on one CEUS image. In clinical routine every CEUS acquisition
is preceded by a conventional US acquisition to locate the kidney.
Hence, the latter would be useful to complement the CEUS image
and thus cope with missing and corrupted information.

Prior work on kidney segmentation in CEUS is limited to two of our
conference papers [7] and [8], of which this chapter is an extended ver-
sion.

The remainder of the chapter is organized as follows. First of all, Sec-
tion 2 is dedicated to the description of the material used throughout
the chapter in validation experiments. In Section 3, we introduce a fast
and robust method to estimate roughly the center, orientation and sizes
of the kidney. This is a done via an original variational framework for
ellipsoid detection. The outcome of this step is then used asthe prior
model of a segmentation algorithm, based on template deformation, de-
scribed in Section 4. Because of the inherent ambiguities in CEUS im-



ages, the obtained segmentation may be improved by using additional
information. In Section 5, we show how user interactions canbe used
inherently in our framework to correct the result in real-time. Then we
extend our approach to multiple images, namely the CEUS and the US
volumes (Section 6) which are not aligned. Thus a generic framework
for joint co-segmentation and registration is introduced and applied to
both the kidney detection and segmentation. We show that by taking ad-
ditional information into account, the automatic kidney segmentation is
more robust. Finally, we conclude the chapter by discussingpotential
improvements.

2 Material

This section describes the material used throughout the chapter. Our
database is composed of 64 pairs of CEUS and US volumes acquired
from 35 different patients, via an iU22 ultrasound system (Philips, The
Netherlands). In order to have a clinically representativedatabase, both
healthy and diseased kidneys were considered. Images were acquired
using different probes, namely V6-2 and X6-1 (Philips, The Nether-
lands) US probes, with various fields of view. The volumes size was
512×510×256 voxels with different spatial resolutions (0.25×0.25×
0.55 mm in average). The acquisition protocol was as follows: first, the
clinician scouted for the patient’s kidney using conventional US and
acquired a US volume. Then, 2.4 mL of Sonovue (Bracco, Italy) con-
trast agent were injected to the patient and a CEUS acquisition was per-
formed after a few seconds. Indeed, dynamic CEUS images of a kidney
show a cortical enhancement shortly followed by a medullaryenhance-
ment. Better visualization of kidney tissue is then available when the
contrast agent has diffused as it is completely hyperechoicwhereas its
fatty surrounding produces no signal. Figure 1 shows a comparison of
US and CEUS images for two patients of our database. Note that the
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Fig. 1 Slices of conventional and contrast-enhanced ultrasound 3D im-
ages of the kidney for two different patients (left and right).

US and CEUS images are not aligned as the clinician may have slightly
moved the probe between the two acquisitions.

For each image, an expert was asked to segment the kidney witha
semi-automatic tool. This segmentation was considered as the ground
truth. The different approaches described in the chapter will be evaluated
by computing the Dice coefficient between the segmentation resultS and
the ground truthGT , defined as

Dice(S,GT ) = 2
Vol(S∩GT )

Vol(S)+Vol(GT )
. (1)

where Vol(X) denotes the volume of a regionX . Thus the higher the
Dice coefficient, the better the segmentation is. In particular, this score
is equal to 1 for a perfect segmentation and 0 for a completelynon-



overlapping segmentation.

All proposed methods were implemented in a C++ prototype and the
computational times will be given for a standard computer (Intel Core
i5 2.67 Ghz, 4GB RAM).

3 Kidney detection via robust ellipsoid estimation

Since kidney shape can be roughly approximated by an ellipsoid, the
kidney automatic detection problem in CEUS images can be initially
reduced to finding the smallest ellipsoid encompassing mostof the hy-
perechoic voxels. A large number of methods (e.g. Hough transforms
[9, 10]) has already been proposed to detect ellipses in images [11].
However their extension to 3D, though possible, are usuallycomputa-
tionally expensive mainly because of the number of parameters to esti-
mate (9 for a 3D ellipsoid). Furthermore, they do not explicitly use the
fact that only one ellipsoid is present in the image. On the other hand,
statistical approaches like robust Minimum Volume Ellipsoid (MVE)
estimators [12] are better suited but require prior knowledge on the pro-
portion of outliers (here the noise, artifacts or neighboring structures),
which may vary from one image to another and is thus not available. We
therefore propose an original variational framework, thatis robust and
fast, to estimate the best ellipsoid in an imageI : Ω ⊂ R

3→ R
+.

3.1 A variational framework for robust ellipsoid estimation

In the considered framework, an ellipsoid is implicitly represented using
an implicit functionφ : Ω → R that is positive inside the ellipsoid and
negative elsewhere.φ can be parametrized by the center of the ellipsoid
c∈R3 and its sizes and orientations encoded by a 3×3 positive-definite



matrix M . We therefore define the implicit equation of an ellipsoid as

φc,M (x) = 1− (x−c)T M(x−c) = 0 . (2)

The detection method should be robust to outliers, i.e. bright voxels
coming from noise, artifacts or other neighboring structures. Exclud-
ing those outliers is done by estimating a weighting function w (defined
over the image domainΩ into [0,1]) that provides a confidence score for
any pointx to be an inlier. The ellipsoid estimation is then formulated
as an energy minimization problem with respect toc, M andw:

min
c,M ,w
{Edet(c,M ,w) =−

∫

Ω
φc,M (x) I(x) w(x) dx (3)

+µ. log

(

Vol(M)

|Ω |

)

.

(

∫

Ω
I(x) w(x) dx

)

}
with φc,M (x) =1− (x−c)T M (x−c)

and Vol(M) =
4π
3

√
detM−1 the ellipsoid volume.

The ellipsoid detection energyEdet is composed of two terms:

• a data-fidelity term : The first term is an integral over the whole im-
age domainΩ of the productφc,M by wI. Note thatwI is highly pos-
itive at voxels that have a high intensity but are not outliers. To min-
imize the energy, such voxels must therefore be included inside the
ellipsoid i.e. whereφ is positive.
• a regularization term : The second term penalizes the volume of the

ellipsoid Vol(M) with respect to the domain volume|Ω |. The loga-
rithm provides a statistical interpretation of the problemand eases the
minimization of the energy, as will be seen in the next subsection. It
is normalized by

∫

wI and weighted by a trade-off parameterµ > 0.



3.2 Numerical optimization

This ellipsoid estimation process can be viewed as fitting a Gaussian
distribution to the bright pixels of the image by minimizingits negative
log-likelihood. ThereforeEdet has a statistical meaning and whenw is
fixed, the minimizers(c∗,M∗) of Edet(·, ·,w) have a closed form. Indeed,
c∗ is the barycenter of all voxelsx weighted byI(x)w(x) while M∗ is
the inverse of the covariance matrix1 of the same data. Besides,Edet is
linear with respect tow which is by definition restricted to[0,1]. There-
fore, at every voxelx the minimizerw∗(x) is equal to 0 or 1, depending

only on the sign ofφc,M −µ log
(

Vol(M)
|Ω |

)

. w∗ is then the indicator of the

current ellipsoid estimation which has been dilated proportionately to
µ. Its purpose is to remove the contribution of the points which are far
away from the current ellipsoid and may hinder its refinment.

The weighting functionw is initialized to 1 everywhere. Minimization
of Edet is then performed with an alternate iterative scheme that succes-
sively updates the variablesc, M andw, as summarized in Algorithm 1.
As the energyEdet decreases at each step, the algorithm is guaranteed
to converge. In practice, few iterations are required for convergence and
total computational time is less than a second for a 3D image.

The choice ofµ is paramount as it controls the number of points that
are taken into account for the ellipsoid matrix estimation.It should be
set to values close to25 in 3D and1

2 in 2D (the proof is deferred in the
appendix).

Figure 2 shows such a process for a synthetic 2D image. The first
ellipse estimate is too large as all voxels are considered but far points
are progressively eliminated via the weighting functionw until the algo-

1 up to a constant multiplier.



Algorithm 1: Robust ellipsoid detection algorithm
initialization ∀ x ∈Ω , w(x)← 1
repeat

// Estimation of centerc and matrixM
c← 1

∫

Ω Iw

∫

Ω I(x) w(x) x dx

M−1← 2
µ
∫

Ω Iw

∫

Ω I(x) w(x) (x−c)(x−c)T dx

// Update of the weighting functionw for eachx ∈Ω
if (x−c)T M (x−c)≤ 1−µ log

(

Vol(M)
|Ω |

)

then
w(x)← 1

else
w(x)← 0

until convergence;

rithm converges towards the good solution. We also present results on
real CEUS data in Figure 3. The estimated ellipsoids are not perfectly
accurate but robust and close enough to be used as an initialisation for a
segmentation algorithm.

4 Kidney segmentation via implicit template deformation

The previously detected ellipsoid will now be deformed to segment the
kidney more precisely. We follow the template deformation framework
described in [13, 14] and extended in [15], as it a very efficient model-
based algorithm and it has already been applied successfully to kidney
segmentation in CT images [16] .



(a) (b) (c)

Fig. 2 (a) Original 2D synthetic image, corrupted by salt-and-pepper
noise. (b) Evolution of the ellipse along the iterations (orange) and fi-
nal result (green). (c) Ellipse contour and center superimposed on the
productwI at convergence.

Fig. 3 Results of the ellipsoid detection (red) compared to the ground
truth (green), on slices of the volumes shown in Figure 1.

4.1 Implicit template deformation framework

Implicit template deformation is a framework where an implicit shape
defined by a functionφ0 : Ω → R, called thetemplate, is deformed so
that its zero level-set segments a given imageI : Ω →R

+. The segment-
ing implicit shape is the zero level set of a functionφ : Ω →R, therefore
defined with respect to this template and a transformation ofthe space



ψ : Ω → Ω that becomes the unknown of the problem :φ = φ0◦ψ. In
our application, the template is the implicit function of the previously
estimated ellipsoidφ0 = φc∗,M∗ andψ is sought such that the image gra-
dient flux across the surface of the deformed ellipsoid(φ0 ◦ψ)−1(0) is
maximum. The segmentation energy is then

Eseg(ψ) =
∫

{φ0◦ψ=0}
−
〈

~∇I(x) , ~n(x)
〉

dS(x)+λR(ψ) , (4)

where~n(x) denotes the vector normal to the surface of the segmentation
at pointx. R(ψ) is a regularization term which prevents large devia-
tions from the original ellipsoid. Its choice will be detailed in Section
4.2 hereafter.λ is a positive scalar parameter that controls the strength
of this shape constraint.

Using the divergence theorem, the first data-fidelity term can be
rewritten as
∫

{φ0◦ψ=0}
−
〈

~∇I(x), ~n(x)
〉

dS(x) =−
∫

{φ0◦ψ≥0}
div(∇I(x)) dx =−

∫

{φ0◦ψ≥0}
∆ I(x) dx

(5)
where∆ denotes the Laplacian operator. IntroducingH the Heaviside
function (H(a)= 1 if a is positive, 0 otherwise) yields a more convenient
formulation of the segmentation energy :

Eseg(ψ) =−
∫

Ω
H(φ0◦ψ(x)) ∆ I(x) dx+λR(ψ) , (6)

4.2 Transformation model

The choice of the space of possible solutionsψ to Problem (6) is, in
our case, intrinsically linked to the notion ofshape. A shape can be
considered as a set of objects sharing the same visual aspect. It should



be invariant to geometric transforms such as translation, rotation, scaling
or shearing. We will refer to such a global transformation asthe pose.
To set up a clear distinction between the pose and the subsequent shape
deformation, similarly to [17], we design our template transformation
modelψ as a functional composition of a global transformationG and a
non-rigid local transformationL (see Figure 4) :

ψ = L◦G (7)

φ0 φ0◦G φ0◦L◦G
Fig. 4 Decomposition of the transformationψ. The implicit template
φ0 undergoes a global transformationG and a local deformationL.

Pose. G : Ω → Ω is chosen as a parametric transform that coarsely
aligns the template with the target surface in the image. It will basically
correct or adjust the global position and scaling of the ellipsoid, and can
be chosen as a similarity.G is thus represented by a matrix in homoge-
neous coordinates defined by 7 parametersp = {pi}i=1···7 and notedGp.

Deformation. L : Ω → Ω is expressed using a displacement field
u in the template referentialL = Id +u. Similarly to problems in im-
age registration and optical flow algorithms [18],u should be smoothly-
varying in space. While adding penalizations on differential terms of
u to R(ψ) is a valid approach, efficient implementations are difficult



to derive. Taking advantage of efficient linear filtering, smoothness of
the displacementu is set as a built-in property defining it as a filtered
version of an integrable unknown displacement fieldv

u(x) = [Kσ ∗v] (x) =
∫

Ω
Kσ (x−y) v(y) dy (8)

whereKσ is a Gaussian kernel of scaleσ . The overall transformation,
that can therefore be parametrized byp andv, will be notedψp,v.

The proposed decomposition allows to define the shape prior term
independently from the pose:R(ψ) = R(L). R thus quantifies how
much the segmenting implicit functionφ deviates from the priorshape
φ0. Using theL2 norm we choose to constraintL towards the identity :

R(L) = 1
2
‖L− Id‖22 =

1
2

∫

Ω
‖u(x)‖2 dx (9)

The optimization problem to solve finally reads:

min
p,v

{

Eseg(ψp,v) =−
∫

Ω
H(φ0◦ψp,v(x)) ∆ I(x) dx+

λ
2

∫

Ω
‖Kσ ∗v‖2

}

with ψp,v = (Id +u)◦Gp and u = Kσ ∗v
(10)

4.3 Numerical implementation

Problem (10) is minimized via a standard gradient descent simultane-
ously on the parameters of the poseGp and the deformation fieldv. The
descent evolution equations are obtained by applying calculus of varia-



tions toEseg. We omit the tedious details but the final equations, after a
variable substitution, read



























∂p
∂ t

=−
∫

Ω
δ (φ0◦L) .

〈

∇φ0◦L, (Id + Ju)
∂G
∂p
G−1

〉

. ∆ I ◦G−1

∂v
∂ t

=−
[

δ (φ0◦L) . ∇φ0◦L . ∆ I ◦G−1 +λv

]

∗Kσ

(11)
whereδ denotes the Dirac distribution andJu is the Jacobian matrix of
the displacement fieldu.

A quick analysis of Eq. (11) reveals several key aspects for an efficient
implementation. Interpolatingφ0◦L and∇φ0◦L over the whole domain
Ω would be extremely time-consuming. Nevertheless, since itis multi-
plied by δ (φ0 ◦ L), the warped gradient field∇φ0 ◦ L is only needed
on the set{φ0◦L= 0} (Figure 5.a) which highly reduces the compu-
tational burden. Moreover, precise knowledge of the warpedtemplate
φ0 ◦L is only necessary near its zero level set. We use a coarse-to-fine
approach using octrees. At each level a decision is made to further re-
fine the cell depending on the distance measure (Figure 5.b) drastically
dropping complexity. Finally, stemming from the displacement model,
extrapolating image and point-wise forces to the whole space boils down
to a convolution withKσ (Figure 5.c). In practice, our current 3D imple-
mentation supports up to 100 time steps per second for a discretization
of the implicit function on a 64×64×64 lattice.



(a) surface/pointwise forces (b) coarse-to-fineφ0 ◦L (c) convolved deformation

Fig. 5 Fast template deformation with coarse-to-fine distance warp and
convolutions.

4.4 Results for automatic segmentation in CEUS images

This validation has been performed on the CEUS images of the dataset
presented in Section 2. The completely automatic pipeline had a com-
putational time of around 5 seconds.

Quantitative results are reported in Figure 6. The overall median Dice
coefficient is 0.69 for the detection and 0.76 for the segmentation and
25% of the database have a very satisfying segmentation (Dice coeffi-
cient higher than 0.85), given the very poor image quality and the pres-
ence of pathologies.

Figure 7 shows the obtained result for the two cases introduced in
Figure 1. The segmentations are very similar to the ground truth and can
be considered as satisfying. Some cases are however more difficult (e.g.
Figure 10 in the next section) and will require additional information.
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Fig. 6 Kidney detection (red) and segmentation (blue) results in terms
of Dice coefficients shown as boxplots (left) and histograms(right).
Boxplots show respectively the first decile, the first quartile, the me-
dian, the third quartile and the ninth decile. Extreme points are shown
separately.

5 Segmentation with user interactions

The previously described approach is fast and automatic, but fails in
some difficult cases. Indeed ultrasound shadows or kidney pathologies
makes the image information unreliable and thus hinder the segmenta-
tion algorithm. It is therefore important to provide the clinician a way to
guide or correct the segmentation easily and with a real-time feedback.
As proposed in [15], this can be done easily within the implicit template
deformation framework that was presented in Section 4.



Fig. 7 Result of the automatic segmentation (blue) compared to the
ground truth (green) on a particular slice (top) and in 3D (bottom).

5.1 User interactions as constraints

In this section, we show how the user can guide the segmentation by
indicating points that should be inside or outside the segmentation (see
Figure 8).

Consider that the user providesN points{xk}k ⊂ Ω N in the image
domain labeling each one as inside or outside of the surface to extract
(which can be done via simple interactions such as a left click on an
inside point, and a right click on an outside point). The implicit formu-
lation allows to express this information merely as inequality constraints
on the deformed implicit function, at points{xk}k :

∀k ∈ [|1,N|], γk . φ0◦ψ(xk)≥ 0 (12)

whereγk = 1 (resp.−1) for inside (resp. outside) points. Note that it is
also possible to specify a point that should be exactly on thesegmenta-
tion surface by labelling it as both inside and outside: the two inequality



(a) (b) (c)

Fig. 8 User interactions as inside/outside points. (a) Template deformed
without constraints. (b) User indicates points that shouldbe inside (blue)
and outside (red) the segmentation. (c) New segmentation that satisfies
these constraints.

constraints are equivalent to an equality constraint. Then, putting to-
gether the initial formulation in Eq (6) and the constraintsof Eq (12)
yields a general formulation of implicit template deformation with user
interactions, as the following minimization problem :

min
ψ

{

Eseg(ψ) =−
∫

Ω
H(φ0◦ψ(x)) ∆ I (x) dx+λR(ψ)

}

subject to ∀k ∈ [1,N], γk . φ0◦ψ(xk)≥ 0

(13)

In the next subsection we propose a method to solve this problem
efficiently. For the sake of genericity, no assumption is made on the
representation of the deformationψ and the modelψ = L◦G will be
just a particular implementation of the approach describedhereafter.



5.2 Optimization scheme

SinceEseg(ψ) is a non-convex functional and has to be minimized un-
der a set of non-linear constraints, no specifically tailored algorithms are
available. For this matter, we follow a general augmented Lagrangian
methodology [19] and define an equivalent unconstrained problem that
can be locally minimized by gradient descent. The constrained prob-
lem (13) can equivalently be written as an unconstrained minimization
problem of the form

min
ψ

{

Ẽseg(ψ) = max
α≥0

{

Eseg(ψ)−
N

∑
k=1

αkck(ψ)

}}

(14)

with ck(ψ) = γk . φ0◦ψ(xk)

whereαk is the Lagrange multiplier associated to thekth constraint.
Eq (14) has the same set of solutions as the original problem in Eq (13):
if ψ satisfies all constraintsck, then Ẽseg(ψ) = Eseg(ψ); otherwise
Ẽseg(ψ) is infinite. SinceẼseg jumps from finite to infinite values at the
boundary of the feasible set, it is difficult to minimize it assuch. A more
practical approach is to introduce a smooth approximationẼν

seg that de-
pends on a quadratic penalty parameterν . Parameterν will be used to
constrain the maximizers(αk)k to finite values. These multipliers are
estimated iteratively and we introduce(α j

k)k the multipliers estimates at
the jth iteration, in order to define the energy approximation

Ẽν
seg(ψ,α j) = max

α≥0

{

Eseg(ψ)−
N

∑
k=1

αkck(ψ)− 1
2ν

N

∑
k=1

(

αk−α j
k

)2
}

(15)
The maximizing Lagrange multipliers associated to each constraint
ck(ψ) have a closed-form solution :



α j+1
k =

{

0 if α j
k −νck(ψ)≤ 0

α j
k −νck(ψ) otherwise.

(16)

Substituting (16) into (15) yields the following expression of the smooth
approximationẼν

seg:

Ẽν
seg(ψ,α j) = Eseg(ψ)+

N

∑
k=1

Fν

(

ck(ψ),α j
k

)

(17)

with Fν(a,b) =







−ab+
ν
2

a2 if νa≤ b

− 1
2ν

b2 otherwise.

Finally, the alternate scheme described in Algorithm 2, in which the
penalty parameterν is gradually increased, will provide a local mini-
mizer of Eseg that eventually satisfies the user constraints. Within this
process, Step (1) is straightforward and Step (2) is very similar to the
gradient descent proposed in Section 4.3 :


























∂p
∂ t
← ∂p

∂ t
−

K

∑
k=1

γkF(αk)

〈

∇φ0◦L◦G(xk), (Id + Ju)
∂G
∂p

(xk)

〉

∂v
∂ t
← ∂v

∂ t
−
[

K

∑
k=1

γkδG(xk) Fν(αk)∇φ0◦L
]

∗Kσ

(18)
Note that the additional terms in Eq (18) are just pointwise contribu-

tions that do not influence the overall computational time.



Algorithm 2: Augmented Lagrangian Scheme For Inequality Con-
straints
initialization chooseν0 > 0 and set∀k, α0

k ← 0,
repeat

chooseν t > ν t−1,
set j← 0,
repeat

(1) ψ being fixed, update the Lagrange multipliersα j

using Eq (16)
(2) α j being fixed, updateψ by minimizingẼν t

seg(ψ,α j)
with gradient descent on Eq (17)

(3) incrementj← j+1
until convergence;
incrementt← t +1

until a local minimum of Eseg(ψ) satisfying ∀k, ck(ψ)≥ 0 is found;

5.3 Influence of user interactions on kidney segmentation inCEUS

Validation of the user interactions has been performed on a subset of
21 CEUS volumes from 21 different patients of our database. For each
case, the automatic segmentation has been run and its resultwas re-
fined with user interactions from an expert. Figure 9 reportsthe Dice
coefficients obtained as a function of the number of clicks. The score
gradually increases as the user interacts with the algorithm but rapidly
converges: most of the time, less than 3 clicks are needed fora fairly
precise result (Dice≥ 0.9) 2. The results also show that even when the
initialization produces a low score, very few interactionscan improve a
lot the segmentation. The influence of user interactions is illustrated in
Figure 10, where we show results on a difficult case. The patient has a lot

2 The ground truth may not exactly be reached because of the high intra-operator variability.



of renal cysts that are anechogenic and hinders the automatic segmenta-
tions. With 3 clicks, the segmentation is much closer to the ground truth.

Nevertheless, in some applications user interactions are not possible
and the segmentation has to be automatic. In the next section, we pro-
pose to improve the kidney segmentation by using simultaneously and
automatically the conventional US image.

Fig. 9 Boxplots of the
Dice coefficient be-
tween the ground truth
and the segmentation at
different steps of the pro-
posed algorithm. Boxplots
show respectively the first
decile, the first quartile,
the median, the third quar-
tile and the ninth decile.
Extreme points are shown
separately.
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6 Joint co-segmentation and registration

Co-segmentation often denotes the task of finding an object ineach
image that shares the same appearance but not necessarily the same
shape [20]. Here we look for the exactly same organ in two images
but with a different appearance. As simultaneous acquisition of US and
CEUS is not possible on current 3D imaging systems, the two images
are in arbitrary referentials and need to be aligned. However, standard



(a) (b)

(c) (d)

Fig. 10 Example of a segmentation with user interactions. (a) Sliceof
the original CEUS volume. (b) Comparison of the ground truth (green)
and automatic segmentation (red). (c) Corrected segmentation (blue)
with 2 inside points (blue dots) and one outside point (red dot). (d) 3D
visualization of the ground truth (green), the automatic (red) and cor-
rected (blue) segmentation, with constraint points.

iconic registration methods are not adapted since visible structures, apart
from the kidney itself, are completely different in US and CEUS. Co-
segmentation shall therefore help registration, just as registration helps
co-segmentation. This calls for a method that jointly performs these two
tasks (see Figure 11).

Although segmentation and registration are often seen as two sepa-
rate problems, several approaches have already been proposed to per-
form them simultaneously. Most of them rely on an iconic registration
guiding the segmentation (e.g. [21, 22, 23]). Yet they assume that the
segmentation is known in one of the images, which is not the case in our
application of co-segmentation. Moreover, as stated before, CEUS/US



US image

Segmented organ in CEUS and US

Registered CEUS/US

Joint

Co-Segmentation

& Registration

CEUS image

Fig. 11 Joint co-segmentation and registration. Given two different non-
aligned images of the same object, the proposed method aims at seg-
menting this object in both images as well as estimating a rigid transfor-
mation between them.

intensity-based registration is bound to fail since visible structures do
not correspond to each other. Instead of registering the images them-
selves, Wyatt et al. [24] developped a MAP formulation to perform reg-
istration on label maps resulting from a segmentation step.However no
shape model is enforced and noise can degrade the results. In[25], Yezzi
et al. introduced a variational framework that consists in afeature-based
registration in which the features are actually the segmenting active con-
tours.

In this section, we aim at extending both the previously described
kidney detection and segmentation in a 3D CEUS image to a pair of
3D CEUS and US images. To that end, we develop a generic joint co-
segmentation and registration framework inspired by [25].This results
in a fully automated pipeline to obtain both an improved kidney seg-
mentation in CEUS and US images and a registration of them. But first
of all, in order to use conventional US, we need to learn how the kidney
looks like in such images.



6.1 Learning appearance in conventional ultrasound

In CEUS images, bright areas indicate the presence of contrast agent
which is mainly localized in the kidney. This is why we directly used the
image intensity as a voxel probabilities to be inside the kidney. However
in conventional US images, this does not hold and we need to transform
the image into a more elaborate kidney probability map.

The kidney appearance has a much higher variability in US images,
although their structure is consistent: kidneys are alwayscomposed of
a bright sinus surrounded by a darker parenchyma (see Figure12). As
intensity itself is not reliable enough, we chose to combinemultiple im-
age features using decision forests [26] to obtain a class posterior map
pUS.

Recent work [27, 28, 29, 30, 31] demonstrated that adding contextual
information allows to improve spatial consistency and thusclassifica-
tion performance. Here we propose to exploit the kidney structure in
a simple yet efficient way. Similarly to the auto-context framework in-
troduced by Tu et al. [32], contextual information is included by using
two classifiers in cascade. A first classification (kidney vs background)
is performed in each voxel using a decision forest. Then we use these
class posterior probabilities as additional input of a second random for-
est that will give the final kidney probabilitypUS. In the remainder of
the chapter, we will work on this map instead of the original US image.

The features used for the first decision forest were the intensity of the
image and its Laplacian at the considered voxel as well as at its neigh-
bors’ within a 7×7×7 local patch, at three different scales (σ = 2,4,6
mm). Intensities were normalized in each patch. For the second forest,
we added the estimated class posterior as additional channels. Each for-



est was composed of 10 trees with maximum depth 15.

Fig. 12 Kidney appearance in US images (the kidney boundary is de-
noted in red). (Left) Original images showing the high variability of
the database. (Middle) Kidney probability given by the firstclassifier.
(Right) Final kidney probablitypUS.

To validate this probability estimation, the patient database was split
into two groups. Results on the whole dataset were then obtained using
a two-fold cross-validation. Figure 13 shows the ROC and Precision-
Recall curves computed (i) by the first decision forest and (ii) using the
auto-context approach with another forest in cascade. The latter pro-
vides better kidney probabilities with respect to all reported statistics.
Indeed, taking into account structural information helps for example in
distinguishing the kidney sinus from the background or the parenchyma
from shadows, and allows a more spatially coherent classification (see
Figure 12).

6.2 Generic framework for co-segmentation and registration

In Sections 3 and 4, we presented two variational methods to respec-
tively detect and segment the kidney. They both consist in seekingφ as
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Fig. 13 Comparison of classification results for the single decisionfor-
est and the auto-context approach. (Left) ROC Curve. (Right) Precision-
Recall curve.

the minimizer of a functional of the following generic form

EI(φ) =
∫

Ω
f (φ(x)) rI(x) dx+R(φ) (19)

where f is a real-valued function andrI(x) denotes a pointwise score on
whetherx looks like an interior or exterior voxel in the imageI. This is
a standard setting in which the optimal implicit functionφ must achieve
a trade-off between an image-based term and a regularization termR 3.

We are interested in the case where a pair of imagesI1 : Ω1→ R

andI2 : Ω2→ R of the same object are available. If those images were
perfectly aligned, the energy in Eq (19) can be straightforwardly gener-
alized to perform co-segmentation :

EI1,I2(φ) =
∫

Ω1

f (φ(x)) (rI1(x)+ rI2(x)) dx+R(φ) . (20)

3 For example, the seminal method of Chan and Vese [33] falls in this framework with f = H the
Heaviside function andrI(x) = (I(x)− cint)

2− (I(x)− cext)
2 with cint andcext denoting mean inten-

sities inside and outside the target object.



Unfortunately, such an assumption rarely holds in medical applica-
tions unless the two images are acquired simultaneously. A more realis-
tic hypothesis is to assume that the target object, segmented byφ , is not
deformed between the two acquisitions, but only undergoes an unknown
rigid transformationGr. The co-segmentation energy thus reads

EI1,I2(φ ,Gr)=
∫

Ω1

f (φ(x)) rI1(x) dx+
∫

Ω2

f (φ ◦Gr(x)) rI2(x) dx+R(φ) .
(21)

Note that, after a variable substitution, it can be equivalently written

EI1,I2(φ ,Gr) =
∫

Ω1

f (φ(x)) (rI1(x)+ rI2 ◦G−1
r (x)) dx+R(φ) . (22)

Minimizing EI1,I2 with respect toφ andGr simultaneously can be there-
fore interpreted as performing jointly segmentation (viaφ ) and rigid
registration (viaGr) . This generalizes a more common co-segmentation
approach (e.g. [34]) where the images are first aligned in a preprocess-
ing step.

In the following, we apply this framework to the robust ellipsoid
detection (Section 3) and implicit template deformation (Section 4)
to build a completely automated workflow for kidney segmentation in
CEUS and US images. Note that the kidney, which is surrounded by
a tough fibrous renal capsule, is a rigid organ. The hypothesis of non-
deformation is therefore justified.

6.3 Application to kidney detection

The robust ellipsoid detection setting of Eq (3) falls into the framework
described in Eq (19) with :

• f = Id andrI =−wI;



• R(φc,M ) =R(M) = µ.
∫

Ω
Iw. log

(

Vol(M)

|Ω |

)

.

Expanding this algorithm to another imageI2 requires the introduc-
tion of another weighting functionw2. Following Eq (21), we can now
define the co-detection energy as

Eco−det(c,M ,w1,w2,Gr) =−
∫

Ω
φc,M (x) w1(x) I1(x) dx

−
∫

Ω
φc,M ◦Gr(x) w2(x) I2(x) dx

+µ
(

∫

Ω
w1I1+w2I2

)

log

(

Vol(M)

|Ω |

)

with Vol(M) =
4π
3

√
detM−1 the ellipsoid volume.

(23)

To facilitate the resolution of such a problem,Gr - as a rigid trans-
formation - can be decomposed into a rotation and a translation. We
can therefore equivalently write the energy as a function ofthe ellipsoid
centerc2 in the second image and the rotation matrixR :

Eco−det(ci,wi,R,M) =−
∫

Ω
φc1,M (x) w1(x) I1(x) dx (24)

−
∫

Ω
φc2,RT MR (x) w2(x) I2(x) dx

+µ
(

∫

Ω
w1I1+w2I2

)

log

(

Vol(M)

|Ω |

)

Minimization of such functional is done in an alternate three-step pro-
cess:

1. The statistical interpretation still holds for the ellipsoids centers and
matrix: minimizersc∗1 andc∗2 are weighted centroids while minimizer



M∗ is related to the weighted covariance matrix of pixels coming from
both images.

2. The unknown matrixR accounts for the possible rotation between the
two images and can be parametrized by a vector of anglesΘ ∈R

3. A
gradient descent is performed at each iteration to minimizethe energy
with respect toΘ .

3. The weightsw1 andw2 are finally updated as indicator functions (up
to a slight dilation) of the current ellipsoid estimates.

The complete minimization strategy is summarized in Algorithm 3.
This algorithm is computationally efficient : closed-form solutions are
available (except forR) and the process, though iterative, usually con-
verges in very few iterations.

Figure 14 shows an example of ellipse co-detection in synthetic im-
ages, where the probability of belonging to the target object is the image
intensity. Despite the noise, the simulated shadow and the reduced field-
of-view effect, the co-detection algorithm provides a goodestimate on
the ellipse position, size and orientation in both images.

6.4 Application to kidney segmentation

Implicit template deformation, as previously described inSection 4, is
part of the framework defined in Eq. (19) with :

• f = H andrI =−∆ I;

• R(φ0◦ψ) =R(L) = λ
2
‖L− Id‖22.

We can therefore extend it to co-segmentation using Eq. (21)by con-
sidering the following functional



(a) (b) (c)

(d) (e) (f)

Fig. 14 Ellipse detection on two synthetic imagesI1 (a) andI2 (d). De-
tected ellipses with their center and main axes are shown in (b) and
(e) for independent ellipse detection (red) and proposed method for co-
detection (blue) compared to the ground truth (green). (c) Second image
registered with the estimated transformG−1

r . (f) Combination of image
termsw1I1+(w2I2)◦G−1

r used for ellipse estimation at convergence.

Eco−seg(φ0◦L◦G,Gr) = Eco−seg(L,G,Gr)

=−
∫

Ω
H(φ0◦L◦G) ∆ I1(x) dx

−
∫

Ω
H(φ0◦L◦G ◦Gr) ∆ I2(x) dx

+
λ
2
‖L− Id‖22 . (25)



Algorithm 3: Robust ellipsoid co-detection algorithm
initialization ∀ x ∈Ω , w1(x)← 1, w2(x)← 1
repeat

// Estimation of centersc1 andc2 and matrixM
c1← 1

∫

Ω w1I1

∫

Ω w1(x) I1(x) x dx

c2← 1
∫

Ω w2i2

∫

Ω w2(x) I2(x) x dx

M−1← 2
µ
∫

Ω w1I1+w2I2

(

∫

Ω
w1(x) I1(x) (x−c1)(x−c1)

T dx

+
∫

Ω
w2(x) I2(x) R(x−c2)(x−c2)

T RT dx
)

// Update of the rotation matrix by gradient descent with step ∆ t
repeat

R(Θ)← R(Θ −∆ t ∇Θ Eco−det(Θ))
until convergence;

// Update of the weighting functionsw1 andw2 for eachx ∈Ω
if (x−c)T M (x−c)≤ 1−µ log

(

Vol(M)
|Ω |

)

then
w1(x)← 1 elsew1(x)← 0

if (x−c2)
T RT MR (x−c2)≤ 1−µ log

(

Vol(M)
|Ω |

)

then
w2(x)← 1 elsew2(x)← 0

until convergence;

The energyEco−seg is then minimized with respect to the parameters
of G, Gr and each component of the vector fieldu, through a gradient
descent similar to Section 4.3.



6.5 Results for kidney co-segmentation in CEUS and US

The average overall computational time for kidney probability esti-
mation in US, ellipsoid co-detection and kidney co-segmentation was
around 20 seconds with our implementation.

Validation was performed by comparing the co-segmentationap-
proach to a segmentation from a single image (in both CEUS an US
cases). Dice coefficients and relative error on the measuredkidney vol-
ume are reported in Figure 15. Using simultaneously the complemen-
tary information from US and CEUS images significantly improves the
segmentation accuracy in both modalities. More specifically, the me-
dian Dice coefficient is increased from 0.74 to 0.81 in CEUS (p-value
< 10−4) and 0.73 to 0.78 in US (p-value< 10−4). Furthermore, the
proposed approach provides more reliable clinical information as the
median error on the kidney volume is almost divided by two in CEUS
(29% versus 15%) and in US (25% versus 13%). Figure 16 shows the
joint co-segmentation and registration results for one case. Independent
segmentation fails in both US and CEUS images because of the kid-
ney lesion (indicated by the yellow arrow), that looks like the back-
ground in CEUS but like the kidney in US. Conversely, the proposed
co-segmentation manages to overcome this difficulty by combining in-
formation from the two modalities. Furthermore, for this example, one
can assess the estimated registration by comparing the location of the le-
sion in the two modalities. Results on another case were also displayed
in Figure 11.

7 Conclusion

This chapter addressed the problem of kidney segmentation in 3D CEUS
images. Such a task is challenging because of the noise, the artifacts and
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Fig. 15 Boxplots of segmentation results for kidney segmentation in
US and CEUS images, in terms of Dice coefficients (a-b) and relative
volume error (c-d). The proposed co-segmentation comparesfavorably
to independent segmentation with a p-value< 10−4. Boxplots show re-
spectively the first decile, the first quartile, the median, the third quartile
and the ninth decile. Extreme points are shown separately.

the partial occultation of the organ (due to the limited fieldof view).

A robust ellipsoid detector has been introduced to coarselylocate the
kidney. The ellipsoid is then deformed to segment the kidneymore pre-
cisely, by maximizing the image gradient flux through the segmenta-
tion boundary, using the template deformation framework. This method
yields a fully automatic pipeline that provides a satisfying segmentation
in a large number of cases but may fail when the image information is
too ambiguous (shadows, pathologies, etc).

To overcome such difficulties, two extensions of this approach have
been proposed to take into account additional information.First, we
showed how user interactions can be exploited to guide the segmen-
tation in real time, by letting the user indicate points thatshould be
inside/outside/on the segmentation. Then, we introduced ageneric co-
segmentation framework that generalizes any segmentationmethod to



Fig. 16 Example of joint co-segmentation and registration for a CEUS
(top) and a US (bottom) images. (Left) Comparison of independent seg-
mentations (red) and the proposed co-segmentation (blue) with respect
to the ground truths (green). (Middle, Right) Two views of theregistered
volumes that can be assessed by considering the position of the lesion
(yellow arrow).

allow the simultaneous use of multiple images (here the CEUS and the
US images). This results in both a better estimate of the organ shape
and a registration of the images. The two aforementioned extensions are
compatible and including user interactions in multiple images would be
straightforward.

The kidney detection can still be improved by including moreanatom-
ical prior knowledge. A possible solution would be to constrain the el-
lipsoid’s axis lengths or volume to be close to clinically meaningful val-
ues. Another way is the use of CT images of the same patient to extract
a tailored model of the kidney and help both the CEUS detectionand
segmentation.



Appendix : Choice of the parameterµ for ellipsoid detection

The choice ofµ in Eq. (3) is paramount as it controls the number of
points that are taken into account for the ellipsoid matrix estimation. To
find a suitable value, let us consider an ideal case of an imageI0 in which
there is one white ellipsoid (I0 = 1) on a black background (I0 = 0),
whose implicit function isφc0,M0. We also assume that the confidence
weight isw≡ 1 everywhere. Then the matrix estimated by our approach
would be

M∗ = argmin
M

Edet(c0,M ,1)

=

[

2
µ

1
∫

Ω I0

∫

Ω
I0(x) (x−c0)(x−c0)

T dx
]−1 (26)

Using the fact thatI0 = 1{1−(x−c0)T M0(x−c0)≥0} is the indicator of the
ellipsoid yields

M∗ =
[

2
µ

1
Vol(M0)

∫

{1−(x−c0)T M0(x−c0)≥0}
(x−c0)(x−c0)

T dx
]−1

(27)

After a variable substitutionx←M1/2
0 (x−c0), this expression becomes

M∗ =

[

2
µ

det(M−1/2
0 )

Vol(M0)
M−1/2

0

∫

{‖x‖≤1}
xxT dx M−1/2

0

]−1

(28)

With Vol(M0) =
4π
3

√

det(M−1
0 ) =

4π
3

det(M−1/2
0 ), we then obtain

M∗ =
[

2
µ

3
4π

M−1/2
0

∫

{‖x‖≤1}
xxT dx M−1/2

0

]−1

(29)



Note that the integral
∫

{‖x‖≤1} xxT dx denotes the covariance matrix of
a 3D unit ball, which is actually a scalar matrix that can be easily com-
puted

∫

{‖x‖≤1}
xxT dx =





2π 2
3

1
5 0 0

0 2π 2
3

1
5 0

0 0 2π 2
3

1
5



=
4π
15





1 0 0
0 1 0
0 0 1



 (30)

Combining Eq.(29) and Eq.(30) leads to

M∗ =
[

2
µ

(

1
5

M−1
0

)]−1

(31)

which yields the following relationship betweenM∗ andM0 :

M∗ =
5
2

µM0 (32)

This shows that the exact solutionM0 is retrieved forµ = 2
5. This value

actually depends on the dimension ofΩ . Here we assumedΩ ⊂ R
3 but

for 2D images, the optimal value would rather beµ = 1
2.
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29. Kontschieder, P., Bulò, S., Criminisi, A., Kohli, P., Pelillo, M.,
Bischof, H.: Context-sensitive decision forests for object detection.
In: Proceedings of NIPS. (2012) 440–8

30. Glocker, B., Pauly, O., Konukoglu, E., Criminisi, A.: Joint
classification-regression forests for spatially structured multi-object
segmentation. In: Proceedings of ECCV. Volume 7575 of LNCS.
Springer (2012) 870–81

31. Zikic, D., Glocker, B., Konukoglu, E., Criminisi, A., Demiralp, C.,
Shotton, J., Thomas, O., Das, T., Jena, R., Price, S.: Decision
Forests for Tissue-specific Segmentation of High-grade Gliomas in
Multi-channel MR. In: Proceedings of MICCAI. Volume 7512 of
LNCS. Springer (2012) 369–76

32. Tu, Z., Bai, X.: Auto-context and its application to high-level vi-
sion tasks and 3D brain image segmentation. IEEE TPAMI32(10)
(2010) 1744–57

33. Chan, T., Vese, L.: Active contours without edges. IEEE TIP 10(2)
(2001) 266–77

34. Han, D., Bayouth, J., Song, Q., Taurani, A., Sonka, M., Buatti, J.,
Wu, X.: Globally optimal tumor segmentation in PET-CT images:



A graph-based co-segmentation method. In: Proceedings of IPMI.
(2011) 245–56


