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Abstract. Model-based approaches are very popular for medical im-
age segmentation as they carry useful prior information on the target
structure. Among them, the implicit template deformation framework
recently bridged the gap between the efficiency and flexibility of level-set
region competition and the robustness of atlas deformation approaches.
This paper generalizes this method by introducing the notion of tagged
templates. A tagged template is an implicit model in which different sub-
regions are defined. In each of these subregions, specific image features
can be used with various confidence levels. The tags can be either set
manually or automatically learnt via a process also hereby described.
This generalization therefore greatly widens the scope of potential clin-
ical application of implicit template deformation while maintaining its
appealing algorithmic efficiency. We show the great potential of our ap-
proach in myocardium segmentation of ultrasound images.

1 Introduction

Segmentation of medical images is an important part of clinical work-flow, typ-
ically used to assess anatomical information such as the volume or the shape of
an organ. Leveraging the strong anatomical priors available for medical images,
model-based approaches are particularly effective and popular. In a number of
clinical applications, methods based on atlas deformation achieve state-of-the-art
performance results [16]. Yet, they suffer from a high computational burden and
can only be employed for images with a standardized acquisition protocol (such
as CT or MR images). Very recently though, the implicit template deformation
framework [15, 12] bridged the gap between level-set region competition [4] and
atlas deformation approaches. Its unique properties (computational efficiency,
topology preservation, compatibility with user interactions) were employed to
achieve fast and reliable segmentation of different kinds of medical images [14,
6, 8]. Yet even if an advanced shape prior can be embedded within this frame-
work [13], it still assumes that appearance can be globally defined, which is a
strong constraint. In this paper, we present a method to use an enriched model
that couples the prior information on the object’s appearance with its shape.

Elaborated appearance models have been already proposed in other frame-
works. One of the earliest was the well-known active appearance model [3] that
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Fig. 1. The appearance of an object (here the myocardium) may vary (a) between dif-
ferent regions (e.g green and blue). However, this variation is consistent across subjects
(b) so it can be embedded as a prior information within the model (c). For each edge
of the model, we know what direction the image gradient (black arrows) should have.

however suffers from the usual problems of explicit methods. Level-set approaches
were also extended to take into account variations in the appearance prior.
In [11], the appearance model is a function of the distance to the shape boundary
and in [5] a labeling function balancing the contribution of the data-fidelity term
with respect to the regularization term is introduced. While this allows a bet-
ter representation than a global appearance prior, it is still too constrained for
many medical applications. Our work can be thought of as a generalization and
extension of both ideas. Finally, an extension of the MetaMorph framework was
proposed in [9]. This work aimed at learning jointly the shape and the appear-
ance of the organ to be segmented. However, this results in a mutual information
registration problem that needs to be solved at test time, which would be too
time-consuming in 3D for our target applications.

The main contributions of this article are essentially methodological and
consist in (i) an interpretation of template deformation as a flux minimization
problem, (ii) an enrichment of the shape template with an appearance model
that is able to exploit specific image features with various confidence levels,
(iii) a method to automatically learn such enhanced models.

2 Segmentation by implicit template deformation

Implicit template deformation [12, 13] is a variational framework for image seg-
mentation that consists in finding an implicit function φ : Ω → R whose zero
level-set will be the segmentation boundary. The key particularity is that the
set of admissible implicit functions is defined with respect to an initial implicit



template φ0 : Ω0 → R as the set of functions obtained by deforming φ0 with a
geometric transformation ψ. Provided some constraints on ψ, the template φ0
can be considered as a shape model: if ψ is a diffeomorphism, then φ and φ0 will
have the same topology. The transformation ψ is sought as the minimum of a
region competition energy and a regularization term:

min
ψ
R(ψ) +

∫
Ω

H(φ0 ◦ ψ(x)) rint(x) dx +

∫
Ω

(1−H(φ0 ◦ ψ(x))) rext(x) dx (1)

where H is the Heaviside step function, and rint : Ω → R+ and rext : Ω → R+

are pointwise classification error functions in the foreground (resp. background)
region. R is a regularization term that penalizes the magnitude and irregularities
of local deformations induced by ψ, typically set to a Free-Form deformation.
Choice of the implicit template In most previous work, the implicit tem-
plate φ0 was either set to the signed distance function of a simple geometric
shape [14] or to a given pre-segmented shape [15]. However, another (and bet-
ter) strategy is to learn φ0 as the mean of a training set [13].
Regularization prior The regularization term can be defined as R(ψ) =
1
2‖ψ−Id‖2σ, where ‖x‖2σ = 〈x,K−1σ ∗x〉 and Kσ a Gaussian kernel. When a learn-
ing database is available, this term can be generalized to R(ψ) = 1

2‖ψ − PLψ‖2U
where PL is the operator that projects a deformation onto the space L of the
first variation modes of a PCA analysis [13].
Appearance prior The image-based functions rint and rext are usually defined
as logarithms of probabilities, following maximum likelihood principles. Such
probabilities can be learnt via classifiers, such as random forests [6]. However
they are estimated using only local image features and are therefore independent
from the shape model. In Figure 1, we show a clinical application in which this
approach is too restrictive. Indeed, the appearance of the target organ may vary
(depending on the location with respect to the model).

3 Tagged template deformation

A flux minimization problem The image-based term in (1) is a volume in-
tegral and can be written as E(ψ) =

∫
Ω
H(φ0 ◦ ψ(x)) (rint − rext)(x) dx plus

a constant term that is neglected in the minimization. However, under simple
regularity assumptions, this energy can be reformulated as a surface integral:

E(ψ) =

∫
(φ0◦ψ)−1(0)

〈f(x) ,n(x)〉 dx (2)

with n the normal of the current segmentation and f = G ∗ (rint − rext) the
convolution of the image term with the Green function G of Poisson equation [1].
E is therefore the flux of the vector field f across the segmentation boundary.

In a number of clinical applications such as ultrasound, we may only as-
sume what contrast the target object should have (e.g it is brighter than its



neighborhood). A convenient choice for f is then the gradient of the image ∇I
(or its opposite, depending on the contrast of the target object). As pointed
out in [10], the corresponding image-based functions are the image Laplacian
rint(x) = ±∆I(x) and rext(x) = 0. Our proposed model encompasses this case
and even goes beyond by considering any surface or region-based feature.
Flux minimization with tagged model Let us assume that we have a set
of K such vector fields (fk)k=1...K . Instead of encoding the appearance of the
whole target object, each fk can be specialized to describe a particular region
of the structure to be segmented. This region is defined via a tag function Tk :
Ω0 → [−1, 1]. The absolute value of Tk is a fuzzy indicator of the region, while its
sign indicates whether the flux of fk should be minimized or maximized. Note
that Tk, as it is defined in the template referential Ω0 rather than the image
referential Ω, will have to be warped by ψ as well. The tagged implicit template
deformation energy therefore reads

E(ψ) =

K∑
k=1

∫
(φ0◦ψ)−1(0)

Tk ◦ ψ(x) 〈fk(x) ,n(x)〉 dx =

K∑
k=1

Ek(ψ) (3)

Numerical optimization After applying the divergence theorem, the deriva-
tive of E with respect to a parameter pi of the transformation ψ reads:

∇piEk(ψ) =

∫
Ω

δ(φ0 ◦ ψ)

〈
∇φ0 ◦ ψ ,

∂ψ

∂pi

〉
(Tk ◦ ψ . div(fk) + 〈∇(Tk ◦ ψ), fk〉)

+

∫
Ω

H(φ0 ◦ ψ)

(〈
∇(Tk ◦ ψ) ,

∂ψ

∂pi

〉
div(fk) +

〈
D2(Tk ◦ ψ) .

∂ψ

∂pi
, fk

〉)

Here the factor δ(φ0 ◦ ψ) gives a small support to the first integrand, therefore
computations are done only on the zero level-set of φ0 ◦ ψ instead of the whole
volume (we refer the reader to [12] for details on implementation). The second
integrand is however defined over the whole volume represented by H(φ0 ◦ ψ)
and thus potentially represent a computational burden. Yet we point out that
its dependence on the derivatives of T allows to reduce this overhead: If T has
a sparse gradient (e.g is a piecewise-continuous function), these terms can also
be computed from a small number of contributions.

Relationship with atlas deformation methods Tagged template deforma-
tion is closely related to atlas deformation method since the segmentation is
obtained by registering a template. The great benefits of such methods are their
robustness as well as topology preservation [16]. Our proposed framework yields
the same advantages but the difference is that our tagged template is defined in a
piecewise manner. This yields a much more efficient algorithm since image-based
forces within the gradient computation are only computed on surfaces instead
of the whole volume: our C++ implementation currently allows a segmentation
of a 3D image in only a few seconds on a standard laptop. It is also more flex-
ible due to the possibility of choosing the image features (fk)k which makes it
applicable to non-standardized modalities such as ultrasound.



4 Learning a tagged model from a database

In this section we infer the tags from an annotated database and a set of possible
features (fk). We assume that we have a set of images (In)n=1...N and their
associated set of features (fn,k)k=1...K . As a pre-processing step, all images are
registered to the model referential Ω0; the features will be transported by the
same transformations (ψn)n=1...N . Such registrations do not need to be precise
everywhere but in the neighborhood of the zero level-set of φ0.

A feature fk is significant at point x (i.e. has a high tag absolute value) if it is
locally in agreement with the ground truth (i.e. it is aligned with the normal of
the ground truth) across the whole training set. The function Sk defined below
quantifies this significance:

Sk(x) =
1

N

N∑
n=1

〈
∇φ0(x)

|∇φ0(x)|
, fn,k ◦ ψn(x)

〉
(4)

We are mainly interested in the values of S on the zero level-set of φ0. At such

points, ∇φ0(x)
|∇φ0(x)| represents the inward unit normal of the hypersurface repre-

sented by φ0. To better understand (4), let us consider the case fn,k = ∇In. If
the point x belongs to an edge of the image In that follows the boundary of the
model, then the image gradient ∇In(x) will be collinear to the normal and their
scalar product will be high (in absolute value). Therefore Sk(x) will have a large
magnitude where there is a consistent edge across the images of the database
(positive for bright-to-dark edges and vice versa). Conversely, at points where
the interior of the model is sometimes brighter and sometimes darker than its
exterior (i.e. image edges that are not reliable), Sk will be close to zero. It will
also vanish when the model boundary crosses a perpendicular edge. While Sk
may seem as a good tag function candidates, their gradient has no reason to
be sparse. As mentioned in Section 3, the efficiency of our method is directly
dependent on this sparsity. We therefore rather define the tags as

T ∗k = arg min
T

∫
Ω0

(
1

2
‖T (x)− Sk(x)‖2 + ν‖∇Tk(x)‖

)
dx (5)

which is the usually called a total-variation regularization of S. Indeed the L1-
norm of the gradient has the interesting property of favoring piecewise-constant
functions. Problem (5) is solved with the method described in [2]. Results of
such a process will be given hereafter for myocardium in ultrasound images.

5 Application to myocardium segmentation in US images

Ultrasound imaging is widely used to diagnose and understand cardiac heart
diseases. Myocardium segmentation in such images is thus an important field of
research. However, because of its complex appearance, it is also very challenging
and only interactive methods have been proposed so far, such as [7].



Our dataset is composed of 42 images coming from 14 subjects (both healthy
volunteers and patients). The considered images are 2D long-axis, taken from a
4-chamber view of the heart, with a spatial resolution of 0.5 mm × 0.5 mm.

Learned tags for myocardium in US images The result T ∗ of the tag learn-
ing process is presented in Figure 2. Here the mean model is defined as a closed
curve including both the internal and external contours, and was estimated via
the shape learning process described in [13]. For the sake of simplicity and clarity,
we only used one feature which is the smoothed image gradient f = ∇Iσ. The
most significant and consistent edges (in the region of the septum for instance)
are detected. The pixels at the apex are also clustered into a sub-region, but
with lower confidence. Furthermore, we notice a tag inversion between the inner
and outer boundary at the apex and the bottom-right of the model. Others areas
(e.g at each part of the apex) are completely neglected: the segmentation will
solely be interpolated by the shape prior without taking the image into account.

Fig. 2. Tags learning for my-
ocardium segmentation in US in the
referential of the mean model shown
in red. Black represents −1, grey
0 and white 1. (Left) Mean scalar
product map S. (Right) Tags T ∗

obtained after total-variation regu-
larization of S. Different zones are
detected, as expected from the im-
ages in Figure 1.

Evaluation of the myocardium segmentation A clinician clicked on 3
points in each image within the myocardium: one at the apex and one at each
valve. The three points are used to initialize the position and size of the mean
model (see left image in Figure 3). Besides, it is naturally possible with implicit
template deformation to indicate some points that should lie inside or outside the
segmentation (see [12]). We therefore also use these points as inner constraints.

The validation has been performed with a leave-one-patient-out strategy.
We evaluate our approach by computing for each image (i) the mean absolute
distance, (ii) the maximum distance and (iii) the Dice coefficient, between the
segmentation and the ground truth. The results are summarized in Table 1.
For comparison purposes, we also indicate the scores obtained with the initial
contour (placed with 3 points) and with the baseline method (constant positive
tags). All reported metrics are significantly better with the new tagged template
deformation method (p-value ≤ 0.0001 with a Wilcoxon signed rank test).

The distance-based metrics (3.15 for the mean absolute distance and 9.76
for the maximum distance) are slightly higher than [7], namely 1.18 and 4.41.



Mean distance Max distance Dice coeff.

Initialization 4.87 mm (1.53) 15.17 mm (3.65) 0.59 (0.17)

Standard temp. def. 5.10 mm (0.49) 16.65 mm (3.48) 0.59 (0.08)

Tagged temp. def. 3.15 mm (0.88) 9.76 mm (2.29) 0.77 (0.06)

Table 1. Results for the myocardium segmentation averaged over the 42 images, re-
ported in mm. Figures in brackets indicate standard-deviations.

Fig. 3. Myocardium segmentation in US images compared to the ground truth in green.
From left to right: Initialization of the mean model with 3 points, segmentation with
the standard template deformation approach (orange) and the new model (red).

However, their method needed 6 points on the contour, while we only need
3 points inside the myocardium. Besides, their validation database was solely
composed of healthy subjects. Images from patients with pathologies are more
difficult to segment since the learning is less reliable.

We also show visually the benefits of the tagged template over the baseline
algorithm in Figure 3. As the standard template can only take into account
gradient information in a single direction, it may segment correctly the septum
but then cannot capture the correct boundary at the apex. Furthermore, it
takes too much into account the image information at some points of the model
(typically on both sides of the apex). The results might then be even worse than
the initialization, as shows Table 1. Conversely, the segmentation obtained with
the tagged model has a better behavior and is much closer to the ground truth.

6 Conclusion

By introducing tagged models, we have greatly enriched the prior information
that is exploited in the promising framework of implicit template deformation.
This extension widens the scope of potential clinical applications of this seg-
mentation method; we indeed showed that major improvements were achieved
over the standard approach in the context of myocardium segmentation in US
images. Note however that this new framework is completely generic and valid
both in 2D and 3D thanks to the implicit representation of shapes. It therefore
paves the way for multi-organ segmentation: several organs can be represented
by an implicit function, each of them being tagged in order to be attached to



a dedicated image-based energy. It therefore represents a further step towards
atlas-based methods, with a much more efficient and flexible approach though.
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