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Abstract In this chapter, we propose a method to learn and use prior
knowledge on shape variability in the implicit template deformation
framework. This shape prior is learnt via an original and dedicated pro-
cess in which both an optimal template and principal modes of vari-
ations are estimated from a collection of shapes. This learning strat-
egy does not require one-to-one correspondences between shape sample
points and is not biased by a pre-alignment of the training shapes. We
then generalize the implicit template deformation formulation to auto-
matically select the most plausible deformation as a shape prior. This
novel framework maintains the two main properties of implicit template
deformation: topology preservation and computational efficiency. Our
approach can be applied to any organ with a possibly complex shape
but fixed topology. We validate our method on myocardium segmen-
tation from cardiac magnetic resonance short-axis images and demon-
strate segmentation improvement over standard template deformation.
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1 Introduction

Implicit template deformation is a model-based segmentation frame-
work that consists in deforming an initial template to segment an image.
When one applies it to a particular clinical problem, the first step is to
choose an adequate template. Indeed as we are working with diffeomor-
phisms, the template must have the same topology as the organ that we
want to segment. But it also needs to be “close” to the target object, since
the magnitude of the deformation is penalized. While it is always possi-
ble to build a synthetic template (e.g. a hyperquadric or superquadric for
a ventricle [Cohen & Cohen, 1996, Bardinet et al., 1998], or an ellip-
soid for the kidney in [Cuingnet et al., 2012]), one feels that this choice
is probably suboptimal in other applications. The purpose of this chap-
ter is to answer the following questions: how can we use a database to
design an optimal (in some sense) template ? Can we learn the shape
variability from this database so that we can take it into account within
the deformation penalization ?

In this chapter, we present two variational approaches for training and
segmentation, respectively. Both phases rely on the implicit template de-
formation framework [Saddi et al., 2007, Huang et al., 2004, Huang & Metaxas, 2008,
Mory et al., 2012]. While this framework has been successfully applied
in several contexts [Cuingnet et al., 2012, Prevost et al., 2012], its prior
knowledge is limited to a single given shape. To introduce shape vari-
ability in the same framework, its segmentation functional is used as
a measure of dissimilarity between shapes during a training step. This
step estimates both a mean shape and a set of principal deformations
through joint segmentation of all training shapes (Figure 1). The seg-
mentation step then extends implicit template deformation framework
by incorporating these computed statistics in the regularization term. It
ensures preservation of the template topology and automatically selects
the most plausible deformation as a shape prior, with very limited addi-
tional complexity.
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Fig. 1 Given an initial synthetic shape φ0, a set of shapes {φn}n is si-
multaneously segmented via implicit template deformation while an in-
termediate mean shape φ̄ = φ0 ◦ L is estimated. The topology of φ0 is
preserved during the process.

This chapter is organized as follows: Section 2 introduces the prob-
lem and lists some of the related work available in the literature. Sec-
tion 3 introduces the main notations and recalls the implicit template
deformation framework. In Section 4, we describe an original learning
process that is tailored to the implicit template deformation framework.
The learnt statistics will be used in a generalized formulation of the
segmentation algorithm introduced in Section 5. Validation proving the
benefits of our approach are provided in Section 6 in the application of
myocardium segmentation in 2D MR images. Finally, discussion on po-
tential improvements and conclusion conclude the chapter in Section 7
and 8.

A short version of this chapter was presented at the MICCAI 2013
conference [Prevost et al., 2013a].



4 R. Prevost, R. Cuingnet, B. Mory, L. D. Cohen, R. Ardon

2 Implicit Template Deformation

2.1 Motivation

Model-based methods are particularly effective and popular in medical
image segmentation. Among them, implicit template deformation has
recently been used in various applications [Saddi et al., 2007, Somphone et al., 2008,
Mory et al., 2012, Prevost et al., 2012, Cuingnet et al., 2012] for its in-
teresting properties (computational efficiency, topology preservation,
compatibility with user interactions). This variational method consists
in seeking a segmenting implicit function as a deformed implicit tem-
plate. This template, acting as a shape prior, is therefore of paramount
importance. However, in previous works the initial template was either
set as a synthetic model (e.g. an ellipsoid for a kidney [Mory et al., 2012,
Prevost et al., 2012, Cuingnet et al., 2012]) or as a segmented organ
from a single arbitrary image [Saddi et al., 2007]. Despite the consen-
sus that learning shape priors is a powerful approach to improve robust-
ness [Cremers et al., 2007, Heimann & Meinzer, 2009], this has never
been proposed in the context of segmentation by implicit template de-
formation. As public databases are developed and become available, it
is important to think about how we can exploit them to validate but also
improve our algorithms.

Here we aim at (i) learning statistics from a database of shapes (i.e.
the most likely shape and the main variations around it) on organs that
present a possibly complex shape but a consistent topology, (ii) propos-
ing a method to exploit such learnt information within the segmen-
tation framework of implicit template deformation. Naturally, our ap-
proaches have to maintain the interesting characteristics of implicit tem-
plate deformation, namely the computational efficiency and the topol-
ogy preservation. These two properties are usually incompatible but we
are notwithstanding able to guarantee both by generalizing the formula-
tion of the implicit template deformation. Combination of learnt shapes
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will be used not to directly segment the images but rather within the reg-
ularization term. Thus they will act as a shape prior that is automatically
updated during the segmentation.

2.2 Previous work and our shape learning Approach

The shape learning literature being considerably large, we point out here
only well-known or closely related techniques.

In the early and popular active shape model [Cootes et al., 1995], ob-
jects are represented by an explicit parameterization of their boundary
vertices. Statistics (mean shape and variations) are computed on these
vertices coordinates, thus a suitable one-to-one vertices correspondence
is needed across the database. This correspondence can be complicated
to obtain: either tedious when relying on manually labeled points or
lacking robustness when automatically obtained (e.g. [Besl & McKay, 1992]).
Due to boundary self-intersections, shape topology may also be lost.

Implicit methods [Leventon et al., 2000, Rousson & Paragios, 2002,
Tsai et al., 2003, Cremers et al., 2003] represent objects through the signed
distance functions to their boundary to estimate statistics. Although ver-
tices correspondence is no longer needed during the learning step, this
representation is still inadequate for topology preservation. In [Rousson & Paragios, 2002],
Rousson and Paragios built a probabilistic model in order to estimate
a mean implicit function φm (and an associated variance at each pixel)
from a dataset of signed distance functions. Unlike most previous works,
they constrained φm to be a true distance function, i.e. ‖∇φm‖ = 1, and
not just any implicit function. Although more satisfying, this approach
requires complex optimization schemes and the constraint is only en-
forced during the learning (and not the subsequent segmentations). Fur-
thermore, it is still inadequate for topology preservation.

Finally, closely related with this paper, a third class of methods
uses statistics on diffeomorphisms of implicit shape representations
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[Arsigny et al., 2006, Vaillant et al., 2004] or on currents [Durrleman, 2010].
While they present elegant and appealing theoretical properties and do
preserve shape topology, they are also much more computationally ex-
pensive. Most of their applications therefore lie in offline shape analysis
and they were not used for segmentation purposes (apart from atlas-
based segmentation methods [Khan et al., 2008], which are not compat-
ible with real-time or user-interactions).

Here, we propose an approach that is closely related to this third class
of methods, since implicit template deformation consists in seeking a
space transformation. We thus introduce a dedicated learning approach
by using the template deformation energy as a pre-metric in the shapes
space. This idea was inspired by the seminal paper of Joshi et al. , in
which they construct an unbiased mean template by minimizing a sum
of distances to a database [Joshi et al., 2004]. As they were motivated by
registration applications, they worked directly on images. When applied
to shapes, this approach yields a co-segmentation process (sharing some
ideas with [Yezzi & Soatto, 2003] to a certain extent), within which an
optimal shape is estimated (see Figure 1). However, we go further than
both papers by learning (and subsequently exploiting) also the variabil-
ity of the shape around this mean. This means we also capture further
information by building a space of main deformations around this tem-
plate. Finally, we introduce a generalization of the template deforma-
tion formulation by using the computed statistics in the regularization
term. The proposed framework is generic and can be applied to any or-
gan with a possibly complex and variable shape but a fixed topology.
We demonstrate its efficiency and interest by addressing the problem of
myocardium segmentation in 2D cine-MR images.
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3 Segmentation by implicit template deformation

Implicit template deformation [Saddi et al., 2007, Mory et al., 2012] is a
variational framework for image segmentation. The segmentation is de-
fined through the zero level-set of an implicit function φ : Ω → R, and
φ is positive (resp. negative) inside (resp. outside) the segmentation. In
this framework, the set of admissible segmentations S is defined via an
implicit template φ0 : Ω →R as the set of all implicit functions with the
same topology as φ0, i.e. S= {φ : Ω → R s.t. φ = φ0 ◦ψ ,ψ is diffeomorphic} .
The unknown is thus the transformation ψ : Ω →Ω which is sought as
a minimum of a region competition energy:

min
ψ

{∫
Ω

H(φ0 ◦ψ) rint +
∫

Ω

(1−H(φ0 ◦ψ)) rext +λ R(ψ)

}
, (1)

where H denotes the Heaviside function (H(a)= 1 if a> 0, 0 otherwise)
while rint and rext are image-based functions such as rint(x) is lower
(resp. higher) than rext(x) if voxel x seems to belong to the target ob-
ject (resp. background).R(ψ) is a contraint term on ψ that prevents the
segmentation φ = φ0 ◦ψ to deviate too much from the initial template
φ0; it is weighted by a parameter λ . In [Mory et al., 2012], ψ is decom-
posed into (i) a global transformation G ∈G (e.g. a similarity) account-
ing for the pose of the template in the image, and (ii) a diffeomorphism
L ∈ D(Ω) that yields local deformation and does change the shape of
the template. This decomposition allows to define the regularization as
a function of the deformation only R(ψ) = R(L) = 1

2‖L− Id‖2
2. The

problem finally reads

min
L,G

{∫
Ω

H(φ0 ◦L◦G) rint +
∫

Ω

(1−H(φ0 ◦L◦G)) rext +
λ

2
‖L− Id‖2

2

}
.

(2)
In such a setting, φ0 not only fixes the topology of the segmentation

but also acts as a shape prior, which makes its choice of paramount
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importance. Moreover, the term R could be improved by taking into
account shape variability of the considered organ. In the next sections,
we develop a framework to tackle both problems by estimating statistics
on a collection of shapes.

4 A learning process dedicated to template deformation

Given a training set of variables (Xn)n=1...N ⊂ SN , one can define its
mean (more precisely its Fréchet-mean or Karcher-mean [Karcher, 1977])
as the solution of the following problem:

X̄ = argmin
X∈S

1
N

N

∑
n=1

d2(X ,Xn) (3)

This definition therefore depends both on the space S that is used to
represent shapes and the distance d that defines their similarity. We will
use these two degrees of freedom to build a mean shape that is tailored
for the implicit template deformation.

4.1 A dedicated estimation of a mean model

The first choice concerns the space of shapes S. Shapes can be repre-
sented by different types of objects (i.e. vertices [Cootes et al., 1995],
implicit functions [Tsai et al., 2003], deformations [Joshi et al., 2004],
currents [Durrleman, 2010], etc.). Our goal here is to estimate a model
for the implicit template deformation framework, so we will choose an
implicit representation. However, we would like to specify and fix the
topology of the considered shapes. This information will be given by
an initial implicit template φ0, on which the space of admissible shapes
will depend:
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Sφ0 = {φ : Ω → R such that φ = φ0 ◦L with L ∈ D(Ω)} (4)

which can be thought of as the orbit of φ0 in the set of shapes. Note that
such a space is stable under any diffeomorphism. Its dependency on φ0
is rather low (except the topology) as it is identical to any Sφ such that
φ ∈ Sφ0 . For the sake of simplicity, in the following we will omit the
index and denote this space S.

In order to estimate statistics in S, we then define a metric-like func-
tion in this space which should be related to our segmentation frame-
work. To do so, we point out that any shape φ1 ∈ S can be warped to
another shape φ2 ∈ S via implicit template deformation. Indeed, we can
segment an image representing φ2 using φ1 as template. With the nota-
tions of (2), we simply have to set φ0 := φ1, rφ2

int := max(−φ2,0) and
rφ2

ext := max(φ2,0). The definition of rφ2
int and rφ2

ext is not unique and we
could have selected other functions that represents the interior and the
exterior of φ2. The rationale behind this particular choice is that the dif-
ference rφ2

int− rφ2
ext is then equal to−φ2. This leads to a tailored definition

of shape dissimilarity d2.

Definition 1. The shape dissimilarity from shape φ1 to shape φ2 is de-
fined as

d2(φ1,φ2) = min
L∈D(Ω)

G∈G

∫
Ω

H(φ1 ◦L◦G) max(−φ2,0)

+
∫

Ω

(1−H(φ1 ◦L◦G)) max(φ2,0)

+
λ

2
‖L− Id‖2

U , (5)

or equivalently
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d2(φ1,φ2) =C(φ2)+ min
L∈D(Ω)
G∈G

−
∫

Ω

H(φ1 ◦L◦G) φ2 +
λ

2
‖L− Id‖2

U ,

(6)

where C(φ2) is a constant that only depends on φ2.

In this definition, the U-norm represents the natural norm in the Gaus-
sian reproducing kernel Hilbert space (see [Aronszajn, 1950] for more
details), which can usually be as well the L2 norm.

Remark 1 The shape constraint parameter λ should be chosen care-
fully, since a too high value will prevent φ1 to be exactly matched to φ2
and the learning will be biased. In practice however, it is not difficult to
find a suitable value.

This shape dissimilarity measure is not a distance but a pre-metric, as
it is not symmetric and does not verify triangular inequality. The lack of
symmetry is directly inherited from the segmentation process itself as
the template φ0 has a very particular role. Triangular inequality does not
either appear as an important property for our application. Cremers et
al. discussed these properties in [Cremers & Soatto, 2003] and point out
that defining a true distance between implicit shapes is still an open
problem. But anyway, this function does measure a closeness between
two shapes and we can still use it to define our dedicated notion of mean
shape.
Definition 2. An implicit function φ̄ is a mean of the set {φn}n=1..N (in
the sense of implicit template deformation) if it is a local minimum of
the shape dissimilarity to all the elements of this set, i.e.

φ̄ = argmin
φ∈S

1
N

N

∑
n=1

d2(φ ,φn) . (7)

It is important to note that we seek the mean shape φ̄ as an element of
S. Indeed, in our application the mean shape has to preserve the topology
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of the training shapes. This means that there exists L ∈ D(Ω) such that
φ̄ = φ0 ◦L. The mean shape expression can thus be reformulated as

φ̄ = φ0 ◦

{
argmin
L∈D(Ω)

1
N

N

∑
n=1

d2(φ0 ◦L,φn)

}
. (8)

Expanding the segmentation costs and neglecting constant terms in
Equation (8) yields the following optimization problem to solve:

min
L∈D(Ω)

(Ln)n∈D(Ω)N

(Gn)n∈GN

Elearn =−
N

∑
n=1

∫
Ω

H(φ0◦L◦Ln◦Gn) φn+
N

∑
n=1

λ

2
‖Ln−Id‖2

U .

(9)

This can be interpreted as segmenting simultaneously all training
shapes (φn)n starting from φ0 while estimating an optimal common in-
termediate shape φ0 ◦L (see Figure 1). In (9), the energy Elearn is mini-
mized with respect to three kinds of variables

• the global transformations (Gn)n, called the poses, that register all
shapes to φ0 with translation, rotation and scaling. As they are part
of the optimization process, they do not bias the learning, as a fixed
pre-alignement (e.g. [Rousson & Paragios, 2002, Tsai et al., 2003])
would do.
• the common deformation L, which includes the common parts of the

deformations from φ0 to all the training shapes;
• the local deformations (Ln)n, called the residual deformations, are

the residual components of the deformations from φ0 ◦L to φn. Un-
like L, their magnitude is penalized so that any deformation which is
common to all the training set will be preferably included in L.

The optimal common deformation L∗ can be used to define the opti-
mal shape (in the sense of the segmentation algorithm) as φ̄ = φ0 ◦L∗ .
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This shape globally minimizes the magnitude of residual deformations
to each shape of the dataset. Note that the magnitude of L is not penal-
ized so the choice of φ0 defines the topology of φ̄ but does not affects
it further (modulo the smoothness enforced to L). In our experiments,
running a second time the learning process with φ0 := φ̄ did not alter
the results.

Remark 2 We assumed that the set of training shapes {φn}n was a
subset of Sφ0 . It is a very natural hypothesis and φ0 should be chosen
accordingly. However, those training shapes will probably come from
manual annotations of images and, as such, be prone to errors. As a
consequence, it may occur that some training shapes do not have the
correct topology. This does not question the soundness of our learning
because, in such cases, we will implicitly learn the “closest shapes”
with the topology of φ0.

Details on the resolution of (9) are provided in the next subsection.

4.2 Numerical optimization

Problem (9) presents some mathematical similarities with the co-segmentation
method proposed in [Prevost et al., 2013b, Prevost et al., 2013c]. It is
therefore minimized similarly, with a gradient descent simultaneously
on each of the unknowns. The gradient directions with respect to pn,i
(the i-th parameter of Gn), the common deformation L and the residual
deformations Ln are given by the following equations1:

1 They are obtained with standard calculus of variation, but we omit the tedious details here.
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∇pn,iElearn =
∫

Ω0
δ (φ0 ◦L◦Ln) φn ◦G−1

n

∣∣∣J−1
Gn

∣∣∣ (10)〈
∇φ0 ◦L◦Ln, DL◦Ln . DLn ◦ ∂Gn

∂pn,i
◦G−1

n

〉
(11)

∇LElearn = Kσ ∗
[
∑

N
n=1 δ (φ0 ◦L) φn ◦G−1

n ◦L−1
n .

∣∣∣J−1
Ln◦Gn

∣∣∣ . DL . ∇φ0 ◦L
]

(12)

∇LnElearn = Kσ ∗
[
δ (φ0 ◦L◦Ln) φn ◦G−1

n .
∣∣∣J−1

Gn

∣∣∣ . DLn . ∇φ0 ◦L◦Ln

]
+λ (Ln− Id)(13)

The first gradient – with respect to the poses – is used in a standard
gradient procedure, while the two others – with respect to the common
and residual deformations – are exploited in a topolgy-preserving opti-
mization scheme since the space is not stable under linear combinations.
The appropriate way is to combine diffeomorphisms via composition
since (D(Ω),◦) is a group. Following [Saddi et al., 2007], we therefore
update any diffeomorphism L in the following way:

L(n+1) ← (Id − ∆ t ∇LE) ◦ L(n). (14)

The regularity is enforced by a Gaussian filtering of the gradient as
in [Mory et al., 2012].

All these integrands actually have a very small support (the zero level-
set of an implicit function), which makes the computations fast. More-
over, the three kinds of gradients have a lot of terms in common.

Remark 3 Some terms depends on inverses of diffeomorphisms L−1
n .

These deformations are built iteratively and simultaneously to the direct
transformations Ln.

Remark 4 Although the computations needed for the training process
are relatively fast, there is a high memory requirement (especially in
3D) since a high number of implicit functions and deformation fields
have to be stored simultaneously. A possible solution would be to use
a stochastic gradient descent [Bottou, 1998], i.e. at each iteration only
consider a randomly chosen subset of the training set.
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4.3 Building a space of deformation priors

As seen in the previous subsection, minimization of (9) yields a mean
shape. However, the optimal residual deformations (L∗n)n are also avail-
able and can be used to capture further information on the variability of
the training shapes.

We build a space of principal deformations L to constrain future seg-
mentation of new images. Similarly to [Rueckert et al., 2001], a princi-
pal component analysis (PCA) [Jolliffe, 1986] is applied to the residual
deformations to find a suitable parametrization of such a space. The goal
of this analysis is to find a reduced number of orthogonal vectors that
maximize the explained variance of the residual deformations. This is
accomplished by first computing the mean residual deformation

¯̀=
1
N

N

∑
n=1

L∗n (15)

and then performing a singular value decomposition (SVD) of the sam-
ple covariance matrix

S =
1

N−1

N

∑
n=1

(L∗n− ¯̀)(L∗n− ¯̀)T . (16)

Any deformation ` in agreement with the variability of the training data
can then be approximated by a linear combination of the offset ¯̀ and
(`k)k=1..M the first M singular vectors of S. It is parametrized by the
vectors of its weights w ∈ RM :

`≈ `[w] = ¯̀+
M

∑
k=1

wk `k . (17)

We denote L the set of such transformations. M can be empirically cho-
sen using the distribution of the modes’ eigenvalues. To each singular
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vector `k corresponds a singular value λk that represents the amount of
variance of the residual deformations that is explained with this mode
of variation.

Remark 5 Note that even if the PCA is applied to the residual defor-
mations, ¯̀ is non-null (though with a very small magnitude) because it
denotes a mean with respect to a different metric than L∗.

The space of diffeomorphisms is not stable under linear combina-
tions. There is therefore no guarantee that an element of L is actually
a diffeomorphism. Nevertheless, as shown in the next section, it is pos-
sible to use this space indirectly in a topology-preserving segmentation
framework.

5 Generalized implicit template deformation

The previously estimated statistical information can be used to robustify
and improve future segmentations. In order to incorporate such infor-
mation in the segmentation process, we propose a generalization of the
implicit template deformation framework.

5.1 An improved formulation for segmentation

A first improvement is achieved by replacing the original template φ0
by the mean template φ̄ = φ0 ◦L∗. Secondly, the estimation of the de-
formation can also be enhanced by using the space of principal deforma-
tions L. In most previous works [Cootes et al., 1995, Leventon et al., 2000,
Tsai et al., 2003], the learnt variable is expressed as a linear combina-
tion of modes. When dealing with deformations, this does not guarantee
topological preservation. Therefore, we rather use such linear combina-
tions indirectly. More specifically, we modify the regularization term so
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that the diffeomorphism L is constrained with respect to the set L instead
of the identity (see Figure 2). Thus, only deformations that cannot be ex-
plained through the learnt space L are penalized. The new segmentation
energy therefore reads

Eseg(L,G,w)=
∫

Ω

H(φ̄ ◦L◦G) rint +(1−H(φ̄ ◦L◦G)) rext +
λ

2
‖L−`[w]‖2

U .

(18)
This represents a generalization of the standard template deformation
formulation. The novel regularization term can be interpreted as a shape
prior that depends on the image. Thus, even if the target organ has a high
variability around the mean, we can learn it in order to automatically
select the most plausible shape that is implicitly used to constrain the
segmentation.

A related approach was proposed in [Rousson et al., 2004] with im-
plicit functions. In this paper, the authors defined the regularization term
as a distance between the segmenting implicit function and a linear
combination of implicit modes previously learnt. However our method
presents a major advantage over theirs. Indeed, as explained above in
section 4.2, using Eqn 14 we are able to let the deformation L evolve
while preserving its diffeomorphic properties (and therefore maintain-
ing the topology of the template φ0). Conversely, it is not possible to
easily enforce such a constraint into the evolution of an implicit func-
tion.

5.2 Numerical optimization

Minimization of (18) can be performed with a two-step alternate scheme:

Update of the segmentation: With `[w] fixed, the energy is minimized
through a gradient descent-like scheme on L and G (see [Mory et al., 2011,
Mory et al., 2012]).
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L

¯̀ `1
`2

`[w] Id

L

D(Ω)

Fig. 2 Comparison of the penalization of the deformation L with the
standard regularization term towards the Identity (red) and the novel
term towards the space L (blue) that is centered in ¯̀ and spanned by
the modes (`k)k. The new prior `[w] is the projection of L onto the set
L. Note that all transformations of L are not diffeomorphisms but L is
constrained to be one.

Update of the shape prior: With L and G fixed, the update of `[w] can
be seen as a projection of L onto L. Indeed the energy comes down to
a simple quadratic function, whose minimizers are obtained by solv-
ing a simple linear system, as stated by the following proposition.

Proposition 1. The minimum of Eseg(L,G, ·) is reached at w∗ ∈ RM

such that
Aw∗ = bL (19)

where A is a M×M matrix whose entries are (Ai j) =< `i, ` j >U while
bL ∈ RM is defined by (bL,i) =< L− ¯̀, `i >U .
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Proof. With L and G fixed, the minimization problem comes down
to

argmin
w∈RM

Eseg(L,G,w) = argmin
w∈RM

‖L− ¯̀−
M

∑
k=1

wk`k‖2
U . (20)

Setting to zero its derivative with respect to the weight of the mode k0
yields

0 =
d

dwk0

〈
L− ¯̀−

M

∑
k=1

wk`k, L− ¯̀−
M

∑
k=1

wk`k

〉
U

(w∗) ,

(21)

0 =

〈
L− ¯̀−

M

∑
k=1

w∗k`k, `k0

〉
U

, (22)

M

∑
k=1

w∗k
〈
`k, `k0

〉
U =

〈
L− ¯̀, `k0

〉
U . (23)

Each k0 yields a linear equation in w, hence the result.

Note that the matrix A has a quite small size, so this system is very
easy to solve. Actually, we can even pre-compute the inverse of A
since it only involves learnt variables.
However we may simplify this solution further by making some hy-
potheses. Recall that by construction via the PCA, the (`k)k are L2-
orthogonal. If we assume that they are also nearly U-orthogonal, then
the matrix M is diagonal and the solutions are given by:

∀k ∈ {1, ...,M}, w∗k =

〈
L− ¯̀, `k

〉
U

〈`k, `k〉U
. (24)

The values of w∗k are subsequently clipped in the interval [−3
√

λk;3
√

λk],
as these bounds represent the lengths of the semi-axes of the ellipsoid
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estimated by the principal component analysis. Any deformation ob-
tained with weights beyond this interval are not in agreement with
the training set and thus should not be considered as possible priors.
Other possibilities of computing these weights will be mentioned in
the Discussion section of this chapter.

To sum up, the first step is similar to the standard implicit template de-
formation formulation, and the second one is straightforward. There-
fore, the computational efficiency of the method is maintained while
topology preservation is still guaranteed.

6 Application: Myocardium segmentation in 2D MR images

We validated our method in the context of myocardium analysis and
segmentation in cardiac short-axis 2D cine-MR images. Quantitative
assessment on the heart muscle is critical for diagnosis or therapy plan-
ning. This task is particularly challenging for model-based approaches
because of the complex topology of the target object, i.e. a band around
left and right ventricles.

6.1 Material

Our dataset is composed of 245 MR images coming from 61 different
patients (for each case, several slices in the z-direction are available).
The acquisitions have been synchronised so that each heart is in the
same cardiac phase. The typical images size was 256× 256 with res-
olution 1.56× 1.56 mm. In every image, a myocardium segmentation
has been manually performed by a radiologist. Based on the geometric
information, we set for our method the scale of the deformation field
σ to 10 mm. The initial synthetic template φ0 used is shown in Figure
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1. Global transformations are sought in the set G of similarities (ac-
couting for translation, rotation and isotropic scaling). The dataset was
randomly split into a training set including 120 images from 30 patients
and a testing set composed of the remaining 125 images coming from
31 patients.

6.2 Experiments on the learnt information

6.2.1 Synthetic experiments

First we conducted controlled experiments to assess quantitatively the
estimation of the mean model. Random myocardium shapes were gener-
ated by applying random deformation fields to an original myocardium.
We aim at recovering this original shape by estimating a mean model
from subsets of these synthetically generated shapes. The efficiency of a
learning process is evaluated by computing the Dice coefficient between
the ground truth and the estimated mean shape. To avoid randomness
bias, the experiments have been performed 100 times and the results
averaged.

We reported in Figure 3 a comparison of three fully automatic meth-
ods using this metric: the implicit shape model proposed in [Tsai et al., 2003],
the active shape framework [Cootes et al., 1995] with point correspon-
dences estimated by ICP [Besl & McKay, 1992] and the proposed method.
For any number of used shapes, our method provided statistically signif-
icantly better estimates of the original shape than the two others. These
results can be better understood with Figure 4 showing the spatial lo-
calization of the errors. Indeed the implicit method fails to recover the
entire muscle around the right ventricle: working directly on signed dis-
tance function is not adapted to thin structures. This area also causes
high errors for the explicit method, which retrieves but underestimates



Incorporating shape variability in implicit template deformation for image segmentation 21

this part of the band. Conversely, errors for our method are lower and
more evenly distributed.
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Fig. 3 Dice coefficients (averaged over the 100 experiments) be-
tween the estimated mean model and the original model as a function
of number of samples using implicit shape model [Tsai et al., 2003],
ICP [Besl & McKay, 1992] + active shape model [Cootes et al., 1995]
and the proposed method. Bands around the curves delineate the 95%
confidence interval.

6.2.2 Mean model and principal modes

We now provide a qualitative comparison between the different ap-
proaches on learnt information from clinical data. The initial dataset was
randomly split into a training set including 120 images from 30 patients
and a testing set composed of 125 images coming from the remaining
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Fig. 4 Repartition of errors on the estimated model using implicit shape
model [Tsai et al., 2003] (left), ICP [Besl & McKay, 1992] + active
shape model [Cootes et al., 1995] (middle) and the proposed method
(right). Color indicates the pixelwise empirical probability of bad clas-
sification (inside vs outisde the shape).

31 patients.

The mean shape and first two modes of variation are shown in Figure
5 for each method. As expected from the results of previous subsection,
the implicit method fails at recovering the true topology of the mean
shape, but also with the first modes of variations. The explicit method
performs better and provides a reasonable mean model. However, the
modes of variation are not satisfying because very irregular and difficult
to interpret. On the other hand, the results obtained with our method
show a much better preservation of the topology and seem more real-
istic. Moving along the first principal components changes the relative
size of the ventricles. This corresponds to the variability observed when
moving on the axial direction of a given heart. This variation was ex-
pected because the training set include several slices of each heart. The
second principal component controls the global anisotropic scaling of
the hearts, which seems to rather represent an inter-subject variability.
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Such variations were not taken into account by the global poses because
their scaling were isotropic.
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6.3 Validation of the improved segmentation

We finally evaluate how learnt information improves segmentation via
implicit template deformation of unseen images. Myocardiums have
been segmented in test images using (i) the synthetic model φ0 as tem-
plate, (ii) the estimated mean model φ̄ as template, (iii) the new defor-
mation model-based regularization term in addition to the mean model
φ̄ (with 5 modes).

The image-based classification functions rint and rext were set to

rint(x) =− log(pint(x)) and rext(x) =− log(pext(x)) . (25)

where pint and pext are of intensity probability distributions inside and
outside the myocardium (estimated from the training datasets). For the
intensities to be comparable, all the images were normalized before-
hand.

Performance of each algorithm is quantified using Dice coefficients
between the segmentation and the expert ground truth. Results on the
whole testing set are summarized in Figure 6. Changing the template
from φ0 to the learnt φ̄ makes the algorithm more robust as the mini-
mum Dice coefficient greatly increases (from 0.46 to 0.69). Modifying
the regularization term by taking into account the deformation model
further raises it 0.86. The proposed method globally enhances the algo-
rithm on most images of the test database as the median goes from 0.85
for the baseline method to 0.92 with our modifications. These improve-
ments are statistically significant with a p-value < 10−4 for a Wilcoxon
signed-rank test [Wilcoxon, 1945].

Figure 7 shows segmentation results in three different cases, for the
classical regularization term with two values of the shape constraint pa-
rameter λ ∈ {1,2} and the new model-based regularization term. In all
settings, the template was the mean model φ̄ . Consider Case ]1 (first
row). Since the image term is reliable, a satisfying result is obtained
with a small shape constraint. However, the myocardium deviates signif-
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w1

w2

w1

w2

w1

w2

Fig. 5 Mean model and first two modes of the variation of the
myocardium learnt on the training dataset using implicit shape
model [Tsai et al., 2003] (left), ICP [Besl & McKay, 1992] + active
shape model [Cootes et al., 1995] (right) and the proposed method (bot-
tom). For our approach, the visualized shapes are the zero level-sets of
φ̄ ◦ ( ¯̀+w1 `1 +w2 `2).
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φ0 φ̄ φ̄ + modes

Fig. 6 Boxplot of the Dice coefficients for myocardium segmentation in
MR images via implicit template deformation with synthetic model φ0
(left), mean model φ̄ (middle), mean model φ̄ and deformation modes
(right).

icantly from the mean shape: using a too strong constraint (λ = 2) pre-
vents the algorithm to converge towards the right solution. Conversely
in Case ]2, the image information is much more ambiguous. This pro-
vokes some leaks (e.g. in papillary muscles of the left ventricle) with
λ = 1, which shows there is no fixed value that allows a good segmen-
tation in the first two cases. Yet by introducing the new regularization
(fourth column), likely deformations are not penalized. This widens the
capture range while still maintaining a high constraint on the shape and
therefore avoiding unrealistic leaks. Finally, Case ]3 illustrates that our
method may also improve the result even if no λ was originally success-
ful.



Incorporating shape variability in implicit template deformation for image segmentation 27

]1

]2

]3

(a) (b) (c) (d)
Baseline, λ = 1 Baseline, λ = 2 Proposed, λ = 2

Fig. 7 Segmentation results (red) of different cases versus ground truths
(green). Main failures are highlighted by yellow arrows. (a) Original
images, (b,c) Standard method with small (λ = 1) and high (λ = 2)
shape constraint, (d) Proposed method.

7 Discussion

We discuss herebelow some limitations of the current work and propose
several ideas for future work.

From 2D to 3D: Although we first proved the potential of our ap-
proach on a 2D application, it should be noted that the whole method
can be directly extended to 3D shapes, thanks to the implicit represen-
tation of shapes. Another advantage of our approach is that it does not
require point-to-point correspondences between shapes, which can be
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particularly challenging to obtain for three-dimensional shapes. We
are thus currently investigating 3D applications, such as learning the
shape variability of the liver.

Penalizing the weights of the modes: In this chapter, we proposed to
replace the regularization term on the deformation L from

‖L− Id‖2 to min
w
‖L− `[w]‖2 with `[w] ∈ L (26)

which basically consists in removing the penalization on all deforma-
tions in the affine space L. The rationale was that L is composed of
deformations in agreement with the database. However the weights
w should be not too large: with a Gaussian assumption, the training
shapes are supposed to have their weight wk in [−3

√
λk;3

√
λk]. Our

solution was to clip each weight into this interval, but there is a more
elegant approach. We could decompose the original term ‖L− Id‖2

U
into

min
w∈RM

‖L− `[w]‖2 +‖`[w]− ¯̀‖2 +‖ ¯̀− Id‖2 (27)

where the first term is the same as in (26). The third term is con-
stant and can therefore be discarded in the minimization. Finally, the
second term penalizes the distance between `[w] and ¯̀ that are both
deformations in L. Instead of using the standard L2- or U-norms, we
can exploit the assumption of Gaussian distribution around ¯̀ and de-
fine a Mahalanobis distance in L as follows:

‖`[w]− ¯̀‖2 = ν

M

∑
k=1

w2
k

λ 2
k

(28)

where ν is a normalization factor. This simply means that modes with
high variance are less penalized. Minimization remains easy as (24)
becomes

∀k ∈ {1, ...,M}, w∗k =

〈
L− ¯̀, `k

〉
U

〈`k, `k〉U +ν
1
λk

(29)
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The weights of the modes are slightly shifted down, according to the
variance of the corresponding mode.

Choice of the dimension reductions method: In order to build the space
L, we used as a dimension reduction approach the principal com-
ponent analysis (PCA) since it is a standard and easy-to-implement
method. However we might try other methods such as independent
component analysis (ICA) [Comon, 1994] which, unlike PCA, does
not aim at capturing the largest variance with orthogonal vectors but
with decorrelated ones.
To understand the potential benefits of ICA over PCA, consider the
following simple “thought experiment”: in all the training shapes,
only two disjoint zones ΩA and ΩB differ from the mean model. These
zones are the same in each shape but they vary independently from
each other. PCA will capture all the changes in a single mode, while
ICA needs two modes (one for each region). Now let us imagine the
segmentation of a corrupted image in which there is no information
in ΩA. With both methods, the weights of the shape prior will solely
be determined by the information available in ΩB. However, since
the two regions are in the same PCA mode, the shape prior will also
change in ΩA if we use the PCA approach. This is clearly not de-
sirable since the two variations were independent: there is no reason
for ΩA to influence ΩB. The correct behaviour (i.e. the prior in ΩA
should be only the mean model unless there exists some statistical
correlation with other regions) is obtained with the ICA modes.

Learning on logarithms: We mentioned earlier that diffeomorphisms
are not stable under linear combinations. This was the reason why
we did not use directly the modes of the PCA in the segmentation
step. However, we may question the learning step itself: is it really
sensible to perform a PCA in a space that is not linear ? The answer
is probably negative from a purely theoretical point of view.
One possible solution would be to perform the PCA on the logarithms
of the residual deformations (L∗i )i, since the logarithm of a diffeomor-
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phism is a vector field that does lie in a linear space [Arsigny et al., 2006].
Preliminary experiments that we are currently conducting however
suggest that both learning and segmentation results do not signifi-
cantly change when working on logarithms, whereas the efficiency of
the algorithm is lost.

8 Conclusion

In this chapter, we have presented an approach to include organ shape
variability in the implicit template deformation framework. By comput-
ing a mean over a database of shapes defined with a dedicated distance,
we constructed a shape template that is tailored to our algorithm. We
even used further statistics by estimating (and then exploiting for the
segmentation of unseen images) the main modes of variations of the
deformations. The remarkable properties of this approach are its com-
putational efficiency and the topology preservation of the initial model.
A variational approach was proposed to extract statistical information
(mean and principal variations) from a collection of shapes. This train-
ing method is automatic, does not require landmarks correspondance
and relies upon a definition of shape dissimilarity that is directly derived
from the implicit template deformation functional. We also proposed a
generalization of the original segmentation algorithm in which the shape
prior is automatically adapted to the current image during the deforma-
tion process while still maintaining both the computational efficiency
and the topology preservation of the method (segmentation takes around
one second on a standard computer). Quantitative results demonstrated
the improvement over implicit template deformation for a 2D applica-
tion. Our approach is very generic and can be used to segment any object
with a complex shape but a fixed topology that shall be preserved. Fur-
thermore, extension in 3D or to multiple objects (e.g. brain structures) is
straightforward thanks to the implicit representation of shapes. Despite
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its paramount importance, the image-based term was not investigated as
we focused on incorporating shape information on top of any pixelwise
classifier.

All in all, this approach is very promising and was proven to be
both effective and efficient on the addressed clinical application. It
also paves the way for numerous further investigations: for instance in
[Prevost et al., 2014], we go beyond and learn not only the shape vari-
ability but also the local appearance of the organ of interest.
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