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ABSTRACT

This paper introduces an exhaustive process for assisting
buildings extraction out of the Digital Elevation Model (DEM)
and the orthoimage. We focus on rectangular buildings,
which are the most common constructions.

The method is a region-based approach for extracting
above-ground structures and for estimating them with rect-
angles. We establish a relation between the eigenvalues of
the covariance matrix and the rectangle dimensions. The
Hausdorff measure is used to validate this estimation.

The estimated rectangle shape may be neither well lo-
calized nor well sized. We use a parametric model for im-
proving the estimation.

The final rectangle estimation is used to make a precise
rendering of the 3D reconstruction of the scene.

Keywords: Building extraction, Rectangular estimation,
Deformable Templates, Aerial image

1. INTRODUCTION

In the civil and military fields (infrastructure of telephony,
impact studies...), it is increasingly necessary to use realistic
models. For examples, authors of [5, 2, 7] have presented
automatic methods for terrain modeling (ground, vegeta-
tion, and buildings...) based on aerial or satellite photographs.
From this modeling and aerial images, the orthoimage, i.e,
the vertical view of the scene, is computed (Fig. 1a).

Several works intend to improve building rendering in
the Digital Elevation Models (DEM). Brunn et al. [3] min-
imize a criterion based upon rules of collinearity and right
angle. Lin et al. [11] use perceptual grouping to aggregate
building edges. Vestri’s last work [14] improves accuracy
DEM by modifying the method of generation by correlation
especially on the building frontages.

Lee et al. [10] present a semi-automatic system to gen-
erate 3D models with rectilinear hypotheses. This system

attempts to minimize the time and the number of user in-
teractions by defining rules to substract or add rectangles to
models.

In our approach, we want to minimize the operator work-
load. Above-ground structure extraction (vegetation and
constructions) (Fig. 1b) is carried out on the DEM by the
algorithms presented in [4, 1].

Section 2 deals with estimating the rectangle parame-
ters over any given blob. In section 3, we define a criterion
for checking the estimation efficiency. A method which im-
proves the rectangle estimation is introduced in section 4. In
the following section, we present an algorithm for splitting
complex buildings in several rectangles. At last, we give an
overview of this whole process through examples.

2. ESTIMATION OF RECTANGULAR
PARAMETERS

We intend to model each above-ground element by a rect-
angle. The rectangle center of mass and its principal axes
are those computed over the element itself. We make an es-
timate of the two remaining rectangle parameters by means
of the element set of points.

The center of mass is given by the first order moment
(Eq. 1). The principal axis is computed through the estima-
tion of the second order moments (Eq. 2, Eq. 3).
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Fig. 1. a. ortho-image b. above-ground
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The matrix of inertia �
	����	����	 ��� 	 ��� � is made of the second
order moments. It is commonly used for estimating the el-
lipse enclosing the given blob [13]. We intend to apply the
matrix properties in order to compute the rectangle sizes. At
first, let us consider the matrix diagonalization. It is equiv-
alent to changing the coordinates system. In fact, the diag-
onalization consists of moving from the Cartesian space to
the space orientated towards the blob principal axis.

Let us now consider the eigenvalues. In the case of an
horizontal rectangle, the crossed second order moment, i.e.� ��-

, is nil, and the second order moment
� ���

(respec-
tively

� - -
) depends on the blob length (respectively the

blob width). There exists a straightforward relationship be-
tween the two eigenvalues (Eq. 4) and the length � and the
width � (Eq. 5) of rectangle. This result can be extended to
any given blob since we know that diagonalization means a
change in the coordinate space.
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The analytic resolution of Eq. (4) gives the eigenvalues:
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The rectangle sizes over the above-ground element are
inferred from the eigenvalues. In the case of a square, the
principal axis cannot be computed. In fact,
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�

is always equal to * ' (see Eq. 3). How-
ever, the orientation of a square shape can be computed by
using the Fourier descriptors.

Figure 9 illustrates the method for blobs whose size is
over 300 pixels. In the following section, we introduce the
criterion we selected for the evaluation of our modeling.

3. MEASURES OF SIMILARITY

Figure 10 shows the superposition of the above-ground blobs
and the rectangle estimations. We can see that the modeling
is not satisfying when the blob shape is complex. The crite-
rion of similarity that we look for, must act as we do when
we visually accept or reject an estimation. Consequently, it
must be based on a comparison between sets. We selected

the Hausdorff measure among the criteria we studied. The
review of criteria, which is not in the scope of this paper,
leaded us to a threshold value for validating or rejecting our
estimation.

The Hausdorff measure is a comparison between sets. It
is equal to the ratio of the intersection area of the two sets ,+.-0/ % to the area of their union (Eq. 6). When two sets are
equal, their union also equals to their intersection and the
Hausdorff measure is equal to 1. On the contrary, as two
sets tend to differ, their intersection decreases whereas their
union increases, resulting in a Hausdorff measure decreas-
ing towards 0.

� �213+546/13+576/ (6)

where 1 � is the number of elements in the set
�

.
Figure 2 illustrates the Hausdorff measure results for

blobs whose size is over 300 pixels. We note that the selec-
tion is correct, all blobs that are not rectangular are rejected
and only some blobs that could be estimated by a rectangle
are excluded.

4. DEFORMABLE TEMPLATES

Previous computations result in a rectangle per above-ground
region. When a rectangle is projected onto the orthoimage,
its borders do not fully fit the borders of the building. This
inaccuracy is the result of the DEM segmentation process
as well as the DEM computation itself whose inacurracy is
worth a few pixels [4].

Jibrini et al. [9] suggest to improve the borders each
one independently of the others. This method requires to
limit the border movements in order to keep the borders
connected. Fua’s work concerning netsnakes with hard-
constraints [8] results in 3D structure optimization under
constraints of horizontality, of verticality and of right an-
gle. However, the method requires the use of several im-
ages, whereas we intend to use one image only, i.e. the
orthoimage. The method presented is derived from Yuille
et al. work [17] that is a parametric version of Kass et al.
snakes [12].

The rectangle parameters, i.e.
� � - � � - � -�� and � , de-

fine the parametric model (Fig. 3). This model evolves by
means of an energy set on the rectangle borders (Eq. 7, 8).
This energy is derived from a potential 8 which is computed
over the gradient of the orthoimage. This potential must be
minimum at the building edges and greater elsewhere.
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Fig. 2. Rectangle selection
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Fig. 3. Five parameters model of a rectangular building

The energy is minimized by means of a gradient de-
scent (Eq. 9). The descent increment is computed at the
beginning of the process such that each parameter move
is unitary at the first step, i.e. ������ � � ���	��
� 	 , with� 
 ��� ��� - � � - � -���-0��� . As per the orientation parameter,
the relationship is the following: ������ � � � 	 .
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Model evolution requires the computation of the energy
gradient. The energy partial derivatives computation is pre-
sented in this section for the border 8 : 8 � . Partial derivatives
are computed in the same way for the other borders.

Equation 10 computes the parameters
�

and � of the
potential 8 . Coordinates

�
and � are function of the five

rectangle parameters. Therefore, the partial derivatives of
energy

9: �
can be given as a function of these parameters

(Eq. 11). These derivatives are a combination of:! the potential gradients with respect to
�

and to � ,! the partial derivatives of
�

and � with respect to each
parameter (Eq. 11).
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The partial derivatives for the border 8 : 8 � are grouped
in the Jacobian matrix as the following:
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Partial derivatives for the three remaining borders can be
derived from Eq. 12 by means of a simple rotation of either� * ' or � . In the case of

� * ' rotations, parameters � and �
are exchanged. Equation 13 give the relationship between
one border and the function

�
.
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The potential function 8 is computed over the orthoim-
age. It must be minimum at the building borders and high
elsewhere. Therefore, we compute the reversed gradient
norm [6] on the orthoimage. Directional gradients are ob-
tained over the image of potential by applying the Gradient
Vector Flow [16]. This method smoothes the potential field
in order to set a gradient far away from the borders. Such a
method extends the borders power of attraction even if the
model is located far away from them.

Figure 4 shows different steps of the process. The top
left image presents the rectangular building estimation over
the orthoimage. The bottom right image illustrates the de-
formation process result. We can see, in this example, that
the method gives the correct parameters of buildings.

5. COMPLEX BUILDINGS

The buildings may not be rectangular, or may be a compo-
sition of rectangles (Fig. 5). We introduce an automatic
method which splits a blob into several rectangles. We want
to minimize the number of rectangles, the overlap between
rectangles and to maximize the size of rectangles. Therefore

Fig. 4. Evolution process

we split a blob in two regions only, using the orthogonal line
of inertia axis which includes the center of mass. Each re-
gion is then estimated by a rectangle. A global Hausdorff
measure is computed over the rectangles and the blob. The
goal is to have the highest global measure, and therefore
to optimize the splitting process. Specifically, we proceed
by translating the orthogonal line in the direction which in-
creases the region surface of the best rectangular estima-
tion. Again, the global Hausdorff measure is computed over
the optimized splitting process. If the measure is not high
enough, the splitting is repeated on the badly estimated blobs.
Further details on this method are given in [15]. Figure 6
shows that estimation results are improved by using this ap-
proach.

6. RESULTS

Figure 1a illustrates a vertical view of scene obtain from
DEM and several aerial images. Figure 1b shows above-
ground. The segmentation process leaves out the vegetation
except if they are closed to buildings.

Figure 9 give rectangle estimation for each above-ground
element. In figure 10 the rectangle estimation is superposed
on above-ground blobs.

Figure 2 illustrates rectangle selection by Hausdorff mea-
sure. We note that every bad estimation is rejected.

Figure 6 shows rectangle decomposition result for a com-
plex building.

In figures 7,8 we can see a 3D-reconstruction of the
scene with the orthoimage behaving as a texture.



Fig. 5. a. ortho-image b. above-ground c. rectangle estima-
tion c. comparison between rectangle estimation and blob

Fig. 6. Rectangle decomposition

Fig. 7. 3D reconstruction

7. CONCLUSION

This paper describes the processing of the DEM and or-
thoimage, i.e., the scene vertical view, for the extraction of

Fig. 8. 3D reconstruction

rectangular buildings as well as buildings which can be de-
composed in several rectangles.

The Hausdorff measure saves or rejects our estimation.
The design of a rectangular parametric model based upon
the orthoimage improves the estimation dimensions and lo-
calization.

These automatic processes shorten the operator work-
load, and compute, to a large extent, the 3D reconstruction
of buildings areas.
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