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Abstract

This paper presents a new method for extraction of
buildings in aerial images. We first present a method
based on rectangular buildings, which are the most
common constructions. We then extend this method
to more complex shapes by decomposition in a set of
rectangles. These rectangles are used to enhance a 3D
reconstruction of the digital elevation model (DEM).

Based on stereo data, we use the DEM and the or-
thoimage for a first segmentation of all areas at eleva-
tion above ground. We estimate the rectangle param-
eters over any given blob and define a criterion for
checking the similarity between shape and model. We
introduce a new approach for automatic reconstruction
of buildings of complex shapes using an iterative split-
ting of the region until it is covered by a set of rectan-
gles. This automatic process is successfully illustrated
on synthetic and real examples. In order to refine lo-
cation and size of the model, we present a deformable
rectangle template.

The final rectangle and complex shape models are
used together with elevation to obtain a 3D realistic
reconstruction of the scene including building models.

1 Introduction

Realistic models for 3D reconstruction of a scene
are increasingly needed in the civil as well as military
fields (virtual reality, infrastructure of telephony, im-
pact studies, video games,...). For example, authors of
[1] have presented automatic methods for terrain mod-
eling (ground, vegetation, buildings...) based on aerial
or satellite images. From this modeling and aerial im-
ages, the orthoimage, i.e, the vertical view of the scene,
is computed (Fig. 2-left). Image resolution is 0.4m per
pixel, and size is 2727x2333 pixels.

Automatic building modeling has proven to be a
difficult task. There has been active research on this
subject these last years [4]. Several works intend to
improve building rendering in the Digital Elevation
Models (DEM). Lin et al. [8] use perceptual grouping
to aggregate building edges. Vestri [10] improves accu-
racy of DEM by modifying the method of generation
by correlation especially on the building frontages.

Lee et al. [7] present a semi-automatic system to
generate 3D models with rectilinear hypotheses. This
system attempts to minimize the time and the number
of user interactions by defining rules to substract or
add rectangles to models. Kim et al. [6] make use of
multiple images to obtain complex models.

In our approach, we want to minimize the opera-
tor workload by making completely automatic the 3D
modeling of most buildings. Our approach has ad-
vantage above previous ones to use only DEM and
orthoimage, and to be less dependent on initial seg-
mentation of above-ground structures. Above-ground
structure extraction, like vegetation and construc-
tions, (see Fig. 2-middle) is carried out on the DEM
by the algorithms presented in [1, 11], and this pa-
per focuses on the processing after this step is com-
pleted. This work was included in building tools for
geographic site 3D reconstruction for various types of
data including maps (Fig. 1) and aerial images [11].

2 Extraction of Rectangular Buildings
Our first goal is to segment automatically all rect-
angle buildings from the aerial image. For each blob
of Fig. 2-middle, we first find the best matching rect-
angle and then compute a criteria to test whether the
blob is indeed a rectangle.
2.1 Rectangle Parameters
We intend to model each above-ground element by
a rectangle. A rectangle is completely defined by its
center of mass (X,,Y,), orientation 6, length L and
width I. We make an estimate of the size of the rectan-
gle by assuming the blob is a rectangle. The rectangle
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Figure 1: Left: map; right: 3D reconstruction with
regularization and constraints based on extracted data
from the map (level lines, roads,...).



Figure 2: Segmentation of Rectangular Buildings. Left, the ortho-image, middle, the above-ground areas, and
their rectangle approximation on the right, when criteria of similarity by Hausdorff measure is satisfied.

center of mass is the same as the above-ground blob.
The orientation 6 of the principal axis is computed
through the calculation of the second order moments:
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where the matrix of inertia M is made of the second
order moments and Ay and A_ are its eigenvalues.
From the expression of M as a function of 6, L, ¢, we
can show that

Ay =(L*=1)/12 and I_=(*-1)/12. (2)
Thus, for a given blob of eigenvalues A4, A_, the sizes
of the best rectangle are obtained by inversion of (2):

L=+12 ;1 +1 and [I=+/122_+4+1 (3)
In the case of a square, My, = My, and M, = 0,
so Eq. 1 gives no value for § and in fact all directions
are principal. However, L = [ are known, and the
orientation of the square shape is computed by using
best correlation between the radial signature of the
shape boundary and of a square with same size [11].
2.2 Similarity Criterion

As seen in middle of Fig. 2, some above-ground
blobs have not a shape similar to a rectangle. In
the following section, we introduce the criterion we
selected for the evaluation of our modeling.

The criterion of similarity that we look for, must
act as we do when we visually accept or reject an esti-
mate. Consequently, it must be based on a comparison
between sets. Based on hand made classification of a
large number of regions into three classes (rectangle,
non rectangle and questionable), we selected the Haus-
dorff measure among the criteria we studied [11]. For
this criteria, histogram of Hausdorff measure leaded
us to a clear threshold value of 0.85 for validating or
rejecting our estimate. This means that when our cri-
teria is above that threshold we consider the area as a
rectangle and keep its approximation by the rectangle
obtained above.

tan 260 =

Figure 3: Above from left to right: best rectangle for
a synthetic T-shape blob, splitting the blob through
the two axes of inertia, best rectangles for the two
regions obtained. Below, complex building shape.

The Hausdorff measure # is a comparison between
sets. It is equal to the ratio of the intersection
area of the two sets A4, B to the area of their union:
H(A,B) = ﬁﬁgg where #X is the area or number
of elements in the set X. When two sets are equal,
H(A,B) =1. On the contrary, as two sets tend to
differ, their intersection decreases whereas their union
increases, resulting in a Hausdorff measure close to 0.

Fig. 2-right illustrates selection by Hausdorff mea-
sure for blobs whose size is over 300 pixels. We note
that the selection is correct: all blobs that are not rect-
angular are rejected and only some blobs that could
be estimated by a rectangle are excluded.

3 Segmentation of Complex Buildings

This rectangular model for buildings is not always
sufficient, as shown in the example of Fig. 3. There-
fore we have introduced a new method that enables
to divide a shape into a set of rectangular shapes. We



Figure 4: Complex Buildings: for each example, we show from left to right the blob and its best rectangle match,
the initial split in two regions, and evolution of this splitting till reaching equilibrium.

want to minimize the number of rectangles and the
overlap between rectangles and to maximize the size
of rectangles. Therefore we split iteratively a blob in
two regions only and find the best way to split in order
to get at least one good rectangle.

The idea comes from the fact that assuming the
blob is a combination of two rectangles, if we cut the
shape through the center of inertia in the direction
orthogonal to its longer inertia axis, it is likely that
one of the two shapes thus obtained is a rectangle.
Therefore, as illustrated in Fig. 3, we propose a first
split for the whole blob with cutting line obtained by
the smaller eigenvalue axis of inertia. We have some
rules in order to have only two connected regions by
splitting, as in the example of the U shape of Fig. 4.
We denote by B the complete blob and B; and B; the
two parts of the blob as split by the chosen line. For
each blob, the best rectangles (noted R, R1 and Rs)
are obtained from the previous section.

A second step consists in sliding the splitting axis
along the orthogonal line in order to find the best place
to cut the blob. As assumed above, one of the two re-
gions should be similar to a rectangle, and we would
like to get this matching rectangle as large as possible.
A global Hausdorff measure is computed between the
union of the two matching rectangles and the com-
plete blob : H(R; U Ry, B). The goal is to have the
highest global measure, and therefore to optimize the
splitting process. Specifically, we proceed by translat-
ing the orthogonal line in the direction which increases
the area of the region with best rectangular estimate.
This means the rectangle for which H(R;, B;) is larger,

say R;. As shown in Fig. 3, the direction of the cut-
ting line is changed to be the axis of rectangle Ry,
which is much more precise than the axis of R. Once
the best value of the criteria is reached we freeze the
rectangle approximation Ry for the good blob B;. If
the global Hausdorff measure is not high enough, the
splitting is repeated on the badly estimated blob Bs.
This means we repeat the two steps starting by split-
ting B2 by a line and approach each sub-blob by a
rectangle. Further details are given in [11].

Fig. 4 shows the evolution of the process involved
for three examples and the final result for decomposi-
tion in rectangles. Fig. 5 shows real data results for
buildings of complex shapes.
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Figure 5: Complex buildings: examples with real data.

4 Refining the rectangular model
Previous computations result in a rectangle or a set
of rectangles per above-ground region. When a rectan-
gle is projected onto the orthoimage, its borders may
not fully fit the boundary of the building. This inaccu-
racy is the result of the DEM segmentation process as



Figure 6: Parametric model of a rectangular building

well as the DEM computation itself whose inacurracy
is worth a few pixels (up to 10 pixels) [1].

Fua’s work concerning netsnakes with hard-
constraints [3] results in 3D structure optimization
under constraints of horizontality, of verticality and
of right angle. However, the method requires the use
of several images, whereas we intend to use one im-
age only, i.e. the orthoimage. We use a deformable
rectangle template. This is a constrained parametric
version of active contours [5], as presented for exam-
ple by Yuille et al. [13]. In our case the template is a
rectangle defined by its five parameters: coordinates of
center X,,Y,, orientation § and sizes L and £. Vector
of parameters [a] = (X, Yy, 0, L, £)t defines the para-
metric model (Fig. 6), that evolves by minimizing an
energy defined on the four sides of the rectangle:

E =Ey + E» + Exs + Es (4)

where the vertices (X;,Y;) are indexed from 0 to 3.
Each term of energy is derived from a potential P
which is computed over the gradient of the orthoim-
age. This potential must be minimum at the building
edges and larger elsewhere.

By = /1 P(Xi + M(X; — Xi),Y; + A(Y; = Y)) dX (5)
0

Energy is minimized by means of gradient descent:
[ax]""" = [ax]" — aVE([ax]") (6)

where the initial set of parameters is obtained by pre-
vious section. As in [2], the descent increment is
computed at the beginning of the process such that
each parameter move is unitary at the first step, i.e.
a% = Aar =~ 1. For the orientation parameter,
the relationship is the following: “£Af ~ 1. Model
evolution requires the computation of the energy gra-
dient. The energy partial derivatives computation is
the same for each of the four sides of the rectangle.
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Figure 7: Constraints on the deformable model.

where X and Y are parametric representations of a
side of the rectangle as functions of parameters ay.
We refer to [11] for further details.

The potential function P is computed over the or-
thoimage. It must be minimum at the building bor-
ders and high elsewhere. Therefore, as in [5], we com-
pute the opposite of the gradient norm on the orthoim-
age. Directional gradients are obtained over the im-
age of potential by applying the Gradient Vector Flow
[12]. Due to holes in the gradient of some buildings,
gradient descent may fail and give a very small rect-
angle. We thus had to impose some constraints on
the model not to go out of the area included between
two rectangles inside and outside the initial rectan-
gle (Fig. 7-left). This was done by modifying the
potential outside this “permitted area” to attract the
rectangle model inside it. Also some extra “internal”
forces have to be added in order to deal with simul-
taneous evolution of a set of rectangles obtained for a
complex building. For example, vertices of rectangle
R are attracted by a side of Ry (Fig. 7-right).

Fig. 8 shows results of the deformable model. We
can see in this example that the method gives the cor-
rect parameters of buildings.

5 3D Reconstruction

One of the goals of this work is to obtain a precise
3D reconstruction of the scene including our models
for the buildings. Thus once we got a precise estimate
for buildings, we separate the surface reconstruction of
the ground and of the above-ground regions. For the
buildings, we use a parallelepiped model. The base
of this model is the rectangle we obtained from pre-
vious sections. The height of the parallelepiped is the
elevation averaged from the DEM on the initial blob.
Buildings are rendered by putting on the top the tex-
ture of the ortho-image and a gray color on the four
vertical sides of the buildings.

The ground surface is obtained using classical re-
construction with regularization [9]. The data is the
elevation obtained in the DEM with holes were left
(no data) at the location of above-ground blobs. The



Figure 8: From left to right : initial blob from DEM,
initial rectangle, and final result after minimzation.
Above the model is superimposed on the ortho-image.
Below we show the 3D rendering using the model (see
text). Compare the final result with the 3D rendering
of the raw blob without rectangle model

texture on the surface is the orthoimage gray level.

We show in Fig. 9 two views obtained from the data
of Fig. 2 and from an O-shaped building, including
the results of our method for rectangle and complex
buildings extraction. The complex building of Fig. 4-
above is shown in the middle right of Fig. 9-above.

Fig. 8 shows how it is important to get a precise lo-
cation of the rectangle model in order to have a faifth-
ful reconstruction. Fig. 8 shows the result of 3D ren-
dering of a rectangular building. We can see that the
blob and initial rectangle (as obtained from section 2)
give 3D renderings that are not acceptable views at
all. However, we see in the result image that the ini-
tial estimate was close enough to ensure a final result
that is perfectly located after energy minimization of
section 4. The 3D model of the building is very well
inserted in the ground surface and we get a realistic
view, as shown in Fig. 9.

6 Conclusion

We described in this paper the processing of the
DEM and orthoimage, i.e., the scene vertical view, for
the extraction of rectangular buildings as well as build-
ings which can be decomposed in several rectangles.

The Hausdorff measure was used to save or reject
our estimate. The design of a rectangular parametric
model based upon the orthoimage improves the preci-
sion of dimensions and localization.

These automatic processes shorten the operator
workload, and allow to compute, to a large extent,
realistic 3D reconstruction of buildings areas.

Figure 9: Two different 3D reconstructions of scenes
including rectangle and complex models.
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