Multiple Contour Finding and Perceptual Grouping
using Minimal Paths

Laurent D. Cohen
CEREMADE UMR CNRS 7534, Université Paris IX Dauphine,
Place du Marechal de Lattre de Tassigny, 75775 Paris Cedex 16, France
Tel : 33-1-44 05 46 78 Fax : 33-1-44 05 45 99 Email : cohenQ@ceremade.dauphine.fr

January 23, 2001

To appear in Journal of Mathematical Imaging and Vision, 2001.

Abstract

We address the problem of finding a set of contour curves in an image. We
consider the problem of perceptual grouping and contour completion, where
the data is a set of points in the image. A new method to find complete
curves from a set of contours or edge points is presented. Qur approach is
based on a previous work on finding contours as minimal paths between two
end points using the fast marching algorithm [5]. Given a set of key points, we
find the pairs of points that have to be linked and the paths that join them.
We use the saddle points of the minimal action map. The paths are obtained
by backpropagation from the saddle points to both points of each pair.

In a second part, we propose a scheme that does not need key points
for initialization. A set of key points is automatically selected from a larger
set of admissible points. At the same time, saddle points between pairs of
key points are extracted. Next, paths are drawn on the image and give the
minimal paths between selected pairs of points. The set of minimal paths
completes the initial set of contours and allows to close them. We illustrate
the capability of our approach to close contours with examples on various
images of sets of edge points of shapes with missing contours.

Keywords: Perceptual grouping, salient curve detection, active contours,
minimal paths, fast marching, level sets, weighted distance, reconstruction,
energy minimization.

1 Introduction

We are interested in perceptual grouping and finding a set of curves
in an image with the use of energy minimizing curves. Since their
introduction, active contours [10] have been extensively used to find the
contour of an object in an image through the minimization of an energy.
In order to get a set of contours of different objects, we need many active
contours to be initialized on the image. The level sets paradigm [13, 1]
allowed changes in topology. It enables to get multiple contours by
starting with a single one. However, these do not give satisfying results
when there are gaps in the data since the contour may propagate into
a hole and then split to many curves where only one contour is desired.

Multiple Contour Finding and Perceptual Grouping, L.D. Cohen, January 23, 2001

-,

AT g - -

Figure 1: Examples of incomplete contours

This is the problem encountered with perceptual grouping where a set
of incomplete contours is given. For example, in a binary image like the
ones in figure 1 with a drawing of a shape with holes and spurious edge
points, human vision can easily fill in the missing boundaries, remove
the spurious ones and form complete curves. Perceptual grouping is an
old problem in computer vision. It has been approached more recently
with energy methods [16, 9, 17]. These methods find a criteria for
saliency of a curve component or for each point of the image. In these
methods, the definition of saliency measure is based indirectly on a
second order regularization snake-like energy ([10]) of a path containing
the point. However, the final curves are obtained generally in a second
step as ridge lines of the saliency criteria after thresholding. In [18] a
similarity between snakes and stochastic completion field is reported.
Motivated by this relation between energy minimizing curves like snakes
and completion contours, we are interested in finding a set of completion
contours on an image as a set of energy minimizing curves.

In order to solve global minimization for snakes, the authors of [5]
used the minimal paths, as introduced in [12, 11]. The goal was to
avoid local minima without demanding too much on user initialization,
which is a main drawback of classic snakes [3]. Only two end points were
needed. The numerical method has the advantage of being consistent
(see [5]) and efficient using the Fast Marching algorithm introduced
in [15]. In this paper we propose a way to use this minimal path
approach to find a set of curves drawn between points in the image.
As a first step, a set of end points is assumed to be given. We also
introduce a technique that automatically finds the end points. This can
be also viewed as an extension of the minimal path approach by finding
automatically, based on construction of a minimal energy global map,
a set of key end points. In order to find a set of most salient contour
curves in the image, we draw the minimal paths between pairs of linked
neighbors selected among the key end points.

Multiple Contour Finding and Perceptual Grouping, L.D. Cohen, January 23, 2001

In our examples, the potential P to be minimized along the curves
is usually an image of edge points that represent simple incomplete
shapes. These edge points are represented as a binary image with small
potential values along the edges and high values at the background.
Such a potential can be obtained from real images by edge detection
(see [4]). The potential could also be defined as edges weighted by the
value of the gradient or as a function of an estimate of the gradient of
the image itself, P = g(||VI||), like in classic snakes. In these cases the
chosen function has to be such that the potential is positive everywhere,
and it has to be decreasing in order to have edge points as minima of
the potential. The potential could also be a grey level image as in [5].

The problems we solve in this paper are presented as follows:

e Minimal path between two points: The solution proposed in [5] is
reviewed in Section 2.

e Minimal paths between a given set of pairs of points is a simple
application of the previous one.

e Minimal paths between a given set of unstructured points: We
propose a way to find the pairs of linked neighbors and the paths
between them in Section 3.

e Minimal paths between an unknown set of point: Our main con-
tribution concerns the automatic finding of key points and the
drawing of minimal paths that leads to completed curves as pre-
sented in Section 4.

Finally, in Section 5, we conclude with possible extensions.

2 Minimal Paths and weighted distance

2.1 Global minimum for Active Contours

We present in this section the basic ideas of the method introduced in
[5] to find the global minimum of the active contour energy using min-
imal paths. The energy to minimize is similar to classical deformable
models (see [10]) where it combines smoothing terms and image features
attraction term (Potential P):

E(C)=/Q{w1||0'(8)||2+ ws||C" (5)[+P(C(s)) }ds (1)

where C(s) represents a curve drawn on a 2D image and €2 is its domain
of definition. For classic active contours, s may be any parameteriza-
tion of the curve while with a geometric model, s is the arclength,

Multiple Contour Finding and Perceptual Grouping, L.D. Cohen, January 23, 2001

L is the length of the curve and 2 = [0, L]. The authors of [5] have
related this problem with the recently introduced paradigm of the level-
set formulation. In particular, its Euler equation is equivalent to the
geodesic active contours [1]. The method introduced in [5] improves
energy minimization because the problem is transformed in a way to
find the global minimum. It avoids the solution being sticked in local
minima. It reduces the user initialization to giving the two end points
of the contour C. Let us explain each step of this method.

2.2 Problem formulation

Most of the classical deformable contours have no constraint on the
parameterization s, thus allowing the parameterization itself to be part
of the minimization. In [5], contrary to the classical snake model (but
similarly to geodesic active contours), s represents the arc-length pa-
rameter, which means that ||C'(s)|| = 1, leading to a geometric en-
ergy form. Considering a simplified energy model without the second
derivative term leads to the expression E(C) = [{w||C"||* + P(C)}ds.
Assuming that ||C’(s)]| =1 leads to the formulation

BO)= [{w+ PC))ds (2)

The regularization of this model is now achieved by the constant w > 0.
This term integrates as J,wds = w x L and allows to control the
smoothness of the contour (see [5] for details).

We now have an expression in which the internal energy can be included
in the external potential. Given a potential P > 0 that takes lower
values near desired features, we are looking for paths along which the
integral of P = P + w is minimal. The surface of minimal action U
is defined as the minimal energy integrated along a path between a
starting point py and any point p:

U(p) = inf E(C) = inf { / P(C(s))ds} (3)
-Apo,p -Apo,p Q

where A, , is the set of all paths between p, and p. The minimal
path between py and any point p; in the image can be easily deduced
from this action map. Assuming that potential P # 0 (this is always
the case for P), the action map has only one local minimum which is
the starting point pg. The minimal path is found by a simple back-
propagation, that is a gradient descent on the minimal action map U
starting from p; until py is reached. Thus, contour initialization is
reduced to the selection of the two extremities of the path. We explain
in the next section how to compute efficiently the action map U.

Multiple Contour Finding and Perceptual Grouping, L.D. Cohen, January 23, 2001

Figure 2: Finding a minimal path between two points. On the left, the potential
is minimal on the ellipse. In the middle, the minimal action or weighted distance
to the marked point. On the right, minimal path using backpropagation from the
second point.

2.3 Fast Marching Resolution

In order to compute this map U, a front-propagation equation related
to Equation (3) is solved:
oCc 1

ot ﬁﬁ' 4)
It evolves a front starting from an infinitesimal circle shape around pq
until each point inside the image domain is assigned a value for #. The
value of U(p) is the time ¢ at which the front passes over the point p.

The Fast Marching technique, introduced in [15], was used in [5]
noticing that the map U satisfies the Eikonal equation:

IVU|| =P and U(po) =0. (5)

Classic finite difference schemes for this equation tend to overshoot
and are unstable. An up-wind scheme was proposed by [15]. It relies
on a one-sided derivative that looks in the up-wind direction of the
moving front, and thereby avoids the over-shooting associated with
finite differences:

(max{u — Ui_1j,u — Ui114,0})* +
(max{u — Ui j—1,u — U j1, 0}? = Pz?,j’ (6)

giving the correct viscosity-solution u for ¢; ;. The improvement made
by the Fast Marching is to introduce order in the selection of the grid
points. This order is based on the fact that information is propagat-
ing outward, because the action can only grow due to the quadratic
Equation (6).

This technique of considering at each step only the necessary set of
grid points was originally introduced for the construction of minimum
length paths in a graph between two given nodes in [7].

Multiple Contour Finding and Perceptual Grouping, L.D. Cohen, January 23, 2001

Algorithm for 2D Fast Marching
e Definitions:

— Alive set: all grid points at which the action value U/ has been reached
and will not be changed;

— Trial set: next grid points (4-connexity neighbors) to be examined. An
estimate U of U/ has been computed using Equation (6) from alive points
only (i.e. from U);

— Far set: all other grid points, there is not yet an estimate for U;
o Initialization:

— Alive set: reduced to the starting point po, with U(po) = U(po) = 0;
— Trial set: reduced to the four neighbors p of po with initial value U(p) =
P(p) (U(p) = o0);
— Far set: all other grid points, with & = U = o0;
e Loop:

— Let p = (imin, Jmin) be the Trial point with the smallest action U;

— Move it from the Trial to the Alive set (i.e. U(p) = Ui, ;.. jmin iS frozen);

— For each neighbor (7, j) (4-connexity in 2D) of (imin, jmin):
* If (4,7) is Far, add it to the Trial set and compute U; ; using Eqn. 6;
* If (4, 7) is Trial, update the action U; ; using Eqn. 6.

Table 1: Fast Marching algorithm

The algorithm is detailed in Table 1. An example is shown in Figure
2. The Fast Marching technique selects at each iteration the Trial point
with minimum action value. In order to compute this value, we have
to solve Equation (6) for each trial point, as detailed in Table 5.

Thus it needs only one pass over the image. To perform efficiently
these operations in minimum time, the Trial points are stored in a min-
heap data structure (see details in [15]). Since the complexity of the
operation of changing the value of one element of the heap is bounded
by a worst-case bottom-to-top proceeding of the tree in O(log, P), the
total work is bounded O(P log, P) for the Fast Marching on a grid with
P nodes.

3 Finding multiple contours from a set of key points
Pk

The method of [5], detailed in the previous section allows to find a
minimal path between two endpoints. We are now interested in finding
many or all contours in an image. A first step for multiple contours
finding in an image is to assume we have a set of points pj; given on the
image and then find contours passing through these points. We will

Multiple Contour Finding and Perceptual Grouping, L.D. Cohen, January 23, 2001

discuss later how to define these points, in particular in Section 4. For
the moment we assume the points are either given by a preprocessing or
by the user. We propose to find the contours as a set of minimal paths
that link pairs of points among the p;’s. If we also know which pairs of
points have to be linked together, finding the whole set of contours is
a trivial application of the previous section. This would be similar to
the method in [8] which used a dynamic programming approach to find
the paths between successive points given by the user. The problem
we are interested in here is also to find out which pairs of points have
to be connected by a contour. Since the set of points p;’s is assumed
to be given unstructured, we do not know in advance how the points
connect. This is the key problem that is solved here using a minimal
action map.

3.1 Main ideas of the approach

Our approach is similar to computing the distance map to a set of
points and their Voronoi diagram. However, we use here a weighted
distance defined through the potential P. This distance is obtained
as the minimal action with respect to P with zero value at all points
pi- Instead of computing a minimal action map for each pair of points,
as in Section 2, we only need to compute one minimal action map in
order to find all paths. At the same time the action map is computed
we determine the pairs of points that have to be linked together. This
is based on finding meeting points of the propagation fronts. These
are saddle points of the minimal action /. In Section 2, we said that
calculation of the minimal action can be seen as the propagation of a
front through equation 4. Although the minimal action is computed
using fast marching, the level sets of U give the evolution of the front.
During the fast marching algorithm, the boundary of the set of alive
points also gives the position of the front. In the previous section,
we had only one front evolving from the starting point py. Since all
points py are set with U(px) = 0, we now have one front evolving
from each of the starting points py. In what follows when we talk
about front meeting, we mean either the geometric point where the
two fronts coming from different p;’s meet, or in the discrete algorithm
the first alive point which connects two components from different p;’s
(see Figures 3 and 4).

Our problem is related to the approach presented at the end of [5] in
order to find a closed contour. Given only one end point, the second
end point was found as a saddle point. This point is where the two
fronts propagating both ways meet. Here we use the fact that given
two end points p; and po, the saddle point S where the two fronts

Multiple Contour Finding and Perceptual Grouping, L.D. Cohen, January 23, 2001

starting from each point meet can be used to find the minimal path
between p; and p,. Indeed, the minimal path between the two points
has to pass by the meeting point S. This point is the point half way (in
energy) on the minimal path between p; and p,. Backpropagating from
S to p; and then from S to p, gives the two halves of the path. This
is in fact an approximation, due to some discretization error in finding
the meeting point S. If high precision is needed, a subpixel location
of saddle points can be made based on the final energy map. In order
to get the precise minimal path between the two points, we could also
backpropagate from the second point to the first as in Section 2, but
computation time would be then much increased.

3.2 Some definitions
Here are some definitions that will be used in what follows.

e For a point p in the image, we note i, the minimal action obtained
by Fast Marching with potential P and starting point p.

e X being a set of points in the image, Uy is the minimal action
obtained by Fast Marching with potential P and starting points
{p,p € X'}. This means that all points of X are initialized as alive
points with value 0 and all their 4-connexity neighbors are trial
points. This is easy to see that Ux = min,cx U,.

e The region Ry associated with a point py is the set of points p of the
image closer in energy to p; than to other points p;. This means
that minimal action U, < U,;,Vj # k. Thus, if X = {p;,0<j <
N}, we have Ux = U,, on Ry and the computation of Uy is the
same as the simultaneous computation of each i, on each region
Ry.. These are the simultaneous fronts starting from each py.

e The region index r is 7(p) = k,Vp € Rg. (Voronoi Diagram for
weighted distance).

e A saddle point S(p;, p;) between p; and p; is the first point where
the front starting from p; to compute U, meets the front starting
from p; to compute U,,; At this point, U, and U, are equal and
this is the smallest value for which they are equal.

e Two points among the p;’s will be called linked neighbors if they
are selected to be linked together. The way we choose to link two
points is to select some saddle points. Thus points p; and p; are
linked neighbors if their saddle point is among the selected ones.

Multiple Contour Finding and Perceptual Grouping, L.D. Cohen, January 23, 2001

Figure 3: Ellipse example with four points. On the left the incomplete ellipse as
potential and four given points; on the right the minimal action map (random LUT
to show the level sets) from these points.

3.3 Saddle points and Reconstruction of the set of curves

The main goal of our method is to obtain all significant paths joining
the given points. However, each point should not be connected to all
other points, but only to those that are closer to them in the energy
sense. In order to form closed curves, each point p, should not have
more than two linked neighbors. The criteria for two points p; and p;
to be connected is that their fronts meet before other fronts. It means
that their saddle point S(p;,p;) has lower action ¢ than the saddle
points between these points and other points p,. The fact that we limit
each p; to have no more than two connections makes it possible that
some points will have only one or no connection. This helps removing
some isolated spurious points or getting different closed curves not being
connected together. We illustrate this in the example of Figure 8 where
one of the py is not linked to any other point since all the other points
already have two linked neighbors. In case we also need to have T-
junctions, the algorithm can be used with a higher number of linked
neighbors allowed for each endpoint. A non symmetric relation may
also be used to link each point to the closest or the two closest ones,
regardless of whether these have already two or more neighbors. In the
exemple of Figure 8, such an approach would link the spurious points
with the circles. Postprocessing would be needed to remove undesired
links, based on high energy for example.

Once a saddle point S(p;, p;) is found and selected, backpropagation
relatively to final energy U should be done both ways to p; and to p;
to find the two halves of the path between them. We see in Figure

Multiple Contour Finding and Perceptual Grouping, L.D. Cohen, January 23, 2001

Figure 4: Zoom on saddle points between two key points.

5 this backpropagation at each of the four saddle points. At a saddle
point, the gradient is zero, but the direction of descent towards each
point are opposite. For each backpropagation, the direction of descent
is the one relative to each region. This means that in order to estimate
the gradient direction toward p;, all points in a region different from R;
have their energy put artificially to oc. This allows finding the good
direction for the gradient descent towards p;. However, as mentioned
earlier, these backpropagations have to be done only for selected saddle
points. In the fast marching algorithm we have a simple way to find
saddle points and update the linked neighbors.

As defined above, the region Ry associated with a point py is the set
of points p of the image such that minimal energy U, (p) to py is smaller
than all the U, (p) to other points p;. The set of such regions Ry, covers
the whole image, and forms the Voronoi diagram of the image (see
figure 5). All saddle points are at a boundary between two regions. For
a point p on the boundary between R; and Ry, we have U, (p) = Uy, (p)-

10

Multiple Contour Finding and Perceptual Grouping, L.D. Cohen, January 23, 2001

Figure 5: Ellipse example with four points. On the left the saddle points are found,
and backpropagation is made from them to each of the two points from where the
front comes; on the right, the minimal paths and the Voronoi diagram obtained.

The saddle point S(pk,p;) is a point on this boundary with minimal
value of U, (p) = Uy, (p). This gives us a rule to find the saddle points
during the fast marching algorithm.

Each time two fronts coming from p; and p; meet for the first time,
we define the meeting point as S(pk, p;). This means that we need to
know for each point of the image from where it comes. This is easy to
keep track of its origin by generating an index map updated at each
time a point is set as alive in the algorithm. Each point p, starts
with index k. Each time a point is set as alive, it gets the same index
as the points it was computed from in formula (6). In that formula,
the computation of U; ; depends only on at most two of the four pixels
involved. Following notations of Table 5, this means the neighbor points
Ay and B;. These two pixels have to be from the same region, except
if (¢,7) is on the boundary between two regions. If A; and B; are both
alive and with different indexes 7 and j, this means that regions R; and
R; meet there. If this happens for the first time, the current point is
set as the saddle point S(p;, p;) between these regions. A point on the
boundary between R; and R; is given the index of the neighbor point
with smaller action A;. At the boundary between two regions there
can be a slight error on indexing. This error of at most one pixel is not
important in our context and could be refined if necessary.

3.4 Algorithm

The algorithm for this section is described in Table 2 and illustrated
in figures 3 and 5. When there is a large number of p;’s, this does not

11

Multiple Contour Finding and Perceptual Grouping, L.D. Cohen, January 23, 2001

Algorithm with previously defined py
e Initialization:

— pg’s are given

— Vk,V(pr) = 0; R(pr) = k; ps alive.

— Vp ¢ {pr},V(pr) = o0; R(p) = —1; pis far except 4-connexity neighbors
of pi’s that are trial with estimate U using Eqn. 6.

e Loop for computing V' = Uyp, o<k<ny:

— Let p = (imin, Jmin) be the Trial point with the smallest action U;

— Move it from the Trial to the Alive set with V(p) = U(p);

— Update R(p) with the same index as point A; in formula (7) (see ap-
pendix). If R(A;) # R(B:) and we are in case 1 of table 5 where both
points are used and if this is the first time regions R(A1) and R(B1) meet,
S(Preay),Pr(B,)) = P is set as a saddle point between pr(4,) and pr(p,)-
If these points have not yet two linked neighbors, they are put as linked
neighbors and S(pr(4,),Pr(B;)) = P is selected,

For each neighbor (%, j) (4-connexity) of (4min, jmin):
* If (i,7) is Far, add it to the Trial set and compute U using Eqn. 6;
* If (i,7) is Trial, recompute the action U; ;, and update it.

e Obtain all paths between selected linked neighbors by backpropagation each
way from their saddle point (see Section 3.3).

Table 2: Algorithm of Section 3

change much the computation time of the minimal action map, but this
makes more complex dealing with the list of linked neighbors and saddle
points. This may generate more conflicting neighbor points, and due to
the constraint of having at most two linked neighbors, some gaps may
remain between contours. The method can be applied to a whole set
of edge points or points obtained through a preprocessing. This was
actually our first step in this work ([2]). However, choosing few key
points simplifies the computation of saddle points and linked neighbors
and the geometry of the paths. When there are few key points, they
are not too close to each other. Finding all paths from a given set
of points is interesting in the case of a binary potential defined, like
in Figure 3, for perceptual grouping. It can be used as well when a
special preprocessing is possible, either on the image itself to extract
characteristic points or on the geometry of the initial set of points to
choose more relevant points. In what follows we give a way to find
automatically a set of key points.

12

Multiple Contour Finding and Perceptual Grouping, L.D. Cohen, January 23, 2001

4 Finding a set of key points p

The problem is now, given a potential, finding automatically a set of
points p; that can be used as start and end points for the minimal path
approach. This way a set of most representative curves would be found
in the image. The way endpoints are linked together is similar to the
previous section, except we determine the set of endpoints during the
minimal action computation. We will see below that the method we
propose here has two advantages. First, it avoids computing the energy
map to a point when it is not useful. This permits to have much lower
computation time for the final energy map (P log, P multiplied by an
order less than log N, with N the number of key points). Second, we
need to store only one energy map, which means each point has only one
value of the energy kept. In order to make “classical” backpropagation
between all pairs of points, we would have to store and manage with the
whole set of energy maps for all points p;. We propose below a variation
of the algorithm of section 3, which dynamically adds key points and
updates the minimal action map. Once the set of key points is found,
the final result is the same as in Section 3, but only one computation is
needed, and we do not need a second step running algorithm of Section
3 with the found pjs.

4.1 Algorithm

The main idea is to find iteratively new points on the image and say
that two points have to be linked by a minimal path if the fronts starting
from these points meet before they meet any other front. As before,
in order to get closed curves, we look for two linked neighbors for each
point. This means that each key point is linked by a minimal path to
at most two key points.

In order to find the next key point, we look for the highest energy
point among a subset of admissible points. This point is the most far
in energy from the previously obtained key points. The main algorithm
is described in Table 3 and detailed in the next sections.

4.2 Admissible points

The set A of admissible points should contain all points that are likely
to be on the curves we are looking for. These are defined as local minima
of the potential P in the general case. For a binary potential defining
a set of contour points, as we usually have for perceptual grouping, A
is included in the set of contour points. In order to limit the number
of admissible points, we add the condition on a smoothed version of

13

Multiple Contour Finding and Perceptual Grouping, L.D. Cohen, January 23, 2001

Algorithm with automatic selection of py
e The set A of admissible points is defined in section 4.2;
o Initialization:
— po is chosen among the admissible points (see 4.2)
- W= upo
e Loop: px,Vk,0 < k < n being known:
— Let pp+1 be the admissible point with the highest value of action Vj;

— Compute Vi1 = Uy, 0<k<n+1}. From this definition, computation is
made easier since Vi, +1 = min(V,, Uy, .,). Fast Marching is limited to the
points where V,4+1 < V,, (see Section 4.3).

— Update the set of saddle points (see Section 4.4).

— Stopping criteria: If sup 4 V41 < Ty or if n > Nyao, where Ty and N
are given thresholds.

o Select the saddle points.

e Obtain all paths between selected linked neighbors by backpropagation from
their saddle point according to the final energy map Vv (see Section 4.4).

Table 3: Main algorithm

the gradient of the potential to be large enough. This is to impose two
kinds of properties:

e If the set of points contains thick curves, this keeps only points
that are on the boundary.

e This removes spurious isolated edge points

In order to start the algorithm, a first admissible point py has to be
chosen. This can be done either by the user, or at random, or taking
the first of the list. In case we do not want the user to give the initial
point, we can use a random point py only in order to define the next
point p; obtained by the algorithm. And then we start again removing
the previous py and replacing it by p;. This avoids to get a point in
the middle of an open curve. This gives preference to points that are
at ends of a curve. Another possible interaction with the user could be
to give a region of interest in the image, where the admissible points
will be constrained to be. Thus the user has only to circle roughly an
object in order to get its contours. A priori information on the grey
level of the object or the background (for example vessels in medical
applications or roads in aerial images) can also be used as a way to
define the set of admissible points.

14

Multiple Contour Finding and Perceptual Grouping, L.D. Cohen, January 23, 2001

Figure 6: Ellipse example: successive partial map computation for five points. From
left to right, line 1: potential, admissible points, found key points, saddle points,
final paths and voronoi diagram; line 2: successive partial maps for the 5 key points
and final map; line 3: the same with random color map to visualize level sets.

4.3 Fast Marching and partial map computation

For the first point py, the fast marching described in section 2.3 is used
to compute Vjy = U,,. For the following points py, the same fast march-
ing could be used to obtain V;, 1 = Uy, o<k<ns1y With pp,0 <k <n+1
as initial alive points with value 0, as in Section 3. However, it is
not necessary to compute the whole map again. In order to estimate
Va+1, we need to compute U, ., only for those points that have a value
smaller than the previously obtained energy map V/,. In the fast march-
ing algorithm, each time a point p has to be put as alive with a value
U(p), it is compared to the previous map V,. If V,(p) > U(p), the
point is put as alive with value V,1(p) = U(p) = U,,,,(p), and its
neighbors are updated as usual in Table 1. In case V,,(p) < U(p), the
point is put as alive with values V,,11(p) = Vi(p), and U(p) = oo and
no update is done on its neighbors. This is a way to stop propagation
around this point. This makes the whole propagation stop as soon as
we passed over all points that are closer in energy to p,;; than to the
other previous py.

Therefore, the computation of the whole map does not cost much
more than computation of the fast marching a few times over the image
(a rough estimation is log N times, with N the number of p;’s instead

15

Multiple Contour Finding and Perceptual Grouping, L.D. Cohen, January 23, 2001

Figure 7: Curve example: same as in Figure 6 with successive partial map compu-
tation for four points.

- . .
I I) . D
e = E W

Figure 8: Two circles; From left to right: potential, key points and final paths.

of N times in case we would recompute the map at each step). Thus
the computation time of this step is not too much dependent on the
number of key points. We see in Figure 6 an example of running this
algorithm on the ellipse image. Notice the order in which the points py
were chosen. The first py is on the top of the ellipse. In consequence
the second point p; is on the bottom. Then py, and p3 are on right and
left. On the second and third rows of the figure, we show the partial
map computation, that is the set of pixel for which a new value of
minimal action was computed. For such a simple example, we see in
the energy map to the first point p, that the second key point is in fact
the saddle point between py and itself. Notice that this saddle point
would be enough to find the complete ellipse through backpropagation
both ways to pp as we did for finding a closed curve in [5]. In the
second example, on Figure 7, the two extreme points on right and left
are found first and then the two in the middle.

16

Multiple Contour Finding and Perceptual Grouping, L.D. Cohen, January 23, 2001

Figure 9: The saddle point between p; and ps is not a saddle point anymore when
it becomes included in region Rj.

4.4 Finding the Saddle points

In the fast marching algorithm, as we modified it in the previous section,
we have a simple way to find and update the linked neighbors and saddle
points. The definition and criteria for finding a saddle point is the same
as in the algorithm of Section 3. However, since we add key points at
each step, some saddle points detected earlier are not saddle points
anymore. So we have to check each time a saddle point is set as alive
in a new region. It is then removed from the set of saddle points (see
Figure 9). This comes from the fact that this point is no more on the
boundary of the previously obtained regions. Often, the new key point
added was itself a saddle point, and it is also removed from the set of
saddle points.

Since the saddle point between two key points may change during
the algorithm, it is easier to define the selected saddle points only at
the end, once all key points are known.

We see in Figures 6 and 7 results on simple curves for the determi-
nation of key points and their selected saddle points. In both cases,
the paths that are obtained correspond to the completed curve that
have filled in the holes. Figure 8 illustrates the capacity of our method
to deal with a contour image including spurious points and more than
one curve. In the example of Figure 10, more complex data is taken
and we show the results with 30 and 40 key points. We see that the
main contours are the same, the completed large square and a set of
other curves. The result gives a simplified and completed set of con-
tour curves. We see in this example that limiting the number of linked
neighbors to at most two linking paths can change the way the con-

17

Multiple Contour Finding and Perceptual Grouping, L.D. Cohen, January 23, 2001

Figure 10: Complex exemple: From left to right, line 1: potential, final paths with
energy as grey level and final paths with 30 key points; line2: same with 40 key
points.

tours are completed. We show in this figure the energy of the found
paths. Each time we compute a path between two points p; and p;,
we know the saddle point S(pi,p;) and its energy Vy. This energy is
in fact equal to the cost of the path which links S(pg,p;) to py and
to pj. Therefore the energy of the path between p, and p; is equal to
2V (S(pk,pj))- The smaller this energy is, the more reliable the path
can be considered. It could be a criteria to choose the best curves if
necessary in more complex images as in [16]. Notice in Figure 10 that
you can only compare the energy of different paths in the same image,
but the two images are not represented with the same color map.

We show in figure 11 an application of our approach combined with the
saliency map of [9]. In such an example, the given dots are too few to
enable finding the circle as a minimal path. Indeed, taking two oppo-
site points on the ellipse, the minimal path between them will not be
along the ellipse but rather along a straight line. By passing through
low potential points (in black) along the circle, the path will also pass
through more high potential points (background in white). Thus ap-
plying the method of [9] gives a saliency map that is much more dense
than the original image. Taking the saliency map as potential, our ap-
proach allows finding the whole circle as a set of minimal paths between
points determined automatically. The set of admissible points here can

18

Multiple Contour Finding and Perceptual Grouping, L.D. Cohen, January 23, 2001

Figure 11: Finding a set of minimal path using a saliency map as potential. From
left to right, original data, saliency map, ridge lines and minimal paths.

Figure 12: Our method permits to find a path inside the labyrinth. On the left the
potential is obtained by reverse video from the contour potential of Figure 10. In
the middle, we require two py’s and on the right three.

be either the initial set of points of the original image or the set of
points obtained by a threshold on the saliency map. We can also find
the ellipse by looking for ridge curves on the saliency map but there
are many spurious ridge curves obtained.

We summarize the ideas of sections 4.3 and 4.4 in Table 4, giving
details of the main algorithm that were omitted in Table 3.

5 Perspectives and Conclusion

We presented a new method that finds a set of contour curves in an
image. It was applied to perceptual grouping to get complete curves
from a set of noisy contours or edge points with gaps. The technique
is based on previous work of finding minimal paths between two end
points [5]. However, in our approach, we do not need to give the start
and end points as initialization. In a first method, we assume given a
set of key points, and we found the pairs of key points that had to be
linked by minimal paths. In a second method, the set of key points
is automatically extracted from a set of admissible points, which can
be the whole set of edge points. At the same time this set of points
is obtained, saddle points between pairs of points are found. Once
this set is obtained, paths are drawn on the image from the selected

19

Multiple Contour Finding and Perceptual Grouping, L.D. Cohen, January 23, 2001

Details of the Loop in Algorithm of Table 3
e Extra Initialization:
— R(po) =0
— Vp #po, R(p) = -1
e Loop: pk, Vk,0 < k < n being known:

— Let pn4+1 be the admissible point with the highest value of action Vj;
remove pn+1 from the set of saddle points.

— Compute Vyy1 = min(Vy,Up, ,,). Fast Marching is initialized again to
compute Uy, ,, as in Table 1 but limited to the points where V41 < V..
We start with V41 = V,,. Loop:

* Let p = (4min, Jmin) be the Trial point with the smallest action U;

* Move it from the Trial to the Alive set;

* If U(p) < Va(p), set Vot1(p) = U(p), update R(p) = n+1. Ifp
is a saddle point, remove it from the set of saddle points. For each
neighbor (7, j) (4-connexity in 2D) of (imin, jmin):

- If (4,4) is Far, add it to the Trial set and compute U using Eqn.
6;
- If (4, 4) is Trial, recompute the action U;,;, and update it.

* If U(p) > Va(p), set Voy1(p) = Va(p), U(p) = oo, no update on
R(p) and linked neighbors is needed and no trial point is added. If
this is the first time that region n + 1 meets region of index R(p),
S(Pr(p); Pn+1) = p is set as a saddle point between pg(,) and pnt1.

e For each point keep as selected only at most the two linked neighbors for which
the saddle points have smaller energy.

Table 4: Partial Fast Marching algorithm with saddle points update

saddle points to both points of each pair. This gives the minimal paths
between selected pairs of points. The whole set of paths completes the
initial set of contours and allows to close these contours.

The algorithms described in this paper apply to various potentials
as well. This is only the definition of admissible points that may be
different and adapted to each application. We show in Figure 12 an
example of a “labyrinth” potential. The potential is small in the black
area, and high along contours. Contours act in this example as barri-
ers that stop the front propagation. Finding a minimal path between
given end points would find the path inside the labyrinth as shown for
example in [15, 6]. We show the resulting paths by asking to find auto-
matically successively two and three key points. Our method enables
to find automatically paths inside the labyrinth without even giving
any start or end points. Thus it can be similarly applied to find edges
or significant lines in real images.

20

Multiple Contour Finding and Perceptual Grouping, L.D. Cohen, January 23, 2001

Acknowledgements

This works started with the end of DEA project of Frédéric Claudel [2]
and was continued in part with the DEA project of Benjamin Mauroy

14].

I thank them for their work at CEREMADE during summers of

1998 and 1999 respectively. Thanks also to Frédéric Sur for his help
with Figure 11. I would like to thank Ron Kimmel for all his help with
this paper and the reviewers for their useful suggestions to improve this

paper.

References

1]
2]

3]

[4]

[5]

[6]

7]

8]

V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours.
International Journal of Computer Vision, 22(1):61-79, 1997.

Frédéric Claudel. Extraction de contours implicites dans des im-
ages par des méthodes énergétiques. Technical report, CERE-
MADE, Septembre 1998. Rapport de DEA et Ecole Centrale,

proposé et dirigé par Laurent Cohen.

Laurent D. Cohen. On active contour models and balloons. Com-
puter Vision, Graphics, and Image Processing: Image Understand-
ing, 53(2):211-218, March 1991.

Laurent D. Cohen and Isaac Cohen. Finite element methods
for active contour models and balloons for 2-D and 3-D images.
IEEFE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-15(11):1131-1147, November 1993.

Laurent D. Cohen and R. Kimmel. Global minimum for active
contour models: A minimal path approach. International Journal
of Computer Vision, 24(1):57-78, August 1997.

T. Deschamps and L.D. Cohen. Minimal paths in 3D images and
application to virtual endoscopy. In Proc. sixth Furopean Confer-
ence on Computer Vision (ECCV’00), Dublin, Ireland, 26th June
- 1st July 2000.

E. W. Dijkstra. A note on two problems in connection with graphs.
Numerische Mathematic, 1:269-271, 1959.

D. Geiger, A. Gupta, L. Costa, and J. Vlontzos. Dynamic program-
ming for detecting, tracking, and matching deformable contours.
IEEFE Transactions on Pattern Analysis and Machine Intelligence,
17(3), March 1995.

21

Multiple Contour Finding and Perceptual Grouping, L.D. Cohen, January 23, 2001 22

9] G. Guy and G. Medioni. Inferring global perceptual contours
from local features. International Journal of Computer Vision,
20(1/2):113-133, October 1996.

[10] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes:
Active contour models. International Journal of Computer Vision,
1(4):321-331, January 1988.

[11] R. Kimmel, A. Amir, and A. Bruckstein. Finding shortest paths
on surfaces using level sets propagation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-17(6):635-640,
June 1995.

[12] R. Kimmel, N. Kiryati, and A. M. Bruckstein. Distance maps and
weighted distance transforms. Journal of Mathematical Imaging
and Vision, 6:223-233, May 1996. Special Issue on Topology and
Geometry in Computer Vision.

[13] R. Malladi, J. A. Sethian, and B. C. Vemuri. Shape modeling with
front propagation: A level set approach. IEEE Trans. on PAMI,
17(2):158-175, february 1995.

[14] Benjamin Mauroy. Chemins minimaux en analyse d’images. Tech-
nical report, CEREMADE, Septembre 1999. Rapport de DEA,
proposé et dirigé par Laurent Cohen.

[15] J. A. Sethian. Level Set Methods: Ewvolving Interfaces in Geom-
etry, Fluid Mechanics, Computer Vision and Materials Sciences.
Cambridge Univ. Press, 1996.

[16] A. Shaashua and S. Ullman. Structural saliency: The detection of
globally salient structures using a locally connected network. In
Proc. Second IEEE International Conference on Computer Vision
(ICCV’88), pages 321-327, December 1988.

[17] L. R. Williams and D. W. Jacobs. stochastic completion fields: a
neural model of illusory contour shape and salience. In Proc. Fifth
IEEE International Conference on Computer Vision (ICCV’95),
pages 408-415, Cambridge, USA, June 1995.

(18] L. R. Williams and D. W. Jacobs. Local parallel computation of
stochastic completion field. In Proc. IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition (CVPR’96),
San Francisco, USA, June 1996.

Appendix A : Algorithm for 2D Up-Wind Scheme
Notice that for solving Equation (6), only alive points are considered.

Multiple Contour Finding and Perceptual Grouping, L.D. Cohen, January 23, 2001

This means that calculation is made using current values of ¢ for neigh-
bors and not estimate U of other trial points. Considering the neigh-
bors of grid point (4, j) in 4-connexity, we note {A;, A2} and {By, By}
the two couples of opposite neighbors such that we get the ordering
Z/{(Al) S Z/{(AQ), U(Bl) S U(BQ), and M(Al) S U(Bl) Considering
that we have u > U(B;) > U(A;), the equation derived is

(u—U(A)* + (u — U(BL))* = P} (7)

Computing the discriminant A of Equation (7) we have the steps de-
scribed in table 5.

1. e If A >0, u should be the largest solution of Equation (7);
— If the hypothesis u > U(B1) is wrong, go to 2;
— If this value is larger than /(B:), this is the solution;

e If A < 0, B; has an action too large to influence the solution. It
means that u > U(By) is false. Go to 2;

Simple calculus can replace case 1 by the test:

1bis. If P;; > U(B1) — U(A1),

U(B1)+U(AL)++ /2P, —(U(B1)—U(A1))2
= ! - \/ o ! " is the largest solution of Equa-

tion (7)
else go to 2;

2. Considering that we have u < U(Bi1) and u > U(A1), we finally have
w=U(A1)+ P ;.

Table 5: Solving locally the upwind scheme

Technical Biography of the Author

Laurent D. Cohen was born in 1962. He was student at the Ecole
Normale Supérieure, rue d’Ulm in Paris, France from 1981 to 1985.

Multiple Contour Finding and Perceptual Grouping, L.D. Cohen, January 23, 2001

He received the Master’s and Ph.D. degrees in Applied Mathematics
from University of Paris 6, France, in 1983 and 1986, respectively.
From 1985 to 1987, he was member at the Computer Graphics and Im-
age Processing group at Schlumberger Palo Alto Research, Palo Alto,
California and Schlumberger Montrouge Research, Montrouge, France
and remained consultant for a few years with Schlumberger afterwards.
He began working with INRIA, France in 1988, mainly with the medi-
cal image understanding group Epidaure.

Since 1990, he is Research Scholar with the French National Center
for Scientific Research (CNRS) in the Applied Mathematics and Image
Processing group at CEREMADE, University Paris-Dauphine, Paris,
France. His research interests and teaching at the university are appli-
cations of variational methods and Partial Differential Equations to Im-
age Processing and Computer Vision, like active contours, deformable
models, minimal paths, surface reconstruction, Image registration, Im-
age segmentation and restoration.

