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Abstract

We address the theoretical problems of optical flow estimation and image
registration in a multi-scale framework in any dimension. Much work has been
done based on the minimization of a distance between a first image and a sec-
ond image after applying deformation or motion field. Usually no justification
is given about convergence of the algorithm used. We start by showing, in
the translation case, that convergence to the global minimum is made easier
by applying a low pass filter to the images hence making the energy “convex
enough”. In order to keep convergence to the global minimum in the general
case, we introduce a local rigidity hypothesis on the unknown deformation.
We then deduce a new natural motion constraint equation (MCE) at each
scale using the Dirichlet low pass operator. This transforms the problem to
solving the energy minimization in a finite dimensional subspace of approx-
imation obtained through Fourier Decomposition. This allows us to derive
sufficient conditions for convergence of a new multi-scale and iterative mo-
tion estimation/registration scheme towards a global minimum of the usual
nonlinear energy instead of a local minimum as did all previous methods. Al-
though some of the sufficient conditions cannot always be fulfilled because
of the absence of the necessary a priori knowledge on the motion, we use an
implicit approach. We illustrate our method by showing results on synthetic
and real examples in dimension 1 (signal matching, Stereo) and 2 (Motion,
Registration, Morphing), including large deformation experiments.

Keywords: motion estimation, registration, optical flow, multi-scale, mo-
tion constraint equation, global minimization, stereo matching

1 Introduction

Registration and motion estimation are one of the most challenging
problems in computer vision, having uncountable applications in var-
ious domains [17, 18, 7, 1, 13, 28]. These problems occur in many
applications like medical image analysis, recognition, visual servoing,
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Figure 1: Finding the motion in a two-dimensional images sequence

stereoscopic vision, satellite imagery or indexing. Hence they have con-
stantly been addressed in the literature throughout the development of
image processing techniques. As a first example (Figure 1) consider the
problem of finding the motion in a two-dimensional images sequence.
We then look for a displacement (hy(z1, z2), ha(x1,22)) that minimizes
an energy functional:

[ [ 11(.9) = L(a + (. 9),y + ho(. ) *dady.

Next consider the problem of finding a rigid or non rigid deformation
(f1(x1,22), fo(x1,22)) between two images (Figure 2), minimizing an
energy functional:

[ [ 11@,9) = B(i(w,), fo(w,9)) Pdady.

At last consider the stereoscopic matching problem: given a stereo pair
(Figure 3), the epipolar constraint allows to split the two-dimensional
matching problem into a series of line by line one-dimensional match-
ing problems. One has just to find, for every line, the disparity h(z)
minimizing:

/ II(z) — L(z + h(z))[?dz.

Although most papers deal only with motion estimation or matching
depending on the application in view, both problems can be formulated
the same way and be solved with the same algorithm. Thus the work
we present can be applied both to registration for a pair of images to
match (stereo, medical or morphing) or motion field / optical flow for
a sequence of images. In this paper we will focus our attention on
these problems assuming grey level conservation between both signals
or images to be matched. Let us denote by I;(x) and I(x) respectively
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the study and target signals or images to be matched, where x € D =
[-M, M]¢ ¢ IR*, and d > 1. In the following I, and I, are supposed
to belong to the space C;(D) of continuously differentiable functions
vanishing on the domain boundary 0D. We will then assume there
exists a homeomorphism f* of D which represents the deformation
such that:

Il(.Z') = IQ 9 f*(.fﬂ), Vx e D.

In the context of optical flow estimation, let us denote by h* its asso-
ciated motion field defined by A* = f* — Id on D. We thus have:

Li(z) = L(x + h*(x)). (1)
h* is obviously a global minimum of the nonlinear functional
1
Eni(h) = 5 /D I1.(z) — Iy(z + h(z))dz. 2)

We can deduce from (1) the well known Motion Constraint Equation
(also called Optical Flow Constraint):

I (z) — I(z) ~< VIy(z),h*(x) >, Vz € D. (3)

Enp is classically replaced in the literature by its quadratic version
substituting the integrand with the squared difference between both
left and right terms of the MCE, yielding the classical energy for the
optical flow problem:

Ey(h) = % [ 11(z) = @)~ < Vh(z), h(z) > Pds.

Here V denotes the gradient operator. Since the work of Horn and
Schunk [17], MCE (3) has been widely used as a first order differential
model in motion estimation and registration algorithms. In order to
overcome the too low spatio-temporal sampling problem which causes
numerical algorithms to converge to the closest local minimum of the
energy Ey;, instead of a global one, Terzopoulos et al. [23, 28] and
Adelson and Bergen [6, 27] proposed to consider it at different scales.
This led to the popular coarse-to-fine minimizing technique [18, 10, 13,
24, 14]. It is based on the remark that MCE (3) is a first order expansion
which is generally no longer valid with h* searched for. The idea is
then to consider signals or images at a coarse resolution and to refine
iteratively the estimation process. Since then many authors pointed out
convergence properties of such algorithms towards a dominant motion
in the case of motion estimation [12, 10, 11, 20, 5, 15], or an acceptable
deformation in the case of registration [13, 24, 25|, even if the initial
motion were large. Let us mention that many authors assume that
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Figure 2: Finding a non rigid deformation between two images

Figure 3: Finding Correspondence in a Stereo pair with epipolar constraint

deformation fields have some continuity or regularity properties, leading
to the addition of some particular regularizing terms to the quadratic
functional [17, 9, 28, 2, 4]. This very short state-of-the-art is far from
being exhaustive but it allows to raise four common features shared by
all most effective differential techniques:

1. a motion constraint equation,
2. a regularity hypothesis on the deformation,
3. a multi-scale approach,

4. an iterative scheme.

However, most of the multi-scale approaches assume that the MCE is
more “valid” at lower resolutions. But to our knowledge and despite the
huge literature, no theoretical analysis can confirm this. It may come
from the fact that flattened signals or images are always “more similar”.
Choosing a particular low pass filter I1, (here o > 0 is proportional to
the number of considered harmonics in the Fourier decomposition) and
a deformation f = Id+ h satisfying some local rigidity hypothesis with
respect to a signal or image I;, we shall find a linear operator P!
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depending on I; such that:
I, (I, - I) ~ PP (h), (4)

the sharpness of this approximation being decreasing with respect to
both A norm and resolution parameter o. We are faced with the fol-
lowing motion size/structure hypothesis trade-off: for some fixed esti-
mation reliability, the larger the motion, the poorer its structure. This
transforms the problem to solving the energy minimization in a finite
dimensional subspace of approximation obtained through Fourier De-
composition. In this context we are led to consider the new energy to
be minimized:

EL(h) = %/D \H(,(I1 — I o(Id+ h)—l) — PI'(h)|*dz.

Considering general linear parametric motion models for A*, we give
sufficient conditions for asymptotic convergence of the sequence of com-
bined motion estimations towards h* together with the numerical con-
vergence of the sequence of deformed templates towards the target Is.
Roughly speaking, the shape of the theorem will be the following:
Theorem: If

1. at each step the residual deformation is “locally rigid”, and the as-
sociated motion can be linearly decomposed onto an “acceptable”
set, of functions the cardinal of which is not too large with respect
to the scale,

2. the initial motion norm is not too large, and the systems condi-
tionings do not decrease “too rapidly” when iterating,

3. the estimated deformations Id + h; are invertible and “locally
rigid”,

Then the scheme “converges” towards a global minimum of the energy
ENL-
The outline of the paper is as follows. In Section 2 we show the en-
ergy convexifying properties of multi-scale approaches together with
fast convergence of iterative algorithms for the estimation of purely
translational motion in any dimension. In Section 3 we turn to the
general motion case and introduce a new local rigidity hypothesis and
a low pass filter in order to derive a new MCE of the type of equation
(4). In Section 4 we design an iterative motion estimation/registration
scheme based on the MCE introduced in Section 3 and prove a con-
vergence theorem. In order to avoid the a priori motion representation
problem, we try successively two different approaches for the numer-
ical resolution. We first use a level sets approach in Section 5, that
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Figure 4: Test Signal. The second signal is the same shifted by 200.
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Figure 5: Energy as a function of shift parameter. There are numerous local minima
around the global minimum at x = 200 at scale 7.

does not prove tractable nor robust. In Section 6 we adopt an implicit
approach and constrain each estimated deformation Id + h; to be at
least invertible. We show numerical results for some signals and the
stereo problem in dimension 1, and for large deformations problems in
dimension 2. Section 7 gives a general conclusion to the paper.

2 Purely translational motion estimation

In this section we assume the motion to be found is only translational.
This simple case will allow us to show the energy convexifying proper-
ties of multi- scale approaches together with fast convergence of itera-
tive algorithms.

2.1 Synthetic 1D energy convexifying example

Consider a test signal (Figure 4) and its purely translated copies. The
energy given by the mean quadratic error between shifted test signals
and considered as a function of the translational parameter can be con-
vexified using signals at a poorer resolution. Indeed we show the energy
as a function of the translation parameter calculated with original test
signals (Figure 5) and with same signal at a poorer resolution (Figure
6), namely signals reconstructed with only 5 and 3 first harmonics of the
Fourier base. This readily yields more and more convexified energies as
the resolution is lower. Based on this convexifying property, a generic
algorithm for estimating the translational parameter is as follows:

1. Find the finest resolution j for which the energy is convex enough.

2. Minimize the energy with signals at resolution j.
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Figure 6: Same energy with signals reconstructed with only 5 harmonics (left) and
3 harmonics (right) using the multiresolution pyramid spanned by the first elements
of the Fourier base.

3. Refine the result by increasing the resolution and minimizing the
new energy.

2.2 The one dimensional case

Let us introduce some useful notations and technical hypothesis:
e I, and I, belong to C} (D),
e D=[-M,M],

e h* satisfies |h*| < dist(Supp(l3),0D), where dist denotes the
Hausdorff distance between two sets of points, Supp(l5) denotes
the set of points where I, is different from zero, and 0D denotes
the boundary of D,

o I1(z) = Iy(x + h*), for all z € D.
The problem we are faced with writes:
(P) : Find h = argminy, |11 (z) — L(x + h)]|3,

where L? denotes the space of summable squares functions over D.
We now define the multiresolution pyramid considering the sequence of

spaces
V; = span{ex(z) = ﬁe’”’”ﬂ”, -9 <k <2}

Let us denote II; the projection operator of L? onto V;. The linearized
problem in V; writes:

(PL;): Find W = argminy, E;(h) = ||I1(z) — Ix(z) — Ié(a:)h”%
Our first result will be the
Lemma 1 If |||y, # 0, then
<IL(5), (11 = I) >y,
13117, ’

and if |h*| < My then we have: |hi — h*| < I,

hi =



M. Lefébure, L. D. Cohen, January 23, 2001

Proof. See Appendix. |
To iterate the estimation process we introduce some notations: let

hY = 0, Ly(z) = Lr(z), and, for each L > 0, h¥ = argmin, ||I;(z) —

Lyp1(z) = Iy 1 (2)Bf3,, and L1 (7) = L(z + o i%) As a result we
have the

Theorem 1 If ||I5]|y, # 0 and |h*| < 34z, the algorithm converges in
the sense that, when L — oo,

Yo hl — h*, and I, — I uniformly.

Proof. See Appendix [

Remark. Calculating the translation parameter h* is not considered to
be a difficult task using the classical phase method. This only illustrates
theoretical performance of a multiresolution algorithm in a simple case.

2.3 Generalization to dimension d > 1
Notations in this context are to be understood as follows:
e D now becomes [—M, M]% in IR®.
e I,,, I»,, I, are functions from IR? to IR.
e h, h* are vectors in IR?.
e < .,.> denotes the scalar product in IR?.
e [.,.] denotes the scalar product in L2.

Once again and for technical reasons we assume that I; and I, be-
long to C}, and I;(z) = Lz + h*), = € D, h* € IR% and that
dist(Supp(lz),0D) > |h*|, where 0D denotes the border of D. Let
also consider extended versions of I; and I, by continuity to the whole
space IR?, in order that the expression bounding I; to I, be meaningful
if x + h* ¢ D. The problem now writes:

(P) h = argmin, || I1(z) — L(z + h)|12,

Consider a set of approximation spaces for the problem, given by
the following definition:

Definition 1 Let i be the chosen component index. We denote by V;
the sequence of vector sub-spaces of L? defined by:
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Vi = vect{ey(z) = (QMI)d/ze’i”k“/M,k =-2/,.,0,..,27}.

For each space V;j, we denote by Hg the operator from L* into L*
mapping each function f to its reconstruction I f with its Fourier co-
efficients cx(f), |k| < 27:

I f(x) = k<2 ce(fen().

Practically, we will have 2M samples in each direction, and we can
therefore limit the problem study to its approximation in V; spaces,
where j is implicitly bounded by inequality 1 + 2/1 < 2M.

Let us call (PL) the problem associated to MCE: Find

h = argmin ||I(z) — I(x)—< VIy(z),h > |72,
heR?

and (PL{) the problem embedded in V7, j > 1:

(PLY): Find h! = argminy ||I(2) — L(z) — 8L (2) ]2

J
Vi

where 0;1; denotes the partial derivative of I, w.r.t. component index
1. A straightforward result similar to the previous one is given in

Lemma 2 If ||0;15|,s > 0, then

v M(0), T (I — I)]

-
Z 10: 2[5, ’
3

and if |h}| < 57, then we have:

~. h*
-y < L @
2
Proof. 1t is exactly the same as in the one dimensional case. [

Remark. As a first consequence, if ||0;15]|s = 0, then it has no sense
to estimate the translation parameter in this direction (aperture prob-
lem). In that particular case we will assume that it is null, and a zero
value will then be given to its estimator.

We can see that if we replace I, by Iy (z) = L(z + hi), then
the hypotheses of last Lemma will be satisfied again for ||8Z-IQ,1||V5 =

||61[2||VJ >0 and:

Aj * |h; ] M M
|hi — hi| < 55 < 57 < g
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Figure 7: Test image on the left. The second image is the same translated with
parameter (100,100). Translation parameters are found exactly without the need
for scales greater than 1.

Figure 8: On the left, test image with 50% pixels corrupted by a Gaussian additive
noise. The second image is the same before adding noise, then translated by a
(100,100) shift, and finally also corrupted by the same type of noise.

We can therefore find

A

h't = arg mhin | I1(z) — I (z) — aifg,l(x)hﬂfﬂ,

1

and the Lemma allows to show that the sequence of functions I ;,(z) =
L(z + XF , hit) converges uniformly towards I; (See Appendix).

We show in figures 7 to 9 some numerical results of two-dimensional
purely translational motion estimation and registration. In Figure 8,
yielded translation parameter is (99.03,99.07). Surprisingly we note
that during the iterative process, the estimated translation parame-
ter was best estimated before reaching the finest resolution, and then
became less precise.

3 General motion multiresolution estimation

In Section 2 we have considered only purely translational motion esti-
mation and registration. Our purpose here is to take over the general
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case for the motion. We will first try to take some distance with what
was done in the past concerning differential models and establish the
need and the means of a constructive approach. Our approach is based
on the fact that the motion is hidden in the difference between both
functions to be matched. This will lead us to analyze this difference
at some particular resolution. Making some assumptions on the struc-
ture and local behavior of the motion and the type of scale-space, we
will find a new MCE and show that we can control the sharpness of it,
which has not been taken care of previously.

3.1 Controlling the residuals when mixing differential and
scale-space techniques

Using a regularizing kernel G, at scale o, Terzopoulos et al. [23, 28]
and Adelson and Bergen [6] were led to consider the following modified
MCE:

Gy, * (I — L) (z) < G, * VIy(z), h* (x) >

Remark. One could also consider regularizing both left and right terms
of the original MCE, yielding the following alternative:

Gy # (I — L) (z) = G, * (< VI, h* >)(x)

At finest scales it can be shown that these two propositions are equiv-
alent.

To our knowledge and despite the huge literature on these approaches,
no theoretical error analysis can be found when such approximations are
done. However it has been reported from numerical experiments that
the modified MCE was not performing well at very coarse scales, thus
betraying its progressive lack of sharpness. Assuming a local rigidity
hypothesis and adopting the Dirichlet operator II,, we will find a dif-
ferent right hand side featuring a “natural” and unique linear operator
P!t in the sense that:

o (I = I) () = P, (") (2), (8)

Figure 9: Registration with Gaussian additive noise. From left to right the four
first iterations of the process at scale 1. We come up with a translation parameter
of (99.66,100.07).

11
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with remainder of the order of ||h*||?

vanishing as the scale is coarser.

for some particular norm and

3.2 Local rigidity property

In this paragraph we introduce our local rigidity property of deforma-
tions.

Definition 2 f € Hom(D) is é-rigid for I € CY(D) iff:
Jac(f)'.VI, = det(Jac(f)) VI, 9)

where Jac(f) denotes the Jacobian matriz of f and det(A) the determi-
nant of matriz A, and Hom(D) the space of continuously differentiable
and invertible functions from D to D (homeomorphisms).

All &-rigid deformations have the following properties (see [19] for
the proofs). Assume f* is &-rigid for I; € C3(D) and I} = I, o f*.
Then,

1. equation (9) is always true if dimension d is 1;
2. foralld > 1,

(a) ||VILi||zr = ||V Is||z:, where L' denotes the space of integrable
functions over D;

(b) VI, /] VI o f*.
(c) relation ~ defined by
[Iy ~ o] <= [3f &-rigid for I} s.t. I} = I o f]
is an equivalence relation on C}(D);
3. suppose d = 2: then,
(a) if Jac(f*) is symmetric, then (9) means that if |[VI;| # 0,

e direction n = |§2| is eigenvector (A = det(Jac(f) is an
eigenvalue);
1
e direction & = |VVI;1‘ is “rigid” (A =1 is an eigenvalue);

This property can be seen as a non-sliding motion property.
We illustrated this interesting property in Figure 10, where
we show a level set of I;, and a motion h = f — Id of a &-
rigid deformation f for image I;. h can vary only along the
direction of V1.

12
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Figure 10: An example of motion h = f — Id of a &-rigid deformation f for image
I;. We show a level set of image I;, and the fields VI; and h along its boundary.
h varies only along the direction of VI;.

(b) k(1) = [Tr(Jac(f*))—det(Jac(f*))].k(I2)o f*, where x(I)(x)
stands for the curvature of the level line of I passing through
x and Tr(A) denotes the trace of matrix A;

4. if d =1 or 2, and

e h* is known at
— 1 point (d =1).
— each isolated critical point of I; and at one interior point
of each connected constant set of I; (d = 2).

e h = h* at this(ese) point(s), and
L =Lo(Id+h)on D,

then for all z € D where [; is not locally constant we have h(z) =

h*(z).

Remark. 1t is an important issue to know whether such A* is unique.
In case d € {1,2}, property 4 leads to uniqueness if A* is known at
some isolated points. Though it is not proved in the general case, we
will assume uniqueness hereafter for simplicity.

As a consequence we can show that £-rigid deformations of signals or
images can be transferred to test functions. Indeed, we have the fol-
lowing

Lemma 3 Suppose that
1. I and I € C}(D) are such that: I; = Iy o f
2. f is E-rigid for I
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8. ¢ € C°D;R), and ® € C®(D;R?Y) s.t. div® = ¢, where
C>®(D; IR) denotes the space of indefinitely differentiable function
from D to IR.

Then, [,(I1 — L)¢dr = [, < VI;,Po0 f — D > dz.

Proof. See Appendix |

3.3 The Dirichlet operator

One choice for the set of test functions in Lemma 3 is the Fourier basis,
the simplest projection onto which is the Dirichlet projection operator.
Let D = [-M,M]% S, = {k € Z% Vi € [1,d], |ki| < Mo?}; cx(I)
denotes the Fourier coefficient of I defined by:

1 in<lk,x>
c(l) = I(x)e” M (dz.
{0 = Gp7 J, 1@

Then the Dirichlet operator I1, is the linear mapping associating to each
function I € C}(D) the function II,(I) = G, * I, where the convolution
kernel G, is defined by its Fourier coefficients as follows:

1lifke S,
0 elsewhere

cx(Go) = {

3.4 New MCE by Linearization for the Dirichlet projection

Now that we have introduced our rigidity property of deformations and
the Dirichlet projection, let us choose the test functions of Lemma 3 in
the Fourier basis. We obtain the

Lemma 4 If f* = Id+ h* is £-rigid for I, = Iy o f*, with I, Is both
in C}, then

1
C()(Il — _[2) = ECO(< V_ll,h* >) (10)
and, for k #0, cx(l1 — 1) =
M —in<k,h*>/M

Proof. If k = 0, we take ®(z) = Zz, which yields the expected ¢(z) =
div(®(z)) = 1. If k£ # 0, then we must find ® such that div(®(z)) =

14
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P(z) = emin<ka>/M Fortunately in this case we have an explicit solu-
tion which is given by ®(x) = %#e*wr<k,w>/M. -

Now taking the linear part of the jet of e “"<k:#">/M _1 with respect
to h*, and setting:

Leo(< VI, h* >) if k=0
a(PI(h) = § o(STk2) it k€ 5, /{0}
0ifk &S,

we obtain the

Theorem 2 If f* = Id + h* is £-rigid for [, = I o f* € Cy(D), then
we have:

s 1
T, (1 = I2) — Py (R[> < §0d+2||h*\V11\§||%2-
This inequality is nothing but the sharpness of MCE (8):
o (I = I)(w) = P, (h*) (x), (12)

at scale 0. It clearly expresses the fact that measuring the motion (e.g
perceiving the optical flow) h* is not relevant outside of the support of
VL.

Proof. See Appendix |

4 Theoretical iterative scheme and convergence the-
orem

In section 3 we found a new MCE and showed that we can control the
sharpness of it. In this section we will make a rather general assump-
tion on the motion in the sense that it should belong to some linear
parametric motion model without being more specific on the model ba-
sis functions. Though it is somewhat restrictive to have motion fields in
a finite dimensional functional space, this structural hypothesis will be
a key to bounding the residual motion norm after registration in order
to iterate the process. This makes it possible to consider a constraint
on motion when there is a priori knowledge (like for rigid motion) or
consider multi-scale decomposition of motion for an iterative scheme.

4.1 Linear parametric motion models and least square esti-
mation

Let us assume the motion h* has to be in a finite dimensional space of
deformation generated by basis functions ¥(x) = (¢;(x))i=1.,- Thus A*

15
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can be decomposed in the basis: 3 ©* = (6});-1.,, unique, such that:

B (z) =< U(z),0" >=)_ 0:¢;(z), Vo € Supp(|VIL|).

i=L.n
MCE (8) viewed as a linear model writes:
I, (I, — I,) =< P"(¥),0* > .
Now set, for o s.t. the P*(¢;) be mutually linearly independent in L?:
M, = PI'(0) @ PL (W), Y, =11,(I, — L)),

where ® stands for the tensorial product in L?. Then applying ba-
sic results from the classical theory of linear models yields: h =<
U, 0 >=< \I!,Ma_lBg >, where column B,’s components are defined
by (By)i =< PI'(), Y, >.

4.2 Estimation error and residual motion

Given the least square estimation of the motion of last paragraph, we
have

Lemma 5 In this framework the motion estimation error is bounded
by inequality

N . 1 m _ 3 * L
(R — h)|VI|7 || < §0d+2(Tr(M01)))2”h |VI1|2||%2.

Proof. See Appendix [ |

If Id + h is invertible, we can define:
Ly=To(Id+h) . (13)
LettiI}g r1 denote the residual motion such that I ; = Iy o (Id 4 ry), if
Id + h is &-rigid for I; then a variable change yields equality
b= B VL 2 = |V s B2,

thus giving by Lemma 5 the following bound on the residual motion
norm:

||V I

1
Hloe < o™ (Tr(M ) WV (14)

In view of equality (13) and inequality (14), iterating the motion es-
timation /registration process looks completely natural and allows for
pointing out sufficient conditions for convergence of such a process. In-
deed, provided the same assumptions are made at each step, relations
(13) and (14) can be seen as recurrence ones, yielding both 7, and I,
sequences.
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4.3 Theoretical iterative scheme

Having control on the residual motion after one registration step, we de-
duce the following theoretical iterative motion estimation / registration
scheme:

1. Initialization: Enter accuracy € > 0 and the maximal number of
iterations N. Set p =0, and I, = ;.

2. Iterate while (||[[1, — || > e & p < N)

(a) Enter the set of basis functions ¥, = (1/,,i)i—1..n, that linearly
and uniquely decompose r, on the support of |V ,|.

(b) Enter scale o, and compute: h, =< W, M, B,, > .
(c) Set Iy py1 = I po (Id+ hy) L.

4.4 Convergence theorem

Now that we have designed an iterative motion estimation / registra-
tion scheme, let us infer sufficient conditions for the residual motion to
vanish. This leads us to state our following main result:

Theorem 3 If:

1. Forallp >0, I, ~ I (as defined in Section 3.2), and the residual
motion r, can be linearly and uniquely decomposed on a set of basis

functions {1, =1..n,};

2. For all p > 0, there exists a scale 0, > 0 such that the set of
functions {Pf;”’(wp,i),i = 1..n,} be free in L* and, for p = 0, we
assume that :

1 ™ 1\ —1
|h*|V I |2 |2 < (gag”Tr(MOm)z) :

-1
Set Co = (208 (Mo go) 2 ||0* |V 11 |3]|22)

3. The sequence of conditioning ratios satisfy criteria:
1

d+2

o Tr(Myi1 2
Vp > 0, ”*im( riiep)? o
op Tr(Mp,ap)?

4. For all p > 0, the estimated deformations Id + }Azp € Hom(D) and
are §-rigid for I p;

Then, lim, o |||V 11, ?|| 22 = 0.

Proof. See Appendix [ |
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4.5 Numerical algorithm requirements

Firstly, due to the fact that h* is unknown we have to make an arbitrary
choice for the scale at each step. Secondly we at least have to ensure
that Id + h be invertible at each step. Finally we are faced with the
motion basis functions choice.

4.5.1 Multi-scale strategy

The scale choice expresses both a priori knowledge on the motion range
and its structure complexity. Here we assume that (o,), is an increasing
sequence, starting from o > 0 such that:

#S,, > #{expected independent motions}. (15)

Then let « €]0, 1[. In order to justify the minimization problem at new
scale 0,41 > 0,, we will choose it such that:

1oy = TLo) (Bgis = B2l > ol gis = Bollzz,  (16)

4.5.2 Invertibility of Id + h,

Let 3 > 0. We will apply to I, the inverse of the maximal invertible
N
linear part of the computed deformation e.g. (I d+ t*.hp) , Where

t* = sup {t / det(Jac(Id + t.h,)) > B}. (17)

te[0,1]

RemarRecursive version of the algorithm

Set f*(Iy, I3) the solution to the correspondence problem between I
and I,. Then, f*(I p, I,) = f*(I1 py1, Is)o(Id—+hy,). We thus deduce the
following alternate recursive motion estimation / registration function
f*(I1, 1) defined by:

((If ||I, — L > e,

Calculate h(Ty, I)

Deform: I ; = I o (Id + h(Iy, I)) ™
Call f = f*(L1, )

Return fo (Id+ h(I3, 1))

| Else return Id

{ Then

18
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4.5.3 Choosing the set of basis functions

A major difficulty arising in the theoretical scheme comes from the
lack of a priori knowledge on the finite set of basis functions to be
entered at each step. To alleviate this problem we propose two different
approaches. In Section 5 we will consider splitting both signals or
images into a collection of pairs of level sets to be matched, whose
basis functions are simple Dirac measures in dimension 1, and vector
curves in dimension 2. In Section 6 we will use an implicit approach
via the optimal step gradient algorithm when minimizing the quadratic
energy associated to MCE (8).

5 Level sets approach of basis functions

In Section 4 we derived a theoretical iterative scheme and established
a convergence theorem. In order to implement the proposed algorithm
we at each step have to choose a finite dimensional motion model. In
this section we consider splitting both signals or images into a collection
of pairs of level sets to be matched, whose basis functions are simple
Dirac measures in dimension 1, and vector curves in dimension 2. In-
deed, using the level set decomposition of signals and images, we show
that the energy minimization is equivalent to a series of independent
distance minimizations between characteristic functions of the level sets
of both signals or images. We design a procedure that achieves motion
estimation and registration grey level by grey level. At each grey level
the motion of the borders of the level sets is estimated recursively.
The initial matching problem can be split into a collection of inde-
pendent sub- problems: for each A € {I;(z)/z € D} C IR, solve:

min IX{m>A1 () = Xipeay (@ + B(2))]|7:,

where x denotes the characteristic function.
Indeed, if I, = I, o f, then the level sets of I; and I, o f can be
superposed. Conversely, we have:

|6 = Lo fli3 = [ 1) - ko f(z)da,
D
+o0o )
- /D(/*oo X122} (T) = X{120) Of($)|d/\) dx.

Now set:

a = min(inf I, inf I5) and b = maz(sup I1, sup I).
D D D D
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Figure 11: From top to bottom, we show I», then Iy = Iy o f*, f*, f, then the error
percentage between f and f*, and finally I o f.

We can deduce (see Appendix) that:

+o0
|l — Lo f||2: < (b—a) /_||X{112A} — X{L>a} © fllZ2dN.

Consequently if the level sets can be superposed for almost each A,
then functions are almost everywhere equal.

As characteristic functions vary only at the borders of connected
components, we shall estimate the motion only at the borders of the
connected components of the grey level A sets {I; > A} of I;.
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5.1 The one-dimensional case

In that case we only have to estimate the motion at the borders of
each of the chosen level sets, so the unknown is a set of reals that are
the amplitudes of the borders motions. Left and right borders of each
component are asked to remain in the same order.

We illustrate our algorithm on a pair of 1D synthetic signals (Figure
11).

5.2 The two dimensional case

Here we suggest to proceed to the registration of characteristic functions
of the level sets. In this context, we have the following

Proposition 1 The operator kernel KerPXA # {0} for some of the
open sets A C IR? satisfying the necessary and sufficient condition of
the Conformal Representation Theorem of Riemann whose conformal
application does not imply any local nor global rotation (See [19] for the

proofs).

This shows that the choice of the base functions remains a hard issue
in this approach. However, we have tested our algorithm using trans-
lational and normal base functions.

Numerical results

We first show two synthetic examples of motion estimation and regis-
tration of shapes. Each figure shows the motion of a grey shape which
is deformed iteratively to match the second shape represented by its
contour. In the first example (Figure 12) we show a Chinese symbol
that is translated towards the final contour. In the second example
(Figure 13) we show a disk being translated and enlarged to match the
final contour.

As a conclusion to this section, we suggest using it only in case the mo-
tion is rather uniform or can be modelled with translational and normal
basis functions. Finally let us emphasize on its lack of robustness in
the presence of noise.

6 Implicit approach of basis functions

In Section 5 we have shown the limitations of the level sets approach
to alleviate the motion model choice for the motion estimation / regis-
tration scheme of Section 4. Here we suggest to use the optimal step
gradient algorithm for the minimization of the quadratic functional as-
sociated to MCE (8). There are at least two good reasons for doing
this:

21



M. Lefébure, L. D. Cohen, January 23, 2001

Figure 12: Iterations 1, 7, 13, 19, 25 and 30 of the algorithm for the registration of
a Chinese symbol.

O @ ©

O O O

Figure 13: Tterations 1, 2, 3, 4, 5 and 6 of the algorithm for the registration of a
translated and reduced disk.

e the choice of base functions is implicit: it depends on the signals
or images I; and I, and the scale space.

e we can control and stop the quadratic minimization if the associ-
ated operator is no longer positive definite.

The general algorithm does not guaranty that the resulting matrix
M, , be invertible. Hence we suggest to systematically use a stopping
criteria to control the quadratic minimization, based on the descent
speed or simply a maximum number of iterations Ng.

In that case our final algorithm writes:

1. Initialization: Enter accuracy ¢ > 0 and the maximal number
of iterations N. Set p = 0, I; o = I;, and choose first scale oy
according to (15).

2. Iterate while (|1, — I]| > e & p< N & 0, < 1)
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(a) Choose o, satisfying (16).

(b) Apply Ng iterations of the optimal step gradient algorithm
for the minimization of

Ey(h) = 1o, (I, — 1) = P# (R)][7:.

(c) Compute I, = Iy, o (Id + t*.h,) " with t* defined by (17)
and increment p.

In the following experiments we have fixed parameters to a = 2.5%,
Ng =5, 3 =0.1.

6.1 Running the 1 dimensional algorithm

In the following we show results on one-dimensional synthetic and real
signals, and then with all intensity lines of a stereo pair of synthetic
images with some progressively added Gaussian noise.

e 1D signal Matching: We show 1D synthetic and real examples
in Figure 14. Recall that {-rigidity is not a constraint when d = 1
and thus hy is relevant only when |I](z)| # 0.

e Stereo Correspondence: Since we use a synthetic pair of rec-
tified images, epipolar lines are the lines of the images. Image
matching is then solved as a sequence of 1D line matchings. In
this case, ground truth disparity A* is available. We see the
results in Figures 15 and 16. The Mean Weighted Quadratic
Error (indicated at top of each graph as EQPM) is defined as

MWQE = [[|8; L[|l — h*|[[32/18: 1 1.

6.2 Running the 2 dimensional algorithm

We illustrate the algorithm on pairs of images with large deformation
for registration applications and movies for motion estimation applica-
tions.

e Registration problems involving large deformation: In fig-
ures 17 and 18 we show the different steps of the algorithm per-
forming the registration between the first and last images. In
Figures 19 to 21, we show the study and target images, and the
deformed study image after applying the estimated motion. This
was applied for two examples of faces and a turbulence image fea-
turing a vortex at two different states.
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e Optical Flow estimation examples: in Figure 22 we show the
sequence of the registered images of the original Cronkite sequence
onto first image using the sequence of computed backward mo-
tions. The result is expected to be motionless. On top of Figure
23, we show the complete movie obtained by deforming iteratively
only the first image of Cronkite movie. For that we use the se-
quence of computed motions between each pair of consecutive im-
ages of the original movie. In Figure 23 on the bottom, we see the
error images.

7 Conclusion

We have addressed the theoretical problems of motion estimation and
registration of signals or images in any dimension. We have used the
main features of previous works on the subject to formalize them in a
framework allowing a rigorous mathematical analysis. More specifically
we wrote a new ridigity hypothesis that we used to infer a unique Mo-
tion Constraint Equation with small remainder at coarse scales. We
then showed that upon hypotheses on the motion norm and struc-
ture/scale tradeoff, an iterative motion estimation/registration scheme
could converge towards the expected solution of the problem e.g. the
global minimum of the nonlinear least square problem energy. Since
each step of the theoretical scheme needs a set of motion basis functions
which are not known, we have first implemented a level sets approach,
that prove not tractable nor robust. We then designed an implicit algo-
rithm and illustrated the method in dimension one and two, including
large deformation examples.
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Figure 14: 1D synthetic (left) and 1D real (right) examples: from top to bottom

we show signals I1, I, (final deformation of I;), I, I1,.c — I> and Boo (final
deformation function).
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Figure 15: Stereo example: From left to right: noise free data experiments, and
then with data corrupted by a Gaussian additive noise with variance 10 and 100.
From top to bottom we show images I;, I o, that was processed line by line, I»
and Ao (shown only if [9;I1| > 2, 5 and 12 resp.). We see that this disparity image
has lower values (grey level) for points that are at the end of corridor.
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Figure 16: Comparison with ground truth disparity for the stereo example of Figure
15: Mean Weighted Quadratic Error (indicated at top of each graph) distributions
as a function of the horizontal spatial gradient of I; for the stereo example with
noise level 0 (top), 10 (middle) and 100 (bottom). Motion estimation errors are
concentrated at low horizontal gradients of I;, and diffuse to broader values as
noise increases.

Figure 17: Registration movie of a rotated rectangle: from left to right and from top
to bottom we show the different steps of the algorithm performing the registration.

cccccce

CCCCCC

Figure 18: Registration movie of a target to a ’C’ letter. Again, each image corre-
sponds to a step in the iterative scheme.
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Figure 19: Scene registration example: Study image (left), deformed Study image
onto Target image (center), and Target image (right).

Figure 20: Registration of a face with two different expressions: Study image (left),
deformed Study image onto Target image (center), and Target image (right).

Figure 21: Registration of a vortex at two different states: Study image (left),
deformed Study image onto Target image (center), and Target image (right).
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Figure 22: Registered sequence of the original sequence onto first image using the
computed backward motions.
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Figure 23: On top, movie obtained by deforming only the first image of Cronkite
movie using the sequence of computed motions. On the bottom, enhanced (applying
I' = 255.(1—4/1/255)) absolute difference between original and artificially deformed
Cronkite sequences.
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Proofs of Theorems
Proof of Lemma 1
Zero crossing the derivative of E; with respect to h, we necessarily
obtain:

- <L), IL;(I = I3) >v,
h = 1112
15317,
After simplification, we find:
i M Ejy<2i k|cx (Ip)|?sin(mkh* /M)
@ Yikj<2i K2 en(l2) 2

Writing the difference [/ — h*|, the mean inequality yields:

k<o k¥ ox (L) 2|k ) — |

> lk|<2i k? ek (I2)[?

But, for all z, Wehavel—%—QSSi"T(:”)§1.
Finally, |h*| < 347 and |k| < 27 imply that

(b7 — B[ < |

3

sin(mkh* /M 1 wkh* 2
|—( , / )—1|_ (=)<
mkh* M 6 M 2

>~
l\Dl»—x

<

Proof of Theorem 1
After L iterations, we have:
|ZIL:0 h*‘ < 23+L+2

The series }% then converges towards h*. Eventually, as

L ~
11(z) = Io(z + > hj)llo
=0

L ~
= ||L2(z + h*) = Iy(z + Z R |loo

N M ||f Al
< ||I£||00|h Zhl‘ < j+L+;o’

we conclude that the functions sequence I 1,(z) = L(z + Y1, l%)
uniformly converges towards u.
Proof after Lemma 2 in subsection 2.3

35



M. Lefébure, L. D. Cohen, January 23, 2001 36

garanties that, for all i,

Wl — R R M
< < — .
2 - 4 T Qitl+2

6,1 ' *
|hi" + hi — Bi| <
Let hi0 = hi. We iterate, and, at step L, we have:
L
- M
]7l *
|Zhi - hi‘ < W

Thus the sequence of general term hg’l converges towards h;. Finally,
as

113 (2) = L@ + g )l
= Lz +h*) = Lz + Zize )]s

< IV Lo|oo|h* = T B
< MVd|[V I oo
= J+LT2

we can conclude that the sequence of functions Iy . (z) = L(z+X 1, hgal)
converges uniformly towards ;.

Proof of Lemma 3

Applying Green formula yields:

/Ilqﬁd:v:/ 11<<1>,ﬁ>dz—/ < VI, ® > dr,
D oD D

in which the boundary term disappears because we chose I; € C} (D).
The same holds for I, and yields [, Ihg¢dr = — [, < VI, @ > dx.
Now changing the integration variable z by y with z = f*(y), we have
[p < VI, ® >dr= [, <VIyof* ®o f* > det(Jac(f*))dy. Using the
rigidity hypothesis we remark that:

Vipo f* = Jac Y Jac(f*) . VI, o f*,
= Jac ' (f*)".V(Iz o ),
= det(Jac(f*)) 'VI,.

t

We thus deduce that
/ Lpds = —/ < VI, &0 f* > du.
D D

Proof of Theorem 2

For I, and PI* project onto a truncated Fourier space with & indices
belonging to S,, we have to bound the corresponding Fourier coeffi-
cients of I1,(I; — I,) — P/ (h*) and then sum over k indices in S,. The
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case k = 0 is straightforward by Lemma 10:

1
CO(II - IQ - 8 < Vll,h* >) =0.
Now take k € S,/{0}. By Lemma 10 we have

Ck(Il_IQ <VIl,k ><k h* )

1
k]2

= cp(< VI, k> (e im<kh™>/M _ 1 4 % <k h*>)).

Using Taylor-Lagrange inequality we have
e*’iﬂ'(k,h*>/M _ 1 + E < k',h,* >
| = |
2
<
— 2M?

and by the mean theorem we deduce that

| <k, h* > |2,

\/ < VI k> (emm<kh>M 1 LT g e Sy
D M

2
_2M2/1)|<v1,k>|<k,h >2 4z,

yielding the following bound:

1
‘Ck(Il_IQ |k|2 <V11,l€ ><k h* )‘

™

* 2

Summing the squared moduli of the coefficients over k € S,/{0}
indices using the following separation:

3 \kl2 / VL] < k, b > dz)?

k€S, {0}
< sup {[ VL[ |h"[*de}
keS,/{0}
> 2/ V| < kKB B > da,
keSs/{0} |k|
d+2
<

(“2 )(2M)d+2(/D|VIl|.\h*\2dx)2,
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leads to the final result. Though this bound is not optimal because of
the choice of the separation and could be reduced by a factor depending
essentially on the dimension, it is more tractable and clearly shows the
scale dependence in any dimension.

Proof of Lemma 5

Without loss of generality we can assume that the set of basis func-
tions is such that the (|V 1|2 w,), 1., form an orthonormal basis of the
spanned (L2)% sub-space, thus yielding ||(h—h*)| VI |2 |12 = ||©—O*]|».
Observing that M, is symmetric positive definite there exists a diago-
nal matrix D, and a unitary matrix U such that M, = U 'D,U. Set
! = UV and remark that |© — ©*||, = || D;1D,U(© — ©*)]|5. We see
that:

~ ~

D,U(©—©*) = PI(U)e PrUHY))U® - 6%,
= B~0’?

where column B,’s components are defined by (B,); =< PI'(¥}), I, (I, —

L) — PI"(h*) >. Applying Cauchy-Schwartz inequality and Theorem 2
we obtain:

[ P (1, (1 — 1) = PP (0))da|
< |[Bf (v Z->||L2.||Ha<fl — ) = P ()12,
< [P ()12 50 2|0 VL 2

Observing that (Dy)q,) = ||[P(¥;)]|2. and using orthogonality be-
tween PI1(W¥}), we deduce that

[(h = h*) |V T3]
= ||ID;'D,U(6 — 6%)]ls,

n o IP (D)2 T *
< (s Uitz gt 1

< 302 (Tr(M; ")) ¥ |*| VL

Proof of Theorem 3
Let us first remark that by the second hypothesis, we necessarily have
Co > 1. It is thus sufficient to show that, for all p > 1,

||Tp|VIl,p

) 1
7|22 < S5 llA7
Co
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If p =1, we obtain by Lemma 5 and the second hypothesis:

1
2“%2:

™ 1.
InIVIlzlle < 508 Tr(Mog,) 2 1h|VIrg

1 1
< —||h*|VI1o|2]|L2-
< & IW 9 hol s

Assume by recurrence hypothesis that we have, for some p > 1,

1
2 ||L2.

||7"p‘VIl,p

1 1.
2|2 < C_{;”h VI
Then by Lemma 5 we have again:

1 ™ 1 1
7541 V1 psa|2]] 22 < §Ug+2T7'(Mp,0p) 2||rp| V11 |2 ”%2

Now using the third hypothesis we obtain:

o=

1 m
)2 < COgagf%TT(Mp—l,apfl) )

AN

< cggag“Tr(Mo,m)%.

By definition of constant Cj we have

cr!
|*|V Ty 0|2 ]| 2

D=

<

ngag”TT(Mo,ao)

and we deduce that:

1
|2
’

< cyt |h*|V 110
-~ 1 2
|h*|V 11| %] 2 Co?

1. .
< W”h (V1|2 ]| 2.

1
||7"p+1|V11,p+1| 2|2

Proof of section 5
Remarking that, for all (z,\) € D x R,

IX1n>a3 (%) = Xqn>ay 0 f)] < 1,

with
Aé [a,b] = |X{]12)\}($) — X{I2>A} © f($)| =0,
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we see that:
[ et (@) = X © F@)ldA < (- a)
We can deduce that:
1= B Sl < (0= a) [ [xinon = xinen © flhd,
but in this case the L' norm is the squared L? norm,

+00
|1, — Iyo f||3: < (b—a) [||X{112A} — X{I2>x} © Fll72dA.
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